Corteza prefrontal: sustrato de las funciones mentales superiores

Contenido principal del artículo

Olga Lucía Gaitán Gómez
Gladis Patricia Aristizábal Hoyos

Resumen

La corteza prefrontal humana (CPF), en especial el área 10, poseen tal vez una de las citoarquitecturas y conectividad más interesantes del encéfalo, las funciones adjudicadas por estudios de lesiones en humanos, ablaciones en animales (primates superiores) y estudios de neuroimagen, han permitido identificar su valiosa contribución al comportamiento humano, sin desmeritar la importancia de su aporte en la evolución del hombre como especie dominante de este planeta. Durante las últimas décadas diferentes grupos de investigación han volcado su interés en estas áreas, como consecuencia de su participación en  múltiples patologías psiquiátricas (autismo, esquizofrenia, depresión, trastorno bipolar etc.), pero también por su participación en la concepción de ser humano como persona e individuo que se relaciona y convive en sociedad. Esta zona cortical y en especial el área 10, se ve involucrada en múltiples funciones eminentemente humanas, entre ellas establecimiento de juicios, conceptos demoralidad y ética, ponerse en el lugar de los demás, planeación de metas a corto, mediano y largo plazo, habilidad de soñar despiertos y posicionamiento de la atención, varias de ellas vinculadas a la conciencia del hombre.

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Cómo citar
Gaitán Gómez, O. L., & Aristizábal Hoyos, G. P. (2016). Corteza prefrontal: sustrato de las funciones mentales superiores. Revista CuidArte, 5(9), 45–66. https://doi.org/10.22201/fesi.23958979e.2016.5.9.69123

Citas

(1) Harlow JM. Recovery from the passage of an iron bar through the headPubl. Mass. Med. Soc.1868.

(2) Blumer DaB, D. F. Personality changes with frontal and temporal lobe lesions . Psychiatric Aspects of Neurological Disease .New York;1975.

(3) Damasio H, Grabowski T, Frank R, Galaburda AM, Damasio AR. The return of Phineas Gage: clues about the brain from the skull of a famous patient. Science. 1994;264(5162):1102-5.

(4) Asenjo A, Horvitz, Isaac, Vergara, Adriana, & Contreras, Mario. La lobotomia prefrontal como tratamiento de algunas psicosis.Revista chilena de neuro-psiquiatría,49(3), 225-240.2011.5.P. OD. Conciencia y metacognición. Avances en Psicología Latinoamericana23: 77-89; 2005.

(5) Joaquín M F. Chapter 2 - Anatomy of the Prefrontal Cortex. The Prefrontal Cortex (Fourth Edition). San Diego: Academic Press; 2008. p. 7-58.

(6) Vogt CaV, O. Allgemeine Ergebnisse unserer Hirnforschung. J. Psychol. Neurol; 1919. p. 279-462.

(7) Sanides F. The cyto-myeloarchitecture of the human frontal lobe and its relation to phylogenetic differentiation of the cerebral cortex. J . Hirnforsch.; 1964. p. 269 – 82.

(8) Freeman W, Watts JW. The thalamic projection to the frontal lobe. Res Publ Assoc Res Nerv Ment Dis. 1948;27 (1 vol.):200-9.

(9) Mclardy T. Thalamic projection to frontal cortex in man. J Neurol Neurosurg Psychiatry. 1950;13(3):198-202.

(10) Pribram KH, Chow KL, Semes J. Limit and organization of the cortical projection from the medial thalamic nucleus in monkey. J Comp Neurol. 1953;98(3):433-48.

(11) Tanaka D. Thalamic projections of the dorsomedial prefrontal cortex in the rhesus monkey (Macaca mulatta). Brain Res. 1976;110(1):21-38.

(12) Tanaka D. Projections from orbitofrontal cortex to mediodorsal thalamic nucleus in the dog. Brain Res. 1977;131(2):356-61.

(13) Kievit J, Kuypers HG. Organization of the thalamo-cortical connexions to the frontal lobe in the rhesus monkey. Exp Brain Res. 1977;29(3-4):299-322.

(14) Goldman-Rakic PS, Porrino LJ. The primate mediodorsal (MD) nucleus and its projection to the frontal lobe. J Comp Neurol. 1985;242(4):535-60.

(15) Walker AE. An experimental study of the thalamocortical projection of the macaque monkey. The Journal of Comparative Neurology; June 1936. p. 1-39.

(16) Walker AE. An experimental study of the thalamocortical projection of the macaque monkey. The Journal of Comparative Neurology; 1936. p. 1-39.

(17) Walker AE. The medial thalamic nucleus: A comparative anatomical, physiological and clinical study. The Journal of Comparative Neurology; 1940. p. 87-115.

(18) Akert K. Comparative anatomy of frontal cortex and thalamofrontal connections. McGraw-Hill , ed. New York, NY: In: J. M. Warren and K. Akert (eds) , The Frontal Granular Cortex and Behavior; 1964. p. 372 – 96.

(19) Nauta WJ. Neural associations of the frontal cortex. Acta Neurobiol Exp (Wars). 1972;32(2):125-40.

(20) Jacobson S, Trojanowski JQ. Prefrontal granular cortex of the rhesus monkey. I. Intrahemispheric cortical afferents. Brain Res. 1977;132(2):209-33.

(21) Jacobson S, Trojanowski JQ. Prefrontal granular cortex of the rhesus monkey. II. Interhemispheric cortical afferents. Brain Res. 1977;132(2):235-46.

(22) Barbas H, Mesulam MM. Cortical afferent input to the principalis region of the rhesus monkey. Neuroscience. 1985;15(3):619-37.

(23) Barbas H, Pandya DN. Architecture and intrinsic connections of the prefrontal cortex in the rhesus monkey. J Comp Neurol. 1989;286(3):353-75.

(24) Jay TM, Witter MP. Distribution of hippocampal CA1 and subicular efferents in the prefrontal cortex of the rat studied by means of anterograde transport of Phaseolus vulgaris-leucoagglutinin. J Comp Neurol. 1991;313(4):574-86.

(25) Brodmann K. Resumen del libro de “teoría de la localización comparativa de la corteza cerebral” expuesta en sus principos en base a la estructura celular. Buenos Aires: Revista Argentina de Neurocirugia; 2010.

(26) Joaquín M F. Chapter 1 - Introduction. The Prefrontal Cortex (Fourth Edition). San Diego: Academic Press; 2008. p. 1-6.

(27) Ongür D, Price JL. The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys and humans. Cereb Cortex. 2000;10(3):206-19.

(28) Öngür D, Ferry AT, Price JL. Architectonic subdivision of the human orbital and medial prefrontal cortex. The Journal of Comparative Neurology. 2003;460(3):425-49.

(29) Dombrowski SM, Hilgetag CC, Barbas H. Quantitative architecture distinguishes prefrontal cortical systems in the rhesus monkey. Cereb Cortex. 2001;11(10):975-88.

(30) Elston GN, Benavides-Piccione R, Elston A, Zietsch B, Defelipe J, Manger P, et al. Specializations of the granular prefrontal cortex of primates: implications for cognitive processing. Anat Rec A Discov Mol Cell Evol Biol. 2006;288(1):26-35.

(31) Goldman PS, Nauta WJ. Columnar distribution of cortico-cortical fibers in the frontal association, limbic, and motor cortex of the developing rhesus monkey. Brain Res. 1977;122(3):393-413.

(32) Bugbee NM, Goldman-Rakic PS. Columnar organization of corticocortical projections in squirrel and rhesus monkeys: similarity of column width in species differing in cortical volume. J Comp Neurol. 1983;220(3):355-64.

(33) Kritzer MF, Goldman-Rakic PS. Intrinsic circuit organization of the major layers and sublayers of the dorsolateral prefrontal cortex in the rhesus monkey. J Comp Neurol. 1995;359(1):131-43.

(34) Lewis DA, Melchitzky DS, Burgos GG. Specificity in the functional architecture of primate prefrontal cortex. J Neurocytol. 2002;31(3-5):265-76.

(35) Lewis DA, Melchitzky DS, Burgos GG. Specificity in the functional architecture of primate prefrontal cortex. J Neurocytol. 2002;31(3-5):265-76.

(36) Melchitzky DS, Lewis DA. Pyramidal neuron local axon terminals in monkey prefrontal cortex: differential targeting of subclasses of GABA neurons. Cereb Cortex. 2003;13(5):452-60.

(37) Goldman-Rakic PS. Architecture of the prefrontal cortex and the central executive. Ann N Y Acad Sci. 1995;769:71-83.

(38) Fuster JnM. Network memoryTrends in neurosciences1997. p. 451-9.

(39) Gonzalez-Burgos G, Kroener S, Seamans JK, Lewis DA, Barrionuevo G. Dopaminergic Modulation of Short-Term Synaptic Plasticity in Fast-Spiking Interneurons of Primate Dorsolateral Prefrontal Cortex. Journal of Neurophysiology. 2005;94(6):4168-77.

(40) Barbas H, Rempel-Clower N. Cortical structure predicts the pattern of corticocortical connections. Cereb Cortex. 1997;7(7):635-46.

(41) Catani M, Dell’acqua F, Vergani F, Malik F, Hodge H, Roy P, et al. Short frontal lobe connections of the human brain. Cortex. 2012;48(2):273-91.

(42) Thiebaut de Schotten M, Dell’Acqua F, Valabregue R, Catani M. Monkey to human comparative anatomy of the frontal lobe association tracts. Cortex. 2012;48(1):82-96.

(43) Conturo TE, Lori NF, Cull TS, Akbudak E, Snyder AZ, Shimony JS, et al. Tracking neuronal fiber pathways in the living human brain. Proc Natl Acad Sci U S A. 1999;96(18):10422-7.

(44) Oishi K, Zilles K, Amunts K, Faria A, Jiang H, Li X, et al. Human brain white matter atlas: identification and assignment of common anatomical structures in superficial white matter. Neuroimage. 2008;43(3):447-57.

(45) Lawes IN, Barrick TR, Murugam V, Spierings N, Evans DR, Song M, et al. Atlas-based segmentation of white matter tracts of the human brain using diffusion tensor tractography and comparison with classical dissection. Neuroimage. 2008;39(1):62-79.

(46) Schoenemann PT, Sheehan MJ, Glotzer LD. Prefrontal white matter volume is disproportionately larger in humans than in other primates. Nat Neurosci. 2005;8(2):242-52.

(47) Rilling JK, Insel TR. The primate neocortex in comparative perspective using magnetic resonance imaging. J Hum Evol. 1999;37(2):191-223.

(48) Campbell AW. Histological Studies on the Localization of Cerebral Function. Cambridge: Cambridge University Press; 1905.Vogt O. Über strukturelle Hirnzentra, mit besonderer Berücksichtigung der strukturellen Felder des Cortex pallii. Anat. Anz Journal; 1906. p. 74 – 114.

(49) Petrides M. Lateral prefrontal cortex: architectonic and functional organization. Philos Trans R Soc Lond B Biol Sci. 2005;360(1456):781-95.

(50) Petrides M, Pandya DN. Association fiber pathways to the frontal cortex from the superior temporal region in the rhesus monkey. J Comp Neurol. 1988;273(1):52-66.

(51) Petrides M. Nonspatial conditional learning impaired in patients with unilateral frontal but not unilateral temporal lobe excisions. Neuropsychologia. 1990;28(2):137-49.

(52) Petrides M. Frontal lobes and behaviour. Curr Opin Neurobiol. 1994;4(2):207-11.

(53) Petrides M. Functional organization of the human frontal cortex for mnemonic processing. Evidence from neuroimaging studies. Ann N Y Acad Sci. 1995;769:85-96.

(54) Bachevalier J, Mishkin M. Visual recognition impairment follows ventromedial but not dorsolateral prefrontal lesions in monkeys. Behav Brain Res. 1986;20(3):249-61.

(55) Petrides M. The orbitofrontal cortex: novelty, deviation from expectation, and memory. Ann N Y Acad Sci. 2007;1121:33-53.

(56) Ramnani N, Owen AM. Anterior prefrontal cortex: insights into function from anatomy and neuroimaging. Nat Rev Neurosci. 2004;5(3):184-94.

(57) Semendeferi K, Armstrong E, Schleicher A, Zilles K, Van Hoesen GW. Prefrontal cortex in humans and apes: a comparative study of area 10. Am J Phys Anthropol. 2001;114(3):224-41.

(58) Jelinek HF, Elston GN. Pyramidal neurones in macaque visual cortex: Interareal phenotypic variation of dendritic branching patterns. Fractals. 2001;09(03):287-95.

(59) Elston GN, Jelinek HF. Dendritic branching patterns of pyramidal cells in the visual cortex of the new world marmoset monkey, with comparative notes on the old world macaque monkey. Fractals. 2001;09(03):297-303.

(60) Petrides M, Pandya DN. Dorsolateral prefrontal cortex: comparative cytoarchitectonic analysis in the human and the macaque brain and corticocortical connection patterns. Eur J Neurosci. 1999;11(3):1011-36.

(61) Morecraft RJ, Van Hoesen GW. Frontal granular cortex input to the cingulate (M3), supplementary (M2) and primary (M1) motor cortices in the rhesus monkey. J Comp Neurol. 1993;337(4):669-89.

(62) Bachevalier J, Meunier M, Lu MX, Ungerleider LG. Thalamic and temporal cortex input to medial prefrontal cortex in rhesus monkeys. Exp Brain Res. 1997;115(3):430-44.

(63) Kondo H, Saleem KS, Price JL. Differential connections of the temporal pole with the orbital and medial prefrontal networks in macaque monkeys. J Comp Neurol. 2003;465(4):499-523.

(64) Hackett TA, Stepniewska I, Kaas JH. Prefrontal connections of the parabelt auditory cortex in macaque monkeys Brain Res. 1999;817(1-2):45-58.

(65) Ghashghaei HT, Barbas H. Neural interaction between the basal forebrain and functionally distinct prefrontal cortices in the rhesus monkey. Neuroscience. 2001;103(3):593-614.

(66) Barbas H, De Olmos J. Projections from the amygdala to basoventral and mediodorsal prefrontal regions in the rhesus monkey. J Comp Neurol. 1990;300(4):549-71.

(67) Ferry AT, Ongür D, An X, Price JL. Prefrontal cortical projections to the striatum in macaque monkeys: evidence for an organization related to prefrontal networks. J Comp Neurol. 2000;425(3):447-70.

(68) Erickson SL, Melchitzky DS, Lewis DA. Subcortical afferents to the lateral mediodorsal thalamus in cynomolgus monkeys. Neuroscience. 2004;129(3):675-90.

(69) Rempel-Clower NL, Barbas H. Topographic organization of connections between the hypothalamus and prefrontal cortex in the rhesus monkey. J Comp Neurol. 1998;398(3):393-419.

(70) Buriticá-Ramírez E, Pimienta-Jiménez HJ. Corteza Frontopolar Humana: Area 10. Revista Latinoamericana de Psicología. 2007;39(1):127-42.

(71) Fuster JM. Executive frontal functions. Exp Brain Res. 2000;133(1):66-70.74.Fuster JM. Memory networks in the prefrontal cortex. Prog Brain Res. 2000;122:309-16.

(72) Fuster JM. Prefrontal neurons in networks of executive memory. Brain Res Bull. 2000;52(5):331-6.76.Harlow HF, Seay B. Affectional systems in rhesus monkeys. J Ark Med Soc. 1964;61:107-10.

(73) Burgess PW, Gilbert SJ, Dumontheil I. Function and localization within rostral prefrontal cortex (area 10). Philos Trans R Soc Lond B Biol Sci. 2007;362(1481):887-99.

(74) Gilbert SJ, Spengler S, Simons JS, Steele JD, Lawrie SM, Frith CD, et al. Functional specialization within rostral prefrontal cortex (area 10): a meta-analysis. J Cogn Neurosci. 2006;18(6):932-48.

(75) Pollmann S. Anterior prefrontal cortex contributions to attention control. Exp Psychol. 2004;51(4):270-8.

(76) Burgess PW, Scott SK, Frith CD. The role of the rostral frontal cortex (area 10) in prospective memory: a lateral versus medial dissociation. Neuropsychologia. 2003;41(8):906-18.

(77) Simons JS, Schölvinck ML, Gilbert SJ, Frith CD, Burgess PW. Differential components of prospective memory? Evidence from fMRI. Neuropsychologia. 2006;44(8):1388-97.

(78) Burgess PW, Dumontheil I, Gilbert SJ. The gateway hypothesis of rostral prefrontal cortex (area 10) function. Trends Cogn Sci. 2007;11(7):290-8.

(79) Bird CM, Castelli F, Malik O, Frith U, Husain M. The impact of extensive medial frontal lobe damage on ‘Theory of Mind’ and cognition. Brain. 2004;127(Pt 4):914-28.

(80) Eslinger PJ, Damasio AR. Severe disturbance of higher cognition after bilateral frontal lobe ablation: patient EVR. Neurology. 1985;35(12):1731-41.

(81) Shallice T, Burgess PW. Deficits in strategy application following frontal lobe damage in man. Brain. 1991;114 ( Pt 2):727-41.

(82) Burgess PW. Strategy application disorder: the role of the frontal lobes in human multitasking. Psychol Res. 2000;63(3-4):279-88.

(83) Okuda J, Fujii T, Yamadori A, Kawashima R, Tsukiura T, Fukatsu R, et al. Participation of the prefrontal cortices in prospective memory: evidence from a PET study in humans. Neurosci Lett. 1998;253(2):127-30.

(84) Burgess PW, Quayle A, Frith CD. Brain regions involved in prospective memory as determined by positron emission tomography. Neuropsychologia. 2001;39(6):545-55.

(85) Frith U, Frith CD. Development and neurophysiology of mentalizing. Philos Trans R Soc Lond B Biol Sci. 2003;358(1431):459-73.

(86) Frith CD, Frith U. The neural basis of mentalizing. Neuron. 2006;50(4):531-4.91.Tulving E. Episodic memory: from mind to brain. Annu Rev Psychol. 2002;53:1-25.

(87) Koechlin E, Corrado G, Pietrini P, Grafman J. Dissociating the role of the medial and lateral anterior prefrontal cortex in human planning. Proc Natl Acad Sci U S A. 2000;97(13):7651-6.

(88) Braver TS, Bongiolatti SR. The role of frontopolar cortex in subgoal processing during working memory. Neuroimage. 2002;15(3):523-36.

(89) Kroger JK, Sabb FW, Fales CL, Bookheimer SY, Cohen MS, Holyoak KJ. Recruitment of anterior dorsolateral prefrontal cortex in human reasoning: a parametric study of relational complexity. Cereb Cortex. 2002;12(5):477-85.

(90) Waltz JA, Lau A, Grewal SK, Holyoak KJ. The role of working memory in analogical mapping. Mem Cognit. 2000;28(7):1205-12.

(91) Shallice TIM, Burgess PW. Deficits in strategy application following frontal lobe damage in man. Brain. 1991;114(2):727-41.

(92) Koechlin E, Basso G, Pietrini P, Panzer S, Grafman J. The role of the anterior prefrontal cortex in human cognition. Nature. 1999;399(6732):148-51.

(93) Koechlin E, Ody C, Kouneiher F. The architecture of cognitive control in the human prefrontal cortex. Science. 2003;302(5648):1181-5.

(94) Owen AM. The role of the lateral frontal cortex in mnemonic processing: the contribution of functional neuroimaging. Exp Brain Res. 2000;133(1):33-43.

(95) Fletcher PC, Henson RN. Frontal lobes and human memory: insights from functional neuroimaging. Brain. 2001;124(Pt 5):849-81.

(96) Hampshire A, Owen AM. Fractionating attentional control using event-related fMRI. Cereb Cortex. 2006;16(12):1679-89.

(97) Hampshire A, Chamberlain SR, Monti MM, Duncan J, Owen AM. The role of the right inferior frontal gyrus: inhibition and attentional control. Neuroimage. 2010;50(3):1313-9.

(98) Green AE, Fugelsang JA, Kraemer DJ, Shamosh NA, Dunbar KN. Frontopolar cortex mediates abstract integration in analogy. Brain Res. 2006;1096(1):125-37.

(99) Richland LE, Morrison RG. Is Analogical Reasoning just Another Measure of Executive Functioning? Front Hum Neurosci. 2010;4.

(100) Cho S, Moody TD, Fernandino L, Mumford JA, Poldrack RA, Cannon TD, et al. Common and dissociable prefrontal loci associated with component mechanisms of analogical reasoning. Cereb Cortex. 2010;20(3):524-33.