
DOI: 10.22201/enesl.20078064e.2019.20.67514 © ENES Unidad León/UNAM

Improved Volume Determination of Standard 
Weights by Geometric Measurement
Determinación Mejorada del Volumen de Pesas Patrón por 
Medición Geométrica
Omar Jair Purata Sifuentesa*

Recibido: 23 de 
octubre de 2018; 
aceptado: 25 de 
junio de 2019.

Se autoriza la reproducción 
total o parcial de los textos 
aquí publicados siempre 
y cuando se cite la fuente 
completa y la dirección 
electrónica de la publica-
ción. CC-BY-NC-ND

Keywords: 
Weight volume, 
geometric measu-
rement, standard 
weights.

http://revistas.unam.mx/index.php/entreciencias

Palabras clave:  
Volumen, medición 
geométrica, pesas 
patrón. 

Abstract

Purpose  ̶  to develop an improved mathematical model for volume determination of standardized weights by geometric 
measurement.
Methodology  ̶  the new model eliminates an assumption considered in the current model published in the OIML R 
111-1 recommendation, since it considers existing deviations from the assumed shape of the weights in the current 
model, specifically in the so-called knob and ring sections. These deviations might originate during the manufacturing 
processes of the weights. 
Results  ̶  an improved mathematical model for the calculation of the volume of standard weights by geometric measu-
rement was deduced. Additionally, the model has the advantage of eliminating the risk of scratching the weights, which 
makes it possible to extend the use of the new model to higher accuracy classes.
Limitations  ̶  the proposed model involves the possibility of making geometric measurements without surface contact 
of the weights, for example, with an optical comparator.
Findings  ̶  an assessment of the current model against data previously published allows highlighting the relevance 
and higher accuracy of the new model, which makes it possible to calculate the density of standard weights, even for 
E class, through only geometric measurements.

Resumen

Objetivo   ̶   desarrollar un modelo matemático mejorado para el cálculo del volumen de pesas estandarizadas mediante 
mediciones geométricas.
Método  ̶  el nuevo modelo elimina una suposición considerada en el modelo actual, publicado en la recomendación 
OIML R 111-1, ya que considera posibles desviaciones existentes de la forma supuesta de las pesas en el modelo actual, 
específicamente en las secciones llamadas “botón” y “cuello”. Dichas desviaciones pueden originarse durante los 
procesos de fabricación de las pesas.
Resultados  ̶  se dedujo un modelo matemático mejorado para el cálculo del volumen de pesas patrón por medición 
geométrica. Esto proporciona la ventaja adicional de eliminar el riesgo de rayar las pesas, lo que hace posible extender 
el uso del nuevo modelo a clases de pesas de mayor exactitud.
Limitaciones  ̶  el modelo propuesto supone la posibilidad de realizar mediciones geométricas sin contacto superficial 
de las pesas, por ejemplo, con un comparador óptico .
Principales hallazgos   ̶  una evaluación del modelo actual con respecto a datos previamente publicados permite resaltar 
la relevancia y mayor exactitud del nuevo modelo, lo que hace posible calcular la densidad de pesas patrón, incluso de 

clase E, a través de medidas geométricas únicamente.

*Universidad de Guanajuato

Entreciencias 7(20): 25-34. Ago. - Nov. 2019 
ISSN: 2007-8064

http:/
http:10.22201/enesl.20078064e.2018.19.67275
http://10.22201/enesl.20078064e.2019.20.67514


Improved Volume Determination of Standard Weights by Geometric Measurement 26

Entreciencias 7(20):25-34. Ago. - Nov. 2019DOI: 10.22201/enesl.20078064e.2019.20.67514 

Introduction

During mass measurement of weights in the air, their 
density or volume must be known, to be able to calculate 
the corresponding air buoyancy correction (Jones and 
Schoonover, 2002; Malengo and Bich, 2012; Schwartz, 
2000). In the International Organization of Legal Metro-
logy [OIML] recommendation R 111-1 (2004), six different 
methods for the determination of the density of weights 
are described, including immersion in liquids, a data-
based method, and a geometric measurement method. 
Among these methods, the hydrostatic weighing method 
is the most accurate (Jian et al., 2012), and even the one 
used during comparisons concerning the determination 
of the volume of weights between National Metrology 
Institutes (Becerra et al., 2015).

However, the hydrostatic weighing method is not sim-
ple to implement and consumes a considerable amount 
of time when the volumes of a series of weights need to 
be determined, due mainly to the times of drying and 
tempering (Kobata et al., 2004; Malengo and Bich, 2012). 
So, when the immersion of the weight in a liquid is not 
an option, it is called Method E, that is, the volume de-
termination of the weights by geometric measurement 
became a good option. Even though risk of scratching the 
surface is present during the geometric measurement of 
the weight, the restriction of the method on class E and 
F weights is advised (Myklebust et al., 1997; OIML, 2004).

Of course, the six methods listed in OIML (2004) are 
not the only possibilities for the determination of the 
volume of weights. Clarkson et al. (2001) and Malengo 
and Bich (2012) have reported on the weighing in the air 
with different densities. In that method, the use of mass 
comparators inside sealed chambers is required, so this 
kind of measurement of the volume of weights is almost 
exclusive for NMIs. Another method was first proposed 
and then widely studied in Asia, by Ueki et al. (1999), 
Kobata et al. (2004), Ueki et al. (2007), and Jian et al. 
(2012) among others. This method uses a device called 
acoustic volumeter, yet it is not explicitly designed for 
the measurement of standard weights, but rather any 
solid object. Even when the method is very accurate, it 
requires at least one (preferably two) reference weight 
with a known volume and similar shape of that one un-
der volume determination.

Finally, in another work, a first attempt to use Method 

E to determine the volume of OIML class E and F weights 
(OIML, 2004) using an optical comparator was done (Pu-
rata et al., 2015). In that study, the risk of scratching the 
surface of weights was eliminated, with the replacement 
of the Vernier caliper with the optical comparator. This 
technique was also already used in reference weights of 
pressure balances (Purata-Sifuentes et al., 2017). Howe-
ver, as pointed in OIML (2004) the biggest contributor 
to the volume measurement uncertainty still was the 
deviation of the real weight shape from the mathematical 
model. Purata et al. (2015) also realized that the shape of 
the weights could vary from one set of weights to another 
(different or same manufacturer), or there could be varia-
tion between weights of the same set (same manufactu-
rer). This could be explained because some of the class 
E2 weight sets still in use for calibration are even twenty 
years old, when the manufacturing processes were not 
as controlled and advanced as nowadays.

In this work, an improved mathematical model for the 
calculation of the volume of OIML (2004) weights through 
Method E was developed. Violations of the constraints 
from the proposed shape in OIML (2004) Method E, spe-
cifically in the knob and in the ring, are addressed and 
corrected during the new model development. An increa-
sed possibility to improve adjustment of the proposed 
mathematical model to the real shape of the weights 
was observed when both models  were compared, the 
current OIML (2004) one, and the proposed in this work.

Geometric measurement of weights

Density Test Method E in OIML (2004) assumes that 
weight is an assembly of four simple geometric forms. 
Therefore, the weight volume (Vweight) becomes the alge-
braic sum of the volumes of the four sections: the knob 
A, the ring B, the body C, and the recess D (figure 1, 
without recess).
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An equation (5) is the algebraic sum of the four volume 
sections. Equation (4) is elementary, just the formula of a 
truncated circular cone; hence, it will not be addressed 
in this work anymore. Now, even though equations (3) to 
(1) are not difficult to understand, deduction of equation 
(1), i.e., the volume formula of the knob, is shown as an 
example of how to proceed, and because the interme-
diate equations will serve later.

Figure 1. The four different sections for weight volume 
determination by geometric measurement

 
Source: based on Figure B.8 in OIML (2004).

Derivation of equation (1)

The knob must be divided into two parts. The first one is 
a straight circular cylinder with a radius equal to (D2/2 – 
R2) and a height equal to 2R2 (figure 1). The second part 
is a solid of revolution with the center in the symmetry 

  
VA=2πR2

D2
2

4 −R2D2+R2
2+

πR2D2
4 −

πR2
2

2 +
2R2

2

3   (1) 

 

VB=πR1
D3

2

2 + 2R1D3−
πR1D3

2 −𝜋𝜋R1
2+

10R1
2

3  (2) 

 

VC=π
D1

2

4 H−2 R1+R2 −πR3
2 2D1−

10R3
3 −

πD1
2 +πR3   (3) 

 

VD= 𝜋𝜋
12 l3 l1

2+l1l2+l2
2    (4) 

 

Vweight=VA+VB+VC−VD   (5) 

 

VA = V cylinder + V semicircle solid of revolution (6) 

 

VA=2πR2
D2
2 −R2

2
+ 

πR2
2

2 2π
D2
2 −R2+

4R2
3π  (7) 

 

𝐷𝐷2  ≥ 𝐷𝐷3+2𝑅𝑅1+2𝑅𝑅2  (8)

𝐷𝐷2 ≥ 𝐷𝐷3+2 𝑅𝑅1 − 𝑅𝑅12 − 𝑐𝑐2 +2 𝑅𝑅2 − 𝑅𝑅22 − 𝑏𝑏2  (9) 

 

𝐴𝐴𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 =
1
2 𝑎𝑎 𝑅𝑅22 − 𝑎𝑎2 + 𝑏𝑏 𝑅𝑅22 − 𝑏𝑏2 + 𝑅𝑅22 sin−1 𝑎𝑎

𝑅𝑅2
+ sin−1 𝑘𝑘

𝑅𝑅2
 (10) 

 

 𝑥𝑥 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 =
𝑀𝑀𝑦𝑦𝑦𝑦
𝐴𝐴𝑦𝑦𝑘𝑘𝑘𝑘𝑘𝑘

= 𝑎𝑎+𝑘𝑘 3𝑅𝑅22−𝑎𝑎2+𝑎𝑎𝑘𝑘−𝑘𝑘2

3 𝑎𝑎 𝑅𝑅22−𝑎𝑎2+𝑘𝑘 𝑅𝑅22−𝑘𝑘2+𝑅𝑅22 sin−1 𝑎𝑎
𝑅𝑅2

+sin−1 𝑘𝑘
𝑅𝑅2

 (11)

  

 

 

 

 

 
 

VA = 𝜋𝜋 D2
2 −R2

2
𝑎𝑎 + 𝑏𝑏 + 𝜋𝜋 𝑎𝑎 𝑅𝑅22 − 𝑎𝑎2 + 𝑏𝑏 𝑅𝑅22 − 𝑏𝑏2 + 𝑅𝑅22 sin−1 𝑎𝑎

𝑅𝑅2
+ sin−1 𝑘𝑘

𝑅𝑅2

D2
2 −R2 +

𝑎𝑎+𝑘𝑘 3𝑅𝑅22−𝑎𝑎2+𝑎𝑎𝑘𝑘−𝑘𝑘2

3 𝑎𝑎 𝑅𝑅22−𝑎𝑎2+𝑘𝑘 𝑅𝑅22−𝑘𝑘2+𝑅𝑅22 sin−1 𝑎𝑎
𝑅𝑅2

+sin−1 𝑘𝑘
𝑅𝑅2

                   (12) 

VA = 𝜋𝜋 D2
2 −R2

2
𝑎𝑎 + 𝑏𝑏 + 𝜋𝜋 𝑎𝑎 𝑅𝑅22 − 𝑎𝑎2 + 𝑏𝑏 𝑅𝑅22 − 𝑏𝑏2 + 𝑅𝑅22 sin−1 𝑎𝑎

𝑅𝑅2
+ sin−1 𝑘𝑘

𝑅𝑅2

D2
2 −R2 +

𝑎𝑎+𝑘𝑘 3𝑅𝑅22−𝑎𝑎2+𝑎𝑎𝑘𝑘−𝑘𝑘2

3 𝑎𝑎 𝑅𝑅22−𝑎𝑎2+𝑘𝑘 𝑅𝑅22−𝑘𝑘2+𝑅𝑅22 sin−1 𝑎𝑎
𝑅𝑅2

+sin−1 𝑘𝑘
𝑅𝑅2

                   (12) 

axis of the weight. The cross-section of this solid of re-
volution is a semicircle with a radius equal to R2, and 
its centroid is located on its symmetry axis, at 4R2/3π 
from the straight edge of the semicircle. The volume of 
a solid of revolution is the product of the cross-section 
area times the circumference followed by the centroid 
during the revolution (Beer et al., 2016). Therefore, the 
equations preceding equation (1) are:

Equation (7) could easily be rearranged to become 
equation (1). Equations (2) and (3) could be developed 
following a similar strategy, i.e., using a straight circular 
cylinder combined with a solid of revolution. There is 
only one difference to be considered in the case of section 
B of the weight: the volume of the solid of revolution, if 
generated with a semicircle, must be subtracted from the 
base cylinder volume instead of added to it.

Assessment of the current mathematical model

Equation (1), published in OIML (2004), assumes that 
the knob ends in a semicircle shape, as was considered 
during the development of equations (6) and (7) that 
lead to equation (1). The same assumption applies for 
the volume determination of the ring section, VB: it is 
necessary to assume that the shape of the edge of the ring 
is an outward concavity semicircle, to be able to deduce 
equation (2). However, to support these assumptions, 
the following relation between diameters and radii in 
the knob and the ring would have to be met (figure 1):

 

Annex A of OIML (2004) includes examples of dimen-
sions for cylindrical weights with nominal values ran-
ging from 1 g to 20 kg. None of the examples result in 
compliance with equation (8). For all the example data 
sets published in OIML (2004), the left-side of equation 
(8) is smaller than the right-side. The current mathema-
tical model of OIML (2004) Method E implies an impor-
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specifically in the knob and the ring. Of course, in the 
real dimensions of weights, D3 will always be smaller 
than D2, so the problem with the current mathematical 
model seems to be the assumption that both sections, 
the knob, and the ring, end in semicircles. A way to solve 
that, is to consider the edges of the knob and the ring 
just as circular sectors, instead of semicircles (figure 2).

Figure 2. Profiles of weight with edges of the knob and 
the ring modeled as (a) semicircles, and (b) circular 

sectors

 
Source: elaborated by the author.

Figure 3 shows a picture of real OIML R 111-1 weights 
measured with an optical comparator. The edges of both 
sections, the knob, and the ring are best fitted with cir-
cular sectors (b) than with semicircles (a). Figure 3a has 
two red semicircles: one in the knob from 90° to 270°, 
and another in the ring from 270° to 450°, clockwise. On 
the other hand, figure 3b has a yellow circular sector that 
goes from 90° to 255°, whereas the ring sector (red) in the 
same figure goes from 270° to 428°, also clockwise. The 
excess on both contours of figure 3a is notorious.

Figure 3. Optical comparator close-up of the knob and 
the ring of a 2 kg oiml R 111-1 class E2 weight

 
Source: courtesy of CIATEC, A.C.; highlighting of semicircles by the 
author.

An improved mathematical model

The edges of the knob and the ring could be modeled 
more accurately as circular sectors in the way shown 
in figure 4. The idea considers the possibility that the 
knob or the ring (or even both) could not be symmetrical 
around the horizontal that passes through the origin 
of R2 or R1, respectively. These assumptions imply the 
following relation between diameters and radii in the 
knob and the ring (figures 2b and 4):

Figure 4. Proposed profile model for the edge of the 
knob and the ring of the weight

 
Source: elaborated by the author.

Equation (9) can be satisfied for all the included sets of 
dimensions for cylindrical weights with nominal values 
ranging from 1 g to 20 kg, published in Annex A of OIML 
(2004), provided at least one of the following restrictions 
is met: c < R1 or b < R2. 

If the procedure described before to compute the volu-
me is followed, it is possible to develop new equations for 
the volume of the knob, VA, that will substitute equation 
(1), and for the volume of the ring, VB, that will substitute 
equation (2) during weight volume calculation.
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A new equation for the knob

The knob must be divided into two parts. The first one is 
a straight circular cylinder with a radius equal to [D2/2 – 
R2], but this time its height equals [a + b] (figure 1, and 
knob section of figure 4). The second part is a solid of 
revolution with the center in the symmetry axis of the 
weight, whose cross-section area is the cut semicircle 
with a radius equal to R2 shown in the knob section of 
figure 4. Calculation of that cross-section area is straight-
forward by integration.

Integration could also be used to locate the centroid of 
the cut semicircle knob,  , via the first momentum, 
Myk of the area around the y-axis in the knob section of 
figure 4 (Beer et al., 2016):

The volume of a solid of revolution is the product of 
its cross-section area times the circumference followed 
by its centroid during the revolution (Beer et al., 2016). 
Therefore, the new equation that substitutes equation 
(1), when weights with cut semicircle knob are being 
modeled is:
  

(12)

Is easy to see that if a = b = R2, that is when the knob 
section of figure 4 becomes a semicircle, equation (12) 
reduces to equation (7), and from it to equation (1).

A new equation for the ring

The ring also needs to be divided into two parts, but this 
time a subtraction approach is used. The first part is a 
straight circular cylinder with a radius equal to [D3/2 
+ R1], and its height equals [c + d] (figure 1, and ring 
section of figure 4). The second part, whose volume 
must be subtracted from that of the first part, is a solid 
of revolution with the center in the symmetry axis of the 
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weight, which cross-section area is the cut semicircle 
with a radius equal to R1 shown in the ring section of 
figure 4. Calculation approach of that cross-section area 
(Aring, below) is the same as for equation (10), so

Location of the centroid of the cut semicircle ring, 
, measured from the y-axis to the left, could be de-

termined using first momentum, Myr of the area around 
the y-axis in the ring section of figure 4:

Finally, the new equation that substitutes equation 
(2), when weights with cut semicircle ring are being mo-
deled is:

(15)

It can also be shown by simple substitution that equa-
tion (15) reduces to equation (2) when c = d = R1, that is 
when the ring section of figure 4 becomes a semicircle.

The new mathematical model for Density Test Method 
E in OIML (2004) is described by equations (12), (15), (3), 
(4) and (5). It is important to note that it is unnecessary to 
increase the rigorousness of equations (3) and (4) given 
the negligible contribution it will make to the weight 
volume measurement uncertainty.

Results and discussion

Ueki et al. (1999), published data from geometrical mea-
surements of standard weights with nominal values ran-
ging from 1 g to 10 kg (see table 1). The main set of weights 
measured was manufactured with the intention of having 
the volume calculated for weight with a reference density 
of 8 000 kg/m3. A Vernier caliper and a height gage were 
used to do the measurements. A more accurate value of 
the volume of each weight, measured by the hydrostatic 
weighing method, was also reported. 
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𝑅𝑅1

+sin−1 𝑑𝑑
𝑅𝑅1

(14)

VB = 𝜋𝜋
D3
2 + R1

2
𝑐𝑐 + 𝑑𝑑 − 𝜋𝜋  𝑐𝑐 𝑅𝑅12 − 𝑐𝑐2 + 𝑑𝑑 𝑅𝑅12 − 𝑑𝑑2 + 𝑅𝑅12  sin−1

𝑐𝑐
𝑅𝑅1

+

𝐴𝐴𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =
1
2 𝑐𝑐 𝑅𝑅12 − 𝑐𝑐2 + 𝑑𝑑 𝑅𝑅12 − 𝑑𝑑2 + 𝑅𝑅12 sin−1 𝑐𝑐

𝑅𝑅1
+ sin−1 𝑑𝑑

𝑅𝑅1
(13)

 𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =
𝑀𝑀𝑦𝑦𝑦𝑦
𝐴𝐴𝑦𝑦𝑟𝑟𝑟𝑟𝑟𝑟

= 𝑐𝑐+𝑑𝑑 3𝑅𝑅12−𝑐𝑐2+𝑐𝑐𝑑𝑑−𝑑𝑑2

3 𝑐𝑐 𝑅𝑅12−𝑐𝑐2+𝑑𝑑 𝑅𝑅12−𝑑𝑑2+𝑅𝑅12 sin−1 𝑐𝑐
𝑅𝑅1

+sin−1 𝑑𝑑
𝑅𝑅1

(14)

VB = 𝜋𝜋
D3
2 + R1

2
𝑐𝑐 + 𝑑𝑑 − 𝜋𝜋  𝑐𝑐 𝑅𝑅12 − 𝑐𝑐2 + 𝑑𝑑 𝑅𝑅12 − 𝑑𝑑2 + 𝑅𝑅12  sin−1

𝑐𝑐
𝑅𝑅1

+

VB = 𝜋𝜋 (D3

2
+ R1)

2
(𝑐𝑐 + 𝑑𝑑) −  𝜋𝜋 {𝑐𝑐√𝑅𝑅12 − 𝑐𝑐2 + 𝑑𝑑√𝑅𝑅12 − 𝑑𝑑2 + 𝑅𝑅12 [sin−1 (

𝑐𝑐
𝑅𝑅1
) + sin−1 ( 𝑑𝑑

𝑅𝑅1
)]} 〈D3

2
+ R1 −

(𝑐𝑐+𝑑𝑑)(3𝑅𝑅12−𝑐𝑐2+𝑐𝑐𝑑𝑑−𝑑𝑑2)

3{𝑐𝑐√𝑅𝑅12−𝑐𝑐2+𝑑𝑑√𝑅𝑅12−𝑑𝑑2+𝑅𝑅12[sin−1(
𝑐𝑐
𝑅𝑅1

)+sin−1( 𝑑𝑑
𝑅𝑅1

)]}
〉     

 

http:/
http:10.22201/enesl.20078064e.2018.19.67275
http://10.22201/enesl.20078064e.2019.20.67514


Improved Volume Determination of Standard Weights by Geometric Measurement 30

Entreciencias 7(20):25-34. Ago. - Nov. 2019DOI: 10.22201/enesl.20078064e.2019.20.67514 

Table 1. Dimensional parameters used for the 
comparison of the proposed model vs. the current one

 
Source: Ueki et al. (1999).

The new mathematical model, equations (12), (15), 
(3), (4), and (5), were compared to the current model, 
equations (1), (2), (3), (4), and (5), using the values for 
the diameters, radii and height published by Ueki et al. 
(1999) (table 1). It is important to remember that the new 
model implies the use of an optical comparator to do all 
the geometrical measurements, since the new model 
parameters: a, b, c, and d, cannot be measured with a 
Vernier caliper. However, the use of the measurements 
made by Ueki et al. (1999) could be used here only for 
comparison purposes.

Assessment of the new model error

Table 2 contains the results of both mathematical models 
and the reference hydrostatic weighing values. Both si-
des of the geometrical constraints of each model, equa-
tions (8) and (9) are also included. In this case, the values 
assumed for the new model additional parameters (figure 
4) were: a = R2, b = 0.975 R2, c = 0.925 R1, and d = R1, for all 
the weights (first column in table 2). These values corres-
pond to the rounded values obtained with the geometry 
of the real weight shown in figure 3b. It is important to 
remark that the values for the parameters a, b, c, and d, 
could be different for every weight (and they probably 
must be). But validity is not lost if they are taken as the 
same for all the weight values, just for the assessment 
of the new model.

Table 2. Volume determination by the current oiml 
model, the hydrostatic weighing method and the 

proposed new model

 
l.s. = left side; r.s. = right side; VOIML = volume by current model; 
VNewModel = volume by new model; VHW = volume by hydrostatic 
weighing. 
 
Source: elaborated by the author. 
 

The third column of table 2 contains the values of the 
right side of equation (8) obtained when the parameter 
values of table 1 are used with the current model of OIML 
(2004). The geometrical constraint for the current model, 
equation (8), is not satisfied for any of its left and right 
side values (second and third columns in table 2). On the 
other side, the same parameter values plus the additional 
four stated at the beginning of this section yields nine 
of thirteen rows in table 2 with compliance of equation 
(9), that is, the right side of equation (9) is lower than 
D2, which is the left side of both equations (8) and (9).

Now, the volume calculated with the new model, VNew-

Model, could produce a closer agreement with the more 
accurately measured volume value by the hydrostatic 
weighing method, VHW, than the obtained with the cu-
rrent model, VOIML (see columns 4, 5, and 6, in table 2). 
Figure 5 shows a semi-logarithmic scale the absolute 
differences between the hydrostatic weighing volume 
and the two geometric models for the thirteen weight 
values of table 2. Only for the 2 kg nominal value, the 
current model had more agreement with the hydrostatic 
weighing value.

Weight 
nominal 

value 

l.s. 
Eqs. 

(8, 9) 

r.s.   
Eq 
(8) 

VOIML / 
cm3 

VHW  / 
cm3 

VNewModel / 
cm3 

r.s.   
Eq (9) 

10 kg 90.0 105 1259.19 1255.48 1252.53 89.8 
5 kg 72.0 83.1 631.10 627.61 627.73 71.1 
2 kg 54.1 64.1 251.43 251.13 249.93 55.0 
1 kg 42.9 49 126.389 125.591 125.708 41.9 
500 g 33.9 39.1 62.985 62.806 62.639 33.6 
200 g 25.0 28.6 25.282 25.117 25.147 24.6 
100 g 19.9 24.2 12.616 12.570 12.536 20.7 
50 g 15.8 18.2 6.408 6.285 6.374 15.6 
20 g 11.3 13.4 2.570 2.514 2.557 11.6 
10 g 8.9 10.7 1.265 1.257 1.257 9.2 
5 g 6.9 8.1 0.637 0.629 0.634 6.8 
2 g 5.2 6 0.255 0.252 0.254 5.1 
1 g 5.3 6 0.129 0.126 0.128 5.1 

Weight Dimensional characteristics / mm 
D1 D2 D3 R1 R2 R3 H 

10 kg 99.7 90.0 58.0 15 8.5 3 183.0 
5 kg 79.6 72.0 46.1 12 6.5 2 144.0 
2 kg 59.6 54.1 36.1 9 5 2 102.45 

1 kg 47.9 42.9 27.0 7 4 2 80.80 
500 g 37.8 33.9 22.1 5.5 3 1.5 64.10 

200 g 28.0 25.0 16.1 4 2.25 1.5 47.10 

100 g 21.8 19.9 13.2 3.5 2 1 38.60 
50 g 17.9 15.8 10.2 2.5 1.5 1 29.40 

20 g 12.7 11.3 7.8 1.8 1 0.5 22.80 
10 g 9.8 8.9 6.1 1.5 0.8 0.5 18.75 

5 g 7.8 6.9 4.2 1.25 0.7 0.5 15.35 
2 g 5.8 5.2 3.2 0.9 0.5 0.5 11.10 

1 g 5.8 5.3 3.2 0.9 0.5 0.5 6.30 
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Figure 5. Differences against hydrostatic weighing 
volume for the current model and the proposed new 

model. The x-axis is a logarithmic scale

 
D- OIML = ABS(VOIML – VHW); D-NewModel = ABS(VNewModel – VHW). 
 
Source: elaborated by the author.

An interesting question is whether the improvement 
achieved with the new model is statistically significant. 
This can be carried out by means of a hypothesis test in 
which the thirteen pairs of differences shown in figure 5, 
that is, D- OIML and D-NewModel, are evaluated regar-
ding their statistical significative difference.

The Mann-Whitney-Wilcoxon Test (Mann and Whitney, 
1947) determines if the data of two samples come from di-
fferent populations considering that the samples do not 
affect each other; thanks to this test we can determine if 
the data come or not from the same distribution without 
having to assume that this distribution is normal. The 
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test is performed in R, finding that the p-value with the 
data of D- OIML and D-NewModel is p = 0.259. The null 
hypothesis of the test considers that the data come from 
the same distribution. Considering that the confidence 
is 95%, we require that the p-value be less than 0.05 in 
order to discard the null hypothesis and determine how 
significantly the data come from different populations. 
So, the Mann-Whitney-Wilcoxon test did not find that the 
data come from two significantly different populations.

 However, the standard deviation and the interquartile 
range of D-OIML  are 1.312 and 0.292, respectively, whe-
reas for the D-NewModel, these two values are 0.840 for 
the standard deviation and 0.115 for the interquartile ran-
ge. Hence, there is evidence to indicate that the proposed 
method is better because the dispersion of the differences 
between the more accurate hydrostatic weighing method 
and the proposed geometrical method is lower.

Assessment of the new model uncertainty

Because the Test Method E in OIML (2004) states the use 
of a Vernier caliper for the dimensional measurements 
of the parameters, and the new model implies the use of 
an optical comparator, which has a smaller resolution by 
one order of magnitude (Dotson, 2016), the uncertainties 
comparison with the data taken from Ueki et al. (1999) 
is strictly not possible.

A simplified comparison of uncertainties, using the 
data from Ueki et al. (1999), through Monte Carlo simu-
lation (Chew and Walczyk, 2012) of both geometrical 
models, could be done if the values taken by the new 
model parameters turn out to be: a = 0.995 * R2, b = 0.975 
* R2, c = 0.925 * R1, and d = 0.995 * R1. Only a and d va-
lues changed from the used in section 4.1, and this is 
so that the random dispersion during the Monte Carlo 
uncertainty estimation does not lead to undefined ope-
rations in equations (12) and (15). Table 3 contains the 
combined standard uncertainties (uc…) obtained for both 
models with a Monte Carlo simulation with 104 trials 
(Chew and Walczyk, 2012). Only results for 500 g and 1 
kg central nominal values were simulated, and normal 
distributions were assumed for all the parameters. The 
standard deviations assumed for the parameters, based 
on (ref#1, year#1) are: (SDD1 = 0.001, SDD2 = 0.007, SDD3 
= 0.005, SDR1 = SDR2 = SDa = SDb = SDc = SDd = 0.002 5, 
SDR3 = 0.013, and SDH = 0.005) mm.
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Table 3. Inputs and results in the Monte Carlo 
uncertainty estimation

 
Source: elaborated by the author.

The new model has bigger uncertainties than the cu-
rrent OIML (2004) model, but both of them have the same 
effect regarding the VHW value shown in table 3, i.e., for 
one nominal weight the discrepancy between the values 
of VOIML ± uc-OIML or VNewModel ± uc-NewModel against the VHW value 
are significant (Taylor, 1997). That is, the VHW values are 
not within the uncertainty of the current model or that 
of the new model. However, it is important to note that 
the closest possible value of the volume with the current 
model is more distant from the hydrostatic weighing vo-
lume than the furthest possible value obtained with the 
new model. 

 
Conclusions

An improved mathematical model for the knob and the 
ring sections of OIML R 111-1 weights was developed. The 
model is based on the use of solids of revolution and 
centroids formulae and allows a better adjustment to 
the actual shape of weights. The new model implies the 
use of an optical comparator to obtain the values of all 
the dimensional characteristics from Figs. 1 and 5. An 
additional advantage of using an optical comparator 
is that geometric characterization of standard weight 
classes E and F becomes possible since the contact of 
the surface of the weights during the measurement is 
avoided (Purata et al., 2015).

The new mathematical model: equations (12), (15), (3), 
(4) and (5), is a more comprehensive and more versatile 
one than the current model from OIML (2004), because 
the new model covers all the range of circular sectors 
physically possible that could have the edges of the knob 
and ring; hence, it is possible to model the knob as a 
semicircle and the ring as a cut semicircle, or vice versa. 
Also noteworthy is that equation (9) can be satisfied.

The assessment of the new model with previously pu-
blished geometrical measurements was successful be-
cause closer values to the hydrostatic weighing method 

Weight VOIML / cm3 uc-OIML (cm3) VNewModel / cm3 uc-NewModel (cm3) VHW  / cm3 
1 kg 126.389 0.013 1 125.708 0.018 2 125.591 

500 g 62.985 0.008 0 62.639 0.011 6 62.806 

values were obtained compared to the current OIML mo-
del. However, it is important to note that the difference 
between the volumes calculated with the current OIML 
model and the volumes calculated with the new model 
are not statistically significant. The new model, however, 
showed less dispersion in its different values against the 
more accurate hydrostatic weighing method. Also, even 
when a simplified Monte Carlo uncertainty estimation 
was done, and shows slightly bigger uncertainties for 
the new model vs. the current one, the uncertainties 
were not significant.  

An important sequel of this work will be the experi-
mental phase, where all the diameters, radii, height, and 
additional new model four parameters must be measured 
with an optical comparator. The measurements will be 
used to show the differences between Test Method E and 
the new model presented here, while the hydrostatic 
immersion method could be used as a more accurate 
reference.

However, the main contributor to the uncertainty of 
the Test Method E, even with the new mathematical mo-
del and the use of an optical comparator, remains to be 
the difference between the geometry of figures 1 and 4 
and the actual shape of the weight.
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