Methane production from vivarium waste using ruminal fluid as inoculum
Contenido principal del artículo
Resumen
This study aimed to evaluate the efficiency of anaerobic biodigesters in processing vivarium residues as substrates, using ruminal fluid as an inoculum for methane production and organic matter reduction, thereby mitigating the environmental impacts associated with the improper disposal of these wastes. The experiment utilized 2L Duran® flasks, operated in duplicate as batch reactors, fed with pine bedding (R1), corn cob bedding (R2), and sugarcane bedding (R3). The reactors were maintained under static conditions at approximately 37 °C. The highest accumulated methane production was observed in reactor R1, fed with pine bedding, yielding 12.56 L-CH4, with a maximum daily production of 0.0067 L-CH4/g-VS/d and a methane yield of 256 mL-CH4/g-VS. In comparison, reactors R2 and R3 produced 5.24 L-CH4 and 6.83 L-CH4, with methane yields of 70 mL-CH4/g-VS and 120 mL-CH4/g-VS, respectively. Statistical analysis confirmed the superior performance of R1 (p-value < 0.05). Additionally, the consumption of volatile acids in R1, along with a final pH of 7.2, created favorable conditions for methanogenic microorganisms. In contrast, reactors R2 and R3 experienced medium acidification, which likely inhibited methane production. These findings demonstrate that waste generated at laboratory animal breeding facilities holds potential as a substrate for methane production when processed using anaerobic digestion technologies.
Detalles del artículo
Citas en Dimensions Service
Citas
APHA, American Public Health Association (2017). Standard Methods for Examination of Water and Wastewater (23rd ed.). American Public Health Association, 2nd kiln 103012.
Cai, G., Zhao, L., Wang, T., Lv, N., Li, J., Ning, J., Pan, X., & Zhu, G. (2021). Variation of volatile fatty acid oxidation and methane production during the bioaugmentation of anaerobic digestion system: Microbial community analysis revealing the influence of microbial interactions on metabolic pathways. Science of the Total Environment, 754. https://doi.org/10.1016/j.scitotenv.2020.142425
Del Nery, V. (1987). Utilização de lodo anaeróbio imobilizado em gel no estudo de partida de reatores de fluxo ascendente com manta de lodo, Dissertação de mestrado, Universidade de São Paulo. https://doi.org/doi.org/10.11606/D.18.2016.tde-05122016-090836
dos Santos, A. C. S., Peiter, F. S., de Oliveira, M. V. A., de Amorim, E. L. C., & de Resende, M. M. (2024). Biomethane production using goat manure and cheese whey: statistical analysis of the effect of mixture composition. Brazilian Journal of Chemical Engineering, 1–10. https://doi.org/10.1007/s43153-024-00442-2
Florentino, H. de O., Biscaro, A. de F. V., & Passos, J. R. de S. (2010). Funções sigmoidais aplicadas na determinação da atividade metanogênica específica - AME. Rev. Bras. Biom., 28(1), 141–150. https://www.researchgate.net/publication/228521522
Hossain, M. Z., Bahar, M. M., Sarkar, B., Donne, S. W., Wade, P., & Bolan, N. (2021). Assessment of the fertilizer potential of biochars produced from slow pyrolysis of biosolid and animal manures. Journal of Analytical and Applied Pyrolysis, 155, 105043. https://doi.org/10.1016/J.JAAP.2021.105043
Liotta, F., D’Antonio, G., Esposito, G., Fabbricino, M., Van Hullebusch, E. D., Lens, P. N. L., Pirozzi, F., & Pontoni, L. (2014). Effect of total solids content on methane and volatile fatty acid production in anaerobic digestion of food waste. Waste Management and Research, 32(10), 947–953. https://doi.org/10.1177/0734242X14550740
Liu, M., Li, Y., Zheng, Z., Li, L., Hao, J., Liu, S., Wang, Y., & Qi, C. (2024). Ordered Changes in Methane Production Performance and Metabolic Pathway Transition of Methanogenic Archaea under Gradually Increasing Sodium Propionate Stress Intensity. Fermentation, 10(4), 201. https://doi.org/10.3390/FERMENTATION10040201/S1
Macedo, E., Santos, S., Almeida, A. C., Colen, F., Viana Brandi, I., Robson Duarte, E., Santos, H. O., Sander, A., & Cangussu, R. (2012). Potencial energético do aproveitamento de resíduos sólidos provenientes de biotério para a produção de biogás. Acta Veterinaria Brasilica, 6(1), 35–39. https://doi.org/10.21708/AVB.2012.6.1.2352
Mafaciolli, D. (2014). Produção de biogás através do processo de digestão anaeróbia utilizando dejetos de aves de postura com suplementação de glicerina bruta. http://hdl.handle.net/10737/424
Mohamed, A. S., Fahmy, S. R., Soliman, A. M., & Gaafar, K. M. (2018). Effects of 3 rodent beddings on biochemical measures in rats and mice. Journal of the American Association for Laboratory Animal Science, 57(5), 443–446. https://doi.org/10.30802/AALAS-JAALAS-18-000023
Neshat, S. A., Mohammadi, M., Najafpour, G. D., & Lahijani, P. (2017). Anaerobic co-digestion of animal manures and lignocellulosic residues as a potent approach for sustainable biogas production. Renewable and Sustainable Energy Reviews, 79, 308–322. https://doi.org/10.1016/J.RSER.2017.05.137
Nurdiawati, A., Suherman, C., Maxiselly, Y., Akbar, M. A., Purwoko, B. A., Prawisudha, P., & Yoshikawa, K. (2019). Liquid feather protein hydrolysate as a potential fertilizer to increase growth and yield of patchouli (Pogostemon cablin Benth) and mung bean (Vigna radiata). International Journal of Recycling of Organic Waste in Agriculture, 8(3), 221–232. https://doi.org/10.1007/S40093-019-0245-Y/TABLES/8
Patel, K. B., Galav, V., & Ramachandra, S. G. (2021). Planning and Designing of Laboratory Animal Facilities. In: Nagarajan, P., Gudde, R., Srinivasan, R. (eds) Essentials of Laboratory Animal Science: Principles and Practices. Springer, Singapore. https://doi.org/10.1007/978-981-16-0987-9_4
Prasanna Kumar, D. J., Mishra, R. K., Chinnam, S., Binnal, P., & Dwivedi, N. (2024). A comprehensive study on anaerobic digestion of organic solid waste: A review on configurations, operating parameters, techno-economic analysis and current trends. Biotechnology Notes, 5, 33–49. https://doi.org/10.1016/j.biotno.2024.02.001
Qiao, J. J., Wang, S. N., Li, J. J., Chen, L. Y., Wang, M. M., Yi, B., Liu, Q. X., Liu, Y. B., Zhang, C., Honess, P., & Gao, C. Q. (2022). Effectiveness of treatment of bedding and feces of laboratory animal with ozone. PLOS ONE, 17(4), e0266223. https://doi.org/10.1371/JOURNAL.PONE.0266223
Qiu, S., Zhang, X., Xia, W., Li, Z., Wang, L., Chen, Z., & Ge, S. (2023). Effect of extreme pH conditions on methanogenesis: Methanogen metabolism and community structure. Science of The Total Environment, 877, 162702. https://doi.org/10.1016/J.SCITOTENV.2023.162702
Riggio, S., Torrijos, M., Debord, R., Esposito, G., van Hullebusch, E. D., Steyer, J. P., & Escudié, R. (2017). Mesophilic anaerobic digestion of several types of spent livestock bedding in a batch leach-bed reactor: substrate characterization and process performance. Waste Management, 59, 129–139. https://doi.org/10.1016/J.WASMAN.2016.10.027
Samoraj, M., Mironiuk, M., Izydorczyk, G., Witek-Krowiak, A., Szopa, D., Moustakas, K., & Chojnacka, K. (2022). The challenges and perspectives for anaerobic digestion of animal waste and fertilizer application of the digestate. Chemosphere, 295, 133799. https://doi.org/10.1016/J.CHEMOSPHERE.2022.133799
Sanchis-Sebastiá, M., Erdei, B., Kovacs, K., Galbe, M., & Wallberg, O. (2020). Analysis of Animal Bedding Heterogeneity for Potential Use in Biorefineries Based on Farmyard Manure. Waste and Biomass Valorization, 11(6), 2387–2395. https://doi.org/10.1007/s12649-018-00578-6
Sunarso, S., Johari, S., Widiasa, I. N., & Budiyono, B. (2010). The Effect of Feed to Inoculums Ratio on Biogas Production Rate from Cattle Manure Using Rumen Fluid as Inoculums. International Journal of Science and Engineering, 1(2), 41–45. https://doi.org/10.12777/IJSE.1.2.41-45
Tibúrcio Neto, L., Peiter, F. S., Chaves, T. C., de Almeida, C. A. S. M., & de Amorim, E. L. C. (2024). Methane production from anaerobic co-digestion of vinasse and molasses: effects of substrate proportion, COD and alkalizing agent. International Journal of Environmental Science and Technology, 22, 1–16. https://doi.org/10.1007/s13762-024-05676-8
Tullo, E., Finzi, A., & Guarino, M. (2019). Review: Environmental impact of livestock farming and Precision Livestock Farming as a mitigation strategy. Science of The Total Environment, 650, 2751–2760. https://doi.org/10.1016/J.SCITOTENV.2018.10.018
Victorin, M., Sanchis-Sebastiá, M., Davidsson, Å., & Wallberg, O. (2019). Production of Biofuels from Animal Bedding: Biogas or Bioethanol? Influence of Feedstock Composition on the Process Layout. Industrial and Engineering Chemistry Research, 58(48), 21927–21935. https://doi.org/10.1021/ACS.IECR.9B04945/ASSET/IMAGES/LARGE/IE9B04945_0003.JPEG
Wang, Y., Nan, X., Zhao, Y., Wang, Y., Jiang, L., Xiong, B., & Wang, C. Y. (2021). Ruminal Degradation of Rumen-Protected Glucose Influences the Ruminal Microbiota and Metabolites in Early-Lactation Dairy Cows. https://doi.org/10.1128/AEM
Wei, L., Qin, K., Ding, J., Xue, M., Yang, C., Jiang, J., & Zhao, Q. (2019). Optimization of the co-digestion of sewage sludge, maize straw and cow manure: microbial responses and effect of fractional organic characteristics. Scientific Reports 2019 9:1, 9(1), 1–10. https://doi.org/10.1038/s41598-019-38829-8
West, R. M. (2021). Best practice in statistics: Use the Welch t-test when testing the difference between two groups. Annals of Clinical Biochemistry, 58(4), 267–269. https://doi.org/10.1177/0004563221992088
Xavier, C. de A. N. (2009). Caldo de cana-de-açúcar na biodigestão anaeróbia com dejetos de vacas em lactação sob diferentes dietas Tese de doutorado, Universidade Estadual Paulista. http://hdl.handle.net/11449/104902

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.