Método Processo Analítico Hierárquico como instrumento de apoio na gestão de resíduos sólidos: uma revisão

Contenido principal del artículo

Samara Avelino de Souza França
Viviane Jin Hee Kim
Raphael Tobias de Vasconcelos Barros

Resumen

Processos decisórios baseados em Modelos de Tomada de Decisão Multicritérios (MTDM) têm sido utilizados para solucionar diversos problemas, entre eles os relacionados à gestão de resíduos sólidos. Um desses modelos é o método AHP (Processo Analítico Hierárquico), que emprega critérios qualitativos e quantitativos e a participação de diferentes tomadores de decisão. Assim, o objetivo deste artigo é analisar a literatura sobre o uso do método AHP em apoio à gestão de resíduos sólidos. Para isso, a revisão sistemática de literatura considerou artigos em inglês, disponíveis no Portal Periódicos CAPES, de 2000 a 2022, sendo discutidos com profundidade 12 estudos que utilizaram exclusivamente o método AHP. Os estudos empregaram o método para decisões de destinação ou disposição final, tecnologias de tratamento/aproveitamento de resíduos sólidos ou em locais para instalação de aterro sanitário, usinas de compostagem etc., revelando como tendencia a aplicação do AHP para decidir sobre alternativas de aproveitamento energético de resíduos sólidos. Todos eles se basearam na opinião de especialistas e stakeholders, revelando o AHP como uma poderosa ferramenta de apoio à tomada de decisão. Algumas lacunas verificadas foram: que nenhum dos estudos detalhou a(s) fonte(s) e/ou base de dados da revisão da literatura; alguns não informaram o número de participantes; e apenas 5 estudos explicitaram como procederam para análise de sensibilidade. Como principais recomendações sugere-se que essas lacunas sejam preenchidas, além de discutir se os resultados atenderam às expectativas das partes envolvidas nos julgamentos.

Detalles del artículo

Cómo citar
[1]
França, S.A. de S., Kim, V.J.H. y Barros, R.T. de V. 2024. Método Processo Analítico Hierárquico como instrumento de apoio na gestão de resíduos sólidos: uma revisão. Revista AIDIS de ingeniería y ciencias ambientales: Investigación, desarrollo y práctica. 17, 1 (abr. 2024), 231–250. DOI:https://doi.org/10.22201/iingen.0718378xe.2024.17.1.85411.

Citas

Abba, A. H., Noor, Z. Z., Yusuf, R. O., Din, M. F. M., Hassan, M. A. A. (2013). Assessing environmental impacts of municipal solid waste of Johor by analytical hierarchy process. Resources, Conservation and Recycling, 73, 188-196. https://doi.org/10.1016/j.resconrec.2013.01.003

Abdel-Shafy, H. I., Mansour, M. S. (2018). Solid waste issue: Sources, composition, disposal, recycling, and valorization. Egyptian journal of petroleum, 27(4), 1275-1290. https://doi.org/10.1016/j.ejpe.2018.07.003

Afzali, A., Samani, J. M., Rashid, M. (2011). Municipal landfill site selection for Isfahan City by use of fuzzy logic and analytic hierarchy process. Journal of Environmental Health Science & Engineering, 8(3), 273-284. https://ijehse.tums.ac.ir/index.php/jehse/article/view/ 310

Agbejule, A., Shamsuzzoha, A., Lotchi, K., Rutledge, K. (2021). Application of multi-criteria decision-making process to select waste-to-energy technology in developing countries: The case of Ghana. Sustainability, 13(22), 12863. https://doi.org/10.3390/su132212863

Ahmadi, M., Nikseresht, M., Najafi, E., Morshedi, B. (2020). Landfill Site Selection Using Geographic Information System and Fuzzy-AHP Model: A Case Study of Ilam Township, Iran. Journal of Environmental Health and Sustainable Development. https://doi.org/10.18502/jehsd.v5i3.4276

Alao, M. A., Ayodele, T. R., Ogunjuyigbe, A. S. O., Popoola, O. M. (2020). Multi-criteria decision based waste to energy technology selection using entropy-weighted TOPSIS technique: The case study of Lagos, Nigeria. Energy, 201, 117675. https://doi.org/10.1016/j.energy.2020.117675

Alao, M. A., Popoola, O. M., Ayodele, T. R. (2022). A novel fuzzy integrated MCDM model for optimal selection of waste-to-energy-based-distributed generation under uncertainty: A case of the City of Cape Town, South Africa. Journal of Cleaner Production, 343, 130824. https://doi.org/10.1016/j.jclepro.2022.130824

Alavi, N., Goudarzi, G., Babaei, A. A., Jaafarzadeh, N., Hosseinzadeh, M. (2013). Municipal solid waste landfill site selection with geographic information systems and analytical hierarchy process: a case study in Mahshahr County, Iran. Waste Management & Research, 31(1), 98-105. https://doi.org/10.1177/0734242X12456092

Amirsoleymani, Y., Abessi, O., Ghajari, Y. E. (2022). A spatial decision support system for municipal solid waste landfill sites (case study: The Mazandaran Province, Iran). Waste Management & Research, 40(7), 940-952.

https://doi.org/10.1177/0734242X211060610

Aragonés-Beltrán, P., Pastor-Ferrando, J. P., García-García, F., Pascual-Agulló, A. (2010). An analytic network process approach for siting a municipal solid waste plant in the metropolitan area of Valencia (Spain). Journal of Environmental Management, 91(5), 1071-1086. https://doi.org/10.1016/j.jenvman.2009.12.007

Barakat, A., Hilali, A., Baghdadi, M. E., Touhami, F. (2017). Landfill site selection with GIS-based multi-criteria evaluation technique. A case study in Béni Mellal-Khouribga Region, Morocco. Environmental earth sciences, 76(12), 413. https://doi.org/10.1007/s12665-017-6757-8

Beskese, A., Demir, H. H., Ozcan, H. K., Okten, H. E. (2015). Landfill site selection using fuzzy AHP and fuzzy TOPSIS: a case study for Istanbul. Environmental Earth Sciences, 73, 3513-3521. https://doi.org/10.1007/s12665-014-3635-5

BRASIL. Decreto Federal n° 10.936, de 12 de janeiro de 2022. Regulamenta a Lei nº 12.305, de 2 de agosto de 2010, que institui a Política Nacional de Resíduos Sólidos. Diário Oficial da União, Brasília, DF, Seção I, 12 jan. 2022.

BRASIL. Lei nº 12.305, de 2 de agosto de 2010. Institui a Política Nacional de Resíduos Sólidos; altera a Lei nº 9.605, de 12 de fevereiro de 1998; e dá outras providências. Diário Oficial da União, Brasília, DF, seção 1. 3 p., 2 ago. 2010.

Bringhenti, J. R., Zandonade, E., Günther, W. M. R. (2011). Selection and validation of indicators for programs selective collection evaluation with social inclusion. Resources, Conservation and Recycling, 55(11), 876-884. https://doi.org/10.1016/j.resconrec.2011.04.010

Damasceno Pavani, I., Ennes Cicerelli, R., de Almeida, T., Zandonadi Moura, L., Contreras, F. (2019). Allocation of sanitary landfill in consortium: Strategy for the Brazilian municipalities in the State of Amazonas. Environmental monitoring and assessment, 191, 1-13. https://doi.org/10.1007/s10661-018-7146-9

De Feo, G., De Gisi, S. (2010). Using an innovative criteria weighting tool for stakeholders involvement to rank MSW facility sites with the AHP. Waste Management, 30(11), 2370-2382. https://doi.org/10.1016/j.wasman.2010.04.010

De Medina-Salas, L., Castillo-González, E., Giraldi-Díaz, M. R., Guzmán-González, V. (2017). Analysis of economical and environmental costs for the selection of municipal solid waste treatment and disposal scenarios through multicriteria analysis (ELECTRE method). Sustainability, 9(11), 1758. https://doi.org/10.3390/su9111758

El Hanandeh, A., El-Zein, A. (2010). The development and application of multi-criteria decision-making tool with consideration of uncertainty: The selection of a management strategy for the bio-degradable fraction in the municipal solid waste. Bioresource technology, 101(2), 555-561. https://doi.org/10.1016/j.biortech.2009.08.048

Eskandari, M., Homaee, M., Mahmodi, S. (2012). An integrated multi criteria approach for landfill siting in a conflicting environmental, economical and socio-cultural area. Waste management, 32(8), 1528-1538. https://doi.org/10.1016/j.wasman.2012.03.014

Ghobadi, M. H., Babazadeh, R., Bagheri, V. (2013). Siting MSW landfills by combining AHP with GIS in Hamedan province, western Iran. Environmental earth sciences, 70, 1823-1840. https://doi.org/10.1007/s12665-013-2271-9

Goulart Coelho, L. M., Lange, L. C., Coelho, H. M. (2017). Multi-criteria decision making to support waste management: A critical review of current practices and methods. Waste Management & Research, 35(1), 3-28. https://doi.org/10.1177/0734242X1666402

IPEA, Instituto de Pesquisa Econômica Aplicada (2018) Agenda 2030 - ODS - Metas nacionais dos objetivos de desenvolvimento sustentável, Ipea, 538 pp.

Jaiswal, A. K., Satheesh T., A., Pandey, K., Kumar, P., Saran, S. (2018). Geospatial multi-criteria decision based site suitability analysis for solid waste disposal using topsis algorithm. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 4, 431-438. ISPRS-Annals - GEOSPATIAL MULTI-CRITERIA DECISION BASED SITE SUITABILITY ANALYSIS FOR SOLID WASTE DISPOSAL USING TOPSIS ALGORITHM (copernicus.org)

Kamdar, I., Ali, S., Bennui, A., Techato, K., Jutidamrongphan, W. (2019). Municipal solid waste landfill siting using an integrated GIS-AHP approach: A case study from Songkhla, Thailand. Resources, Conservation and Recycling, 149, 220-235. https://doi.org/10.1016/j.resconrec.2019.05.027

Karagiannidis, A., Perkoulidis, G. (2009). A multi-criteria ranking of different technologies for the anaerobic digestion for energy recovery of the organic fraction of municipal solid wastes. Bioresource technology, 100(8), 2355-2360. https://doi.org/10.1016/j.biortech.2008.11.033

Khodaparast, M., Rajabi, A. M., Edalat, A. (2018). Municipal solid waste landfill siting by using GIS and analytical hierarchy process (AHP): a case study in Qom city, Iran. Environmental earth sciences, 77, 1-12. http://dx.doi.org/10.1007/s12665-017-7215-3

Kurbatova, A., Abu-Qdais, H. A. (2020). Using multi-criteria decision analysis to select waste to energy technology for a mega city: The case of Moscow. Sustainability, 12(23), 9828. https://doi.org/10.3390/su12239828

Langa, C., Hara, J., Wang, J., Nakamura, K., Watanabe, N., Komai, T. (2021). Dynamic evaluation method for planning sustainable landfills using GIS and multi-criteria in areas of urban sprawl with land-use conflicts. PloS one, 16(8), e0254441. https://doi.org/10.1371/journal.pone.0254441

Liu, J., Li, Y., Xiao, B., Jiao, J. (2021). Coupling fuzzy multi-criteria decision-making and clustering algorithm for MSW landfill site selection (Case Study: Lanzhou, China). ISPRS International Journal of Geo-Information, 10(6), 403. https://doi.org/10.3390/ijgi10060403

Manyoma-Velásquez, P. C., Vidal-Holguín, C. J., Torres-Lozada, P. (2020). Methodology for locating regional landfills using multi-criteria decision analysis techniques. Cogent Engineering, 7(1), 1776451. https://doi.org/10.1080/23311916.2020.1776451

Marconi, M. D. A., Lakatos, E. M. (2017). Metodologia do trabalho científico: projetos de pesquisa/pesquisa bibliográfica/teses de doutorado, dissertações de mestrado, trabalhos de conclusão de curso, Atlas, São Paulo, 256 pp.

Milutinović, B., Stefanović, G., Dassisti, M., Marković, D., Vučković, G. (2014). Multi-criteria analysis as a tool for sustainability assessment of a waste management model. Energy, 74, 190-201. https://doi.org/10.1016/j.energy.2014.05.056

Mojaver, M., Hasanzadeh, R., Azdast, T., Park, C. B. (2022). Comparative study on air gasification of plastic waste and conventional biomass based on coupling of AHP/TOPSIS multi-criteria decision analysis. Chemosphere, 286, 131867. https://doi.org/10.1016/j.chemosphere.2021.131867

Osra, F. A., Kajjumba, G. W. (2020). Landfill site selection in Makkah using geographic information system and analytical hierarchy process. Waste Management & Research, 38(3), 245-253. https://doi.org/10.1177/0734242X19833153

Qazi, W. A., Abushammala, M. F., Azam, M. H. (2018). Multi-criteria decision analysis of waste-to-energy technologies for municipal solid waste management in Sultanate of Oman. Waste Management & Research, 36(7). https://doi.org/10.1177/0734242X18777800

Ramjeawon, T., Beerachee, B. (2008). Site selection of sanitary landfills on the small island of Mauritius using the analytical hierarchy process multi-criteria method. Waste management & research, 26(5), 439-447. https://doi.org/10.1177/0734242X0708075

Saaty, T. L. (1991) Método de Análise Hierárquica, Makron Books, São Paulo, 367 pp.

Sasikumar, G., Sivasangari, A., Venkatachalam, N. (2022). Application of Analytical Hierarchy Process (AHP) for Assessment of Collection and Transportation of Solid Waste: An Empirical Study. Nature Environment and Pollution Technology, 21(1), 283-288. https://doi.org/10.46488/NEPT.2022.v21i01.033

Şener, Ş., Şener, E., Nas, B., Karagüzel, R. (2010). Combining AHP with GIS for landfill site selection: a case study in the Lake Beyşehir catchment area (Konya, Turkey). Waste management, 30(11), 2037-2046. https://doi.org/10.1016/j.wasman.2010.05.024

Siejka, M. (2020). The use of AHP to prioritize five waste processing plants locations in Krakow. ISPRS International Journal of Geo-Information, 9(2), 110. https://doi.org/10.3390/ijgi9020110

Soltani, A., Hewage, K., Reza, B., Sadiq, R. (2015). Multiple stakeholders in multi-criteria decision-making in the context of municipal solid waste management: a review. Waste Management, 35, 318-328. https://doi.org/10.1016/j.wasman.2014.09.010

Taherdoost, H. (2017). Decision making using the analytic hierarchy process (AHP); A step by step approach. International Journal of Economics and Management Systems, 2, 244-246. Acesso em 10 de outubro de 2022. Disponível em: https://www.iaras.org/iaras/filedownloads/ijems/2017/007-0034(2017).pdf

Tot, B., Srđević, B., Vujić, B., Russo, M. A. T., Vujić, G. (2016). Evaluation of key driver categories influencing sustainable waste management development with the analytic hierarchy process (AHP): Serbia example. Waste Management & Research, 34(8), 740-747. https://doi.org/10.1177/0734242X166529

Tsydenova, N., Vázquez Morillas, A., Cruz Salas, A. A. (2018). Sustainability assessment of waste management system for Mexico city (Mexico)—based on analytic hierarchy process. Recycling, 3(3), 45. https://doi.org/10.3390/recycling3030045

Uyan, M. (2014). MSW landfill site selection by combining AHP with GIS for Konya, Turkey. Environmental earth sciences, 71, 1629-1639. https://doi.org/10.1007/s12665-013-2567-9

Van Ewijk, S., Stegemann, J. A. (2016). Limitations of the waste hierarchy for achieving absolute reductions in material throughput. Journal of Cleaner Production, 132, 122-128. https://doi.org/10.1016/j.jclepro.2014.11.051

Van Thanh, N. (2022). Optimal waste-to-energy strategy assisted by fuzzy MCDM model for sustainable solid waste management. Sustainability, 14(11), 6565. https://doi.org/10.3390/su14116565

Visiongain Reports LTD (2022) Waste-to-Energy 2022-2032. Acesso em 08 de outubro de 2022. Disponível em: Waste to Energy (WtE) Market Report 2022-2032 - Visiongain

Yıldırım, Ü., Güler, C. (2016). Identification of suitable future municipal solid waste disposal sites for the Metropolitan Mersin (SE Turkey) using AHP and GIS techniques. Environmental Earth Sciences, 75, 1-16. https://doi.org/10.1007/s12665-015-4948-8

Zhang, L., Lavagnolo, M. C., Bai, H., Pivato, A., Raga, R., Yue, D. (2019). Environmental and economic assessment of leachate concentrate treatment technologies using analytic hierarchy process. Resources, Conservation and Recycling, 141, 474-480. https://doi.org/10.1016/j.resconrec.2018.11.007