Comparación de metodologías para el fraccionamiento de la DQO de aguas residuales municipales y su aplicación en el Modelo ASM1

Contenido principal del artículo

Miguel Ángel Espinosa Rodríguez
Raúl Delgado Delgado
Antonio Hidalgo Millán

Resumen

El modelo ASM1 es aplicado en procesos de tratamiento de aguas residuales y es capaz de predecir la remoción de materia orgánica, nitrificación y desnitrificación. Para la calibración del ASM1, es necesario caracterizar el influente y efluente del sistema de tratamiento biológico, y particularmente, fraccionar la DQO en componentes biodegradables, inertes, particulados y solubles. El objetivo de este trabajo fue comparar diferentes procedimientos de cálculo para fraccionar la DQO (STOWA, ATV-A131 e Influent Advisor) utilizando filtros con poros de 0.45 μm. Los resultados obtenidos con los 3 métodos indicaron un porcentaje de 58% de DQO soluble y de 42% de DQO particulada, siendo entonces una mayor contribución de DQO soluble y, por tanto, el agua residual caracterizada es de origen municipal o doméstica. De acuerdo a las metodologías y resultados de las fracciones de la DQO, los 3 métodos pueden ser utilizados para su aplicación en el modelo ASM1.

Detalles del artículo

Cómo citar
[1]
Espinosa Rodríguez, M. Ángel, Delgado Delgado, R. y Hidalgo Millán, A. 2024. Comparación de metodologías para el fraccionamiento de la DQO de aguas residuales municipales y su aplicación en el Modelo ASM1. Revista AIDIS de ingeniería y ciencias ambientales: Investigación, desarrollo y práctica. 17, 1 (abr. 2024), 191–205. DOI:https://doi.org/10.22201/iingen.0718378xe.2024.17.1.84916.

Citas

APHA, American Public Health Association (2005) Standard methods for the examination of water and wastewater, APHA-AWWA-WPCF, Washington, D.C., 1364 PP.

ATV-DVWK (2000) Rules and Standards. Dimensioning of single-stage activated sludge plants, Publishing Company of ATV-DVWK, Water, Wastewater, Waste, Hennef, Germany, 57 pp.

Baquero, G., Lara, J. and Martelo, J. (2016) A simplified method for estimating chemical oxygen demand (COD) fractions, Water Practice and Technology, 11(4), 838-848. https://doi.org/10.2166/wpt.2016.089

Choi, Y., Baek, S., Kim, J., Choi, J., Jur, J., Lee, T., Park, C. and Lee, B. (2017) Characteristics and biodegradability of wastewater organic matter in municipal wastewater treatment plants collecting domestic wastewater and industrial discharge, Water. 9, 1-12. https://doi.org/10.3390/w9060409

Cutrera, G., Manfredi, L., Del Valle, C. and González, F. (1999) On the determination of the kinetic parameters for the BOD test, Water SA, 25(3), 377-380.

Dold, P. L., Ekama, G. and Marais, G. (1981) A general model for the activated sludge process, Water Pollution Research and Development, 12(6), 47-77. https://doi.org/10.1016/B978-1-4832-8438-5.50010-8

Dold, P. L., Wentzel, M. C., Billing, A. E., Ekama, G. A. and Marais, G. (1991) Activated sludge simulation programs: Nitrification and nitrification/denitrification systems (Version 1.0), Water Research Commission, Pretoria, South Africa, 90 pp.

Ekama, G.A., Dold, P. L. and Marais, G. (1986) Procedures for determining influent COD fractions and the maximum specific growth rate of heterotrophs in activated sludge systems, Water Science & Technology, 18(6), 91-114. https://doi.org/10.2166/wst.1986.0062

Espinosa, M. A., Ruiz, T. J., Hidalgo, A. and Delgado, R. (2019) Efecto de la carga hidráulica de un filtro percolador en el proceso de nitrificación, Revista Mexicana de Ingeniería Química. 18(1), 107-113. https://doi.org/10.24275/uam/izt/dcbi/revmexingquim/2019v18n1/Espinosa

Espinosa, M. A., Delgado, R. and Hidalgo, A. (2020) Evaluación de un proceso anóxico-aerobio-reactor biológico de membrana con alto contenido de nitrógeno, Revista Internacional de Contaminación Ambiental. 36(2), 303-320. https://doi.org/10.20937/RICA.53111

Fall, C., Loaiza, J. and Esparza, M. (2009) Full activated sludge model No. 1 calibration experience at a medium-size WWTP in Mexico, Water Science & Technology, 60(12), 3069-3082. https://doi.org/10.2166/wst.2009.747

Fall, C., Flores, N., Espinosa, M. A., Vázquez, G., Loaiza, J., Van Loosdrecht, M. and Hooijmans, C. (2011) Divergence between respirometry and physicochemical methods in the fractionation of the chemical oxygen demand in municipal wastewater, Water Environment Research, 83(2), 162-72. https://doi.org/10.2175/106143010X12780288627931

Henze, M. (1992) Characterization of wastewater for modelling of activated sludge processes, Water Science & Technology, 25(6), 1-15. https://doi.org/10.2166/wst.1992.0110

Henze, M., Gujer, W., Mino, T. and Van Loosdrecht, M. (2000) Activated sludge models ASM1, ASM2, ASM2d and ASM3, IWA publishing, London, United Kingdom, 120 pp.

Hvala, N., Vrecko, D. and Bordon, C. (2018) Plant-wide modelling for assessment and optimization of upgraded full-scale wastewater treatment plant performance, Water Practice & Technology, 13(3), 566-582. https://doi.org/10.2166/wpt.2018.070

Hydromantis Inc. (2014) Software GPS-X. Environmental Software Solutions, INC. https://www.hydromantis.com/

López, C., Buitrón, G., García, H. A. and Cervantes, F. J. (2017) Tratamiento biológico de aguas residuales: Principios, modelación y diseño, IWA publishing, London, UK, 576 PP.

Meknassi, Y., Auriol, M., Tyagi, R. and Surampalli, R. (2004) Treatment of slaughterhouse wastewater in a sequencing batch reactor: Simulation vs experimental studies, Environmental Technology. 25, 23-38. doi: https://doi.org/10.1080/09593330409355435

Mu’azu, N., Alagha, O. and Anil, I. (2020) Systematic modeling of municipal wastewater activated sludge process and treatment plant capacity analysis using GPS-X, Sustainability, 12, 1-26. https://doi.org/10.3390/su12198182

Myszograj, S. and Sadecka, Z. (2004) COD fractions in mechanical-biological sewage treatment on the basis of sewage treatment plant in Sulechów, Rocznik Ochrona Środowiska. 6, 233-244.

Myszograj, S., Pluciennik, E. and Jakubaszek, A. (2017) COD fractions – Methods of measurement and use in wastewater treatment technology, Civil and Environmental Engineering Reports, 24, 195-206. https://doi.org/10.1515/ceer-2017-0014

Myszograj, S. and Pluciennik, E. (2020) COD and nitrogen compounds balance in mechanical-biological wastewater treatment plant with sludge treatment, Desalination and Water Treatment, 186, 443-449. https://doi.org/10.5004/dwt.2020.25629

Naidoo, V. and Buckley, C. (2000) Municipal wastewater characterization: Application of denitrification batch tests. Water Research Commission. WRC Report No. 820/1/00, 48 pp.

Pasztor, I., Thury, P. and Pulai, J. (2009) Chemical oxygen demand fractions of municipal wastewater for modeling of wastewater treatment, International Journal of Environmental Science Technology, 6, 51-56. https://doi.org/10.1007/BF03326059

Pluciennik, E., Jakubaszek, A., Myszograj, S. and Uszakiewicz, S. (2017) COD fractions in mechanical biological wastewater treatment plant, Civil and Environmental Engineering Reports, 24, 207-217. https://doi.org/10.1515/ceer-2017-0015

Pluciennik, E. and Myszograj, S. (2019) New approach in COD fractionation methods, Water, 11, 1-12. https://doi.org/10.3390/w11071484

Ramalho, R. S. (1991) Tratamiento de aguas residuales. Editorial Reverté S.A., México, 705 pp.

Roeleveld, P. J. and Van Loosdrecht, M. (2002) Experience with guidelines for wastewater characterization in the Netherlands, Water Science and Technology, 45 (6), 77-87. https://doi.org/10.2166/wst.2002.0095

Sadecka, Z., Płuciennik, E. and Sieciechowicz, A. (2011) Frakcje ChZT ścieków w modelach biokinetycznych, Forum Eksploatatora, 54(3), 72–77.

Sokolowska, J. (2011) Changes of COD fractions share during municipal wastewater treatment with big dairy wastewater participation, Rocznik Ochrona Środowiska, 13(1), 2015-2032.

Sokolowska, J. and Tkaczuk, J. (2018) Analysis of bakery sewage treatment process options based on COD fraction changes, Journal of Ecological Engineering, 19(4), 226-235. https://doi.org/10.12911/22998993/89653

Tchobanoglous, G., Burton, F. and Stensel, H. (2003) Waste¬water engineering, treatment and reuse, Mc.Graw Hill, Inc., USA, 1819 PP.

Torrijos, M., Cerro, R., Capdeville, B., Zeghal, S., Payraudeau, M. and Lesouef, A. (1994) Sequencing batch reactor: A tool for wastewater characterization for the IAWPRC model, Water Science and Technology, 29(7), 81-90. https://doi.org/10.2166/wst.1994.0314

Van Loosdrecht, M., López, C., Meijer, S., Hooijmans, C. and Brdjanovic, D. (2015) Twenty-five years of ASM1: past, present and future of wastewater treatment model¬ling, Journal of Hydroinformatics, 17(5), 697-718. https://doi.org/10.2166/hydro.2015.006

Vázquez, G., Ortega, R. E., Esparza, M. and Fall, C. (2013) Fraccionamiento de la DQO del agua residual de Toluca por el protocolo STOWA, Tecnología y Ciencias del Agua, 4(2), 21-35.

Wentzel, M. C., Mbewe, A., Lakay, M. T. and Ekama, G. A. (1999) Batch test for characterization of the carbonaceous materials in municipal wastewaters, Water SA, 25(3), 327-335.

WERF (2003) Methods for wastewater characterization in activated sludge modelling, 1st ed, WERF publication no. 9 WWF3, Water Environment Research Federation: Alexandria, Virginia, 120 PP.

Xu, S. and Hultman, B. (1996) Experiences in wastewater characterization and model calibration for the activated sludge process, Water Science and Technology, 33(12), 89-98. https://doi.org/10.1016/0273-1223(96)00462-3