Activación alcalina de residuos industriales. Una alternativa para su reutilización en la construcción
Contenido principal del artículo
Resumen
Cada año, una cantidad significativa de vidrio reciclable se vierte en rellenos sanitarios a nivel mundial, lo que representa un problema ambiental al acumularse por tiempos prolongados. Por lo anterior, en este trabajo se estudió la influencia de los residuos de vidrio en la resistencia a la compresión de materiales obtenidos por activación alcalina de la mezcla de escoria de hierro y ceniza volante con hidróxido y silicato de sodio. La sustitución de 10, 20 y 30% de la ceniza volante por los residuos de vidrio incrementó su resistencia a la compresión hasta en 19.3% a 7 días, 17.8% a 14 días y 15.9% a 35 días con respecto a la mezcla de referencia, que contiene el 50% de escoria de hierro y 50% de ceniza volante. Los resultados obtenidos indicaron que, es posible utilizar los residuos de vidrio como un precursor parcial de la ceniza volante en estos materiales.
Descargas
Detalles del artículo
Citas en Dimensions Service
Citas
AGHDAM, K. A., A. F. RAD, H. SHAKERI Y J. M. SARDROUD, 2018, “Approaching green buildings using eco-efficient construction materials: A review of the state-of-the-art”, J. Constr. Eng. Proj. Manag., 8, pp. 1-23, https://doi.org/10.6106/JCEPM.2018.8.3.001.
ALMALKAWI, A. T., A. BALCHANDRA, Y P. SOROUSHIAN, 2019, “Potential of Using Industrial Wastes for Production of Geopolymer Binder as Green Construction Materials”, Construction and Building Materials, 220, pp. 516-524, https://doi.org/10.1016/j.conbuildmat.2019.06.054.
AMERICAN COAL-ASH ASSOCIATION (ACAA), 2021, “2021 Coal Combustion Product (CCP) Production & Use Survey Report”, https://acaa-usa.org/wp-content/uploads/2022/12/2021-Production-and-Use-Survey-Results-FINAL.pdf, consultado 23 de febrero de 2023.
AMERICAN CONCRETE INSTITUTE, 2013, Concrete Terminology, An ACI standard, https://www.concrete.org/portals/0/files/pdf/aci_concrete_terminology.pdf, consultado el 28 de febrero de 2023.
AMERICAN SOCIETY FOR TESTING AND MATERIALS, “Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete”, ASTM C 618-03. https://civiledu.co/2021/09/08/astm-c-618-03-pdf-free-download/
BERNAL, S. A., Y J. L. PROVIS, 2014, “Durability of Alkali-Activated Materials: Progress and Perspectives”, Journal of the American Ceramic Society, 97 (4), pp. 997-1008, https://doi.org/10.1111/jace.12831.
BHATTY, J. I., L. A. GRAF, F. M. MILLER Y J. GAJDA, La ceniza volante con alto contenido de carbón y de cemento, https://www.imcyc.com/cyt/septiembre03/ceniza.htm, consultado el 28 de febrero de 2023.
CHÁVEZ VELÁSQUEZ, C. A. E Y. L. GUERRA MAESTRE, 2015, Producción, propiedades y uso de los residuos de la combustión del carbón de termotasajero, tesis de licenciatura en ingeniería civil, Universidad Santo Tomás, Bogotá, 2015, p. 130, https://repository.usta.edu.co/bitstream/handle/11634/9685/ChavezCamilo2015.pdf?sequence=1, consultado el 28 de febrero de 2023.
COMISIÓN FEDERAL DE ELECTRICIDAD, 1996, Integración de estudios de selección de sitios para disposición de cenizas, https://lapem.cfe.gob.mx/normas/pdfs/n/10000-19.pdf, consultado el 28 de febrero de 2023.
COMISIÓN FEDERAL DE ELECTRICIDAD, 2022, Informe Anual 2021, https://infosen.senado.gob.mx/sgsp/gaceta/65/1/2022-05-11-1/assets/documentos/CFE_Informe_Anual_2021.pdf, consultado el 27 de febrero de 2023.
FERNÁNDEZ-JIMÉNEZ, A., Y A. PALOMO, 2003, “Characterisation of fly ashes. Potential reactivity as alkaline cements”, Fuel, 82 (18), 2259-2265, doi:10.1016/s0016-2361(03)00194-7.
GÖKÇE H. S., M. TUYAN Y M. L. NEHDI, 2021, “Alkali-activated and geopolymer materials developed using innovative manufacturing techniques: A critical review”, Construction and Building Materials, 303, 124483, https://doi.org/10.1016/j.conbuildmat.2021.124483.
LIANG, G., H. LI, H. ZHU, T. LIU, Q. CHEN Y H. GUO, 2021, “Reuse of waste glass powder in alkali-activated metakaolin/fly ash pastes: Physical properties, reaction kinetics and microstructure”, Resources, Conservation and Recycling, 173, 105721, https://doi.org/10.1016/j.resconrec.2021.105721.
LING, T.-C., C.-S. POON Y H.-W. WONG, 2013, “Management and recycling of waste glass in concrete products: Current situations in Hong Kong”, Resources, Conservation and Recycling, 70, 25-31, doi:10.1016/j.resconrec.2012.10.006
LIU, Y., C. SHI, Z. ZHANG Y N. LI, 2019, “An overview on the reuse of waste glasses in alkali-activated materials”, Resources, Conservation and Recycling, 144, pp. 297-309, https://doi.org/10.1016/j.resconrec.2019.02.007.
LUHAR, S., T.-W. CHENG, D. NICOLAIDES, I. LUHAR, D. PANIAS Y K. SAKKA, 2019, “Valorisation of glass wastes for the development of geopolymer composites – Durability, thermal and microstructural properties: A review”, Construction and Building Materials, 222, pp. 673-687, doi:10.1016/j.conbuildmat.2019.06.169.
MANIKANDAN P., Y V. VASUG, 2022, “Potential utilization of waste glass powder as a precursor material in synthesizing ecofriendly ternary blended geopolymer matrix”, Journal of Cleaner Production, vol. 355, 131860, https://doi.org/10.1016/j.jclepro.2022.131860.
NORMA N·CMT·2·02·001/02, “Calidad del cemento Porltand”, https://normas.imt.mx/normativa/N-CMT-2-02-001-02.pdf, consultado el 11 de febrero de 2023.
O’CONNOR, J., ET AL., 2021, “Production, characterisation, utilisation, and beneficial soil application of steel slag: A review”, Journal of Hazardous Materials, vol. 419, 126478, https://doi.org/10.1016/j.jhazmat.2021.126478.
PIATAK, N. M., M. B. PARSONS Y R. R. SEAL, 2015, “Characteristics and environmental aspects of slag: A review”, Applied Geochemistry, vol. 57, pp. 236-266, https://doi.org/10.1016/j.apgeochem.2014.04.009.
PRADHAN, P., S. DWIBEDY, M. PRADHAN, S. PANDA Y S. K. PANIGRAHI, 2022, “Durability characteristics of geopolymer concrete – Progress and perspectives, Journal of Building Engineering”, vol. 59, 105100, https://doi.org/10.1016/j.jobe.2022.105100.
PROVIS, J. L., 2018, “Alkali-activated materials”, Cement and Concrete Research, vol. 114, pp. 40-48, doi:10.1016/j.cemconres.2017.02.009.
RENDÓN BELMONT M., D. SÁNCHEZ TOPETE, M. MARTÍNEZ MADRID Y A. LÓPEZ MIGUEL, 2021, Caracterización fisicoquímica de concretos con contenidos del 30% de ceniza volante, Instituto Mexicano del Transporte, Publicación Técnica núm. 618, pp. 3-4, https://imt.mx/archivos/Publicaciones/PublicacionTecnica/pt618.pdf.
SECRETARÍA DEL MEDIO AMBIENTE Y RECURSOS NATURALES, 2012, Reporte de reciclaje de residuos sólidos urbanos para el año 2012, https://datos.gob.mx/busca/dataset/
indicadores-de-crecimiento-verde--producción-y-consumo, consultado el 27 de febrero de 2023.
SECRETARÍA DEL MEDIO AMBIENTE Y RECURSOS NATURALES, 2015, Informe de la Situación del Medio Ambiente en México, “Residuos” (cap. 7), 2015, https://apps1.semarnat.gob.mx:8443/dgeia/informe15/tema/pdf/Informe15_completo.pdf, consultado el 27 de febrero de 2023.
TEMNIKOV, V. V., ET AL., 2020, “Ladle-Furnace-Slag Reprocessing at Evraz Nizhnii Tagil Iron and Steel Works OJSC”, Metallurgist, 64, pp. 508-513, https://doi.org/10.1007/s11015-020-01020-w.
TORRES CARRASCO, M., C. RODRÍGUEZ-PUERTAS, M. DEL M. ALONSO Y F. PUERTAS, 2015, “Alkali activated slag cements using waste glass as alternative activators. Rheological behaviour”, Boletín de La Sociedad Española de Cerámica y Vidrio, vol. 54, núm. 2, pp. 45-57, doi:10.1016/j.bsecv.2015.03.004.
TORRES CARRASCO, M., Y F. PUERTAS, 2017, “La activación alcalina de diferentes aluminosilicatos como una alternativa al Cemento Portland: cementos activados alcalinamente o geopolímeros”, Revista Ingeniería de Construcción, vol. 32, núm. 2, pp. 5-12, https://dx.doi.org/10.4067/S0718-50732017000200001.
UNITED STATES GEOLOGICAL SURVEY (2023), “Iron and Steel Slag”, Statistics and Information for the year 2023, https://pubs.usgs.gov/periodicals/mcs2023/mcs2023-iron-steel-slag.pdf, consultado el 28 de febrero de 2023.
UNITED STATES ENVIRONMENTAL PROTECTION AGENCY, Advancing Sustainable Materials Management, “Fact Sheet”, 2018, https://www.epa.gov/sites/default/files/2020-11/documents/2018_ff_fact_sheet.pdf, consultado el 27 de febrero de 2023.
ZHANG, T., P. GAO, P. GAO, J. WEI Y Q. YU, 2013, Effectiveness of novel and traditional methods to incorporate industrial wastes in cementitious materials—An overview. Resources, Conservation and Recycling, vol. 74, pp. 134-143, doi: 10.1016/j.resconrec.2013.03.003.
ZHAO, J., ET AL., 2021, “Eco-friendly geopolymer materials: A review of performance improvement, potential application and sustainability assessment”, Journal of Cleaner Production, 307, 127085, https://doi.org/10.1016/j.jclepro.2021.127085.
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.