
DOI:10.22201/enesl.20078064e.2024.26.87733

e25.87733

# 

© ENES Unidad León/UNAM

Entreciencias: Diálogos en la Sociedad del Conocimiento 
Año 12, Número 26, Artículo 13: 1-16. Enero - Diciembre 2024

e-ISSN: 2007-8064

Study of biodiesel production from weed 
species found in crops from Aguascalientes, 
Mexico

Estudio de la producción de biodiésel a 
partir de especies arvenses presentes en 
cultivos de Aguascalientes, México

DOI: 10.22201/enesl.20078064e.2024.26.87733
e25.87733

José Alonso Dena Aguilar a*▲ 
https://orcid.org/0000-0002-7748-9081
Arturo Díaz Ponce b**  
 https://orcid.org/0000-0002-6395-902X
Claudio Frausto Reyes c**  
https://orcid.org/0000-0002-5728-6455 
Francisco Villanueva Mejía d*  
https://orcid.org/0000-0003-0110-8649
Edgar Zacarías Moreno e*  
https://orcid.org/0000-0001-5565-5280

Fecha de recepción: 7 de febrero de 2024. 
Fecha de aceptación: 28 de junio de 2024. 
Fecha de publicación: 31 de julio de 2024. 

▲Autor de correspondencia
josealonso_dena@hotmail.com   

    * Tecnológico Nacional de México Campus Pabellón de Arteaga  
  ** Centro de Investigaciones en Óptica, A.C.

Se autoriza la reproducción total o parcial de los textos aquí publicados siempre 
y cuando se cite la fuente completa y la dirección electrónica de la publicación. 

CC-BY-NC-ND



© ENES Unidad León/UNAM

1José Alonso Dena Aguilar, Arturo Díaz Ponce, Claudio Frausto Reyes, Francisco Villanueva Mejía, Edgar Zacarías Moreno

DOI:10.22201/enesl.20078064e.2024.26.87733

e25.87733

Abstract

Purpose: To analyze, at a laboratory level, the biodiesel 
production yield by transesterification of the vegetable 
oil extracted from weed species growing in local crop 
areas in Aguascalientes, Mexico. 
Methodological Design: The study evaluated the bio-
diesel production yield by transesterification of the vege-
table oil from the weed species Bidens ferulifolia (Jacq.) 
DC., Tithonia tubaeformis (Jacq.) Cass., and Bidens sam-
bucifolia (Cav.). Their vegetable oil is extracted through 
an L9(34) design using alcohols and alkanes as solvents. 
Transesterification is conducted under an L4(2³) design, 
employing NaOH and methanol as a catalyst and excess 
alcohol, respectively. Raman Spectroscopy and Fourier 
Transform Infrared Spectroscopy (FTIR) were used to 
characterize the biodiesel samples obtained.
Results: In the FTIR and Raman spectra of the obtained 
biodiesel, peaks were observed at wavenumbers 1740 
cm-1 and 1450 cm-1, respectively, corresponding to the 
C=O group of the conventional ester present in the fatty 
acid methyl esters of the biodiesel. This confirms that 
biodiesel was successfully produced from the studied 
weed species with production yields ranging between 
10.3 and 15.3%.
Research limitations: This is one of the first studies to 
provide information on the biodiesel production capa-
city of the selected weed species. 
Findings: Biodiesel was successfully produced through 
transesterifying vegetable oil extracted from the selected 
weed species. Further research is warranted to enhance 
biodiesel yields. 

Keywords: Biodiesel, weed species, Bidens ferulifolia 
(Jacq.) DC., Tithonia tubaeformis (Jacq.) Cass., Bidens 
sambucifolia (Cav.).

Resumen

Objetivo: analizar a nivel laboratorio el rendimiento de 
producción de biodiésel por transesterificación del acei-
te vegetal extraído de especies arvenses crecientes en 
terrenos de cultivos locales en Aguascalientes, México. 
Diseño Metodológico: el estudio se centró en evaluar 
el rendimiento de producción de biodiésel por tran-
sesterificación del aceite vegetal extraído de las espe-
cies arvenses Bidens ferulifolia (Jacq.) DC., Tithonia 
tubaeformis (Jacq.) Cass. y Bidens sambucifolia (Cav.). 
La extracción del aceite se realizó mediante un diseño 
L9(3⁴) empleando alcoholes y alcanos como solventes. 
La transesterificación se efectuó bajo un diseño L4(2³)                                                           
empleando NaOH y metanol como catalizador y alcohol 
en exceso, respectivamente. Las muestras del biodiésel 
obtenido fueron caracterizadas por espectroscopia Ra-
man y espectroscopia infrarroja por transformada de 
Fourier (FTIR).  
Resultados: en los espectros de FTIR y de Raman del 
biodiésel obtenido se observaron picos a un numero de 
onda de 1740 cm-1 y de 1450 cm-1, respectivamente, los 
cuales corresponden al grupo C=O del éster convencional 
presente en los ésteres metílicos de ácidos grasos del 
biodiésel. Lo anterior, confirma que se logró producir 
biodiésel de las especies arvenses de estudio con rendi-
mientos de producción entre 10.3 y 15.3%.
Limitaciones de la investigación: este es uno de los 
primeros estudios que aporta información sobre la ca-
pacidad de producción de biodiésel de las especies ar-
venses seleccionadas.
Hallazgos: se logró producir biodiésel a partir de la 
transesterificación del aceite vegetal extraído de las es-
pecies arvenses seleccionadas. No obstante, se justifica 
la realización de futuras investigaciones para mejorar 
los rendimientos de producción de biodiésel.

Palabras clave: Biodiésel, especies arvenses, Bidens 
ferulifolia (Jacq.) DC., Tithonia tubaeformis (Jacq.) Cass., 
Bidens sambucifolia (Cav.).
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Introduction

Biofuels, primarily first or second-generation, such as 
biogas, bioethanol, biobutanol, and biodiesel, are gene-
rated from various organic materials that are regenerati-
ve, thus considered renewable, eco-friendly, non-toxic, 
and biodegradable (Cavelius et al., 2023). Generally, 
biofuels can be produced under processes designed to 
enhance the processing of the biomass used, for exam-
ple, through pyrolysis, anaerobic digestion, or tran-
sesterification, among other methods (Campos-Martín                             
et al., 2020). In this context, Peng et al. (2020) highlight 
the capability of using microalgae to produce biogas 
through anaerobic digestion, bioethanol through fer-
mentation, and biodiesel through transesterification. 
Melendez et al. (2021) report ethanol production from 
sugar fermentation from sugarcane or corn. Suzihaque 
et al. (2022) examine the production of biodiesel through 
transesterification from used cooking oil. Specifically, 
biodiesel is a renewable, biodegradable biofuel that 
emits fewer pollutants and is thus considered an alter-
native energy source to replace petroleum-based fuels 
partially (Graziottin et al., 2021). Chemically, biodiesel 
can be produced by transesterification of triglycerides 
from vegetable oils or animal fats via a basic or acid ca-
talysis reaction in the presence of short-chain alcohols 
like methanol or ethanol (Fazil-Khan et al., 2020; Woo                      
et al., 2021; Unruean, Nomura and Kitiyanan, 2022). Spe-
cifically, biodiesel can be manufactured from triglyce-
rides of various biomasses such as palm, canola, corn, 
jatropha, sunflower, and jojoba oils (Adekunle et al., 
2020; Woo et al., 2021; Unruean, Nomura, and Kitiyanan, 
2022). Commonly, homogeneous catalysts like NaOH, 
KOH, or CH3NaO are used to conduct transesterification 
catalysis because they offer the advantage of high ca-
talytic activity but also present the disadvantage of po-
tentially forming soaps through saponification reactions 
(Unruean, Nomura, and Kitiyanan, 2022). Additionally, 
reaction conditions (type of catalyst, reaction tempera-
ture, and type of excess alcohol) are crucial for achieving 
better biodiesel production yields. For instance, Cha-
mola et al. (2019) achieved conversions of microalgae 
oil into biodiesel up to 87.4% using NaOH, 50 °C, and 
methanol. Onukwuli et al. (2020) obtained conversion 
yields of Azadiracchta indica seed oil into biodiesel bet-

ween 80 and 90% using NaOH, between 55 and 65 °C, 
and methanol. Hoseini et al. (2021) reported conversion 
yields of Chrozophora tinctoria seed oil into biodiesel of 
84% using KOH, 45 °C, and methanol. Jain et al. (2023) 
reported conversion yields of 92% from predominantly 
used cooking oil into biodiesel using NaOH, 50°C, and 
methanol. Ramírez et al. (2023) studied the conversion 
of recycled vegetable oil into biodiesel using different 
concentrations of NaOH and KOH, 55 °C, and methanol, 
achieving yields between 78.18 and 93.31%. In this con-
text, vegetable oil derived from weed species could be 
an option for biodiesel production. Weed plants, also 
known as weeds, are wild plants that grow in agricultu-
ral fields and are considered harmful species. Without 
proper control, they can reduce the yield and quality 
of crops or act as hosts for pests and diseases (Negrín              
et al., 2007; Blanco and Leyva, 2010; Vargas-Batis et al., 
2014). Despite being temporary species, their abundant 
presence has been reported in corn or wheat cultivation 
areas (Sánchez-Blanco and Guevara-Féfer, 2013; Ahmad 
et al., 2016; Guzmán-Mendoza et al., 2022). For this rea-
son, certain species are attributed with a productive po-
tential for biodiesel because they naturally exhibit high 
densities per unit area, which allows for significant seed 
yield values that facilitate the extraction of their oil and 
subsequent conversion into biodiesel (Flores-Villamil            
et al., 2018). To cite an example, the Argemone mexicana 
species shows a potential seed yield of over 200 kg/ha 
and an oil yield of 1315 kg/ha. (Flores-Villamil et al., 2018) 
and where Ashine et al. (2023) studied the production 
of biodiesel from the oil of this species and achieved a 
conversion percentage of 99.07%. However, in the state 
of the art, to date, there have been no reported studies 
proposing the use of Bidens ferulifolia (Jacq.) DC., Titho-
nia tubaeformis (Jacq.) Cass. and Bidens sambucifolia 
(Cav.) as productive potential biomasses for biodiesel. 
This study aimed to analyze, at a laboratory level, the 
biodiesel production yield derived from vegetable oil 
extracted from weed species with high densities per unit 
area and annual growth in the State of Aguascalientes, 
Mexico. Specifically, the production of biodiesel from 
the vegetable oil extracted from the seeds of the weeds 
Bidens ferulifolia (Jacq.) DC. (aceitilla amarrilla), Tithonia 
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tubaeformis (Jacq.) Cass. (acahual), and, Bidens sambu-
cifolia (Cav.) (aceitilla naranja), was studied. NaOH and 
methanol were used as the catalyst and excess alcohol, 
respectively. The characterization of the obtained biodie-
sel samples was conducted using Raman spectroscopy 
and Fourier-transform infrared spectroscopy (FTIR). The 
article is organized as follows: the first section describes 
the techniques used for weed collection, vegetable oil 
extraction, biodiesel transesterification, and characte-
rization. The second section details the achieved results 
and the analysis of the applied characterization. Finally, 
the last section presents the conclusions. 

Methodology

Weed Collection

In Aguascalientes, Mexico, the weed species under study 
exhibit germination cycles shortly after the annual rainy 
season, displaying high densities per unit area, which 
is why they were selected to validate their potential for 
biodiesel production. Furthermore, Hernández-Salazar 
(2021) estimated that for every 6 kg of B. ferulifolia, there 
is a potential seed yield of up to 0.8 kg, providing suffi-
cient biomass for this analysis. The studied weeds were 
collected in situ during September and October in the 
years 2020, 2021, and 2022. The collection took place on 
the edges of agricultural fields adjacent to the institution 
hosting the project (latitude 22° 09’ 40.4” N, longitude 
102° 16’ 27.9” W), and along the roadside of State Highway 
90 at kilometer 0+400 (latitude 22° 09’ 23.3” N, longitude 
102° 16’ 33.3” W). Both collection areas are situated in the 
Municipality of Pabellón de Arteaga, Aguascalientes, 
Mexico (latitude 22° 08’ 51.4” N, longitude 102° 16’ 45.6” 
W). In Figure 1, a collection site adjacent to a corn culti-
vation field, located beside the project headquarters, is 
depicted. The weeds share the same growth space in this 
illustration. The appearance of the freshly harvested stu-
died weeds is depicted in Figure 2. The B. ferulifolia and 
B. sambucifolia flowers exhibit a similar physiognomy, 
differing from each other by the number and color of the 
petals. The T. tubaeformis flower is nearly twice the size 
of the B. ferulifolia and B. sambucifolia and resembles 
sunflowers in its physiognomy. During the harvest of 

the weeds, the plants were collected from the root, but 
only the flowers were separated and subjected to natural 
drying in the shade. They were then stored until needed.

Figure 1. Collection site adjacent to agricultural 
cultivation fields

 
Source: Author’s own elaboration.

Figure 2. Studied weed species. (a) Bidens ferulifolia 
(Jacq.) DC. (aceitilla amarrilla), (b) Tithonia tubaefor-
mis (Jacq.) Cass. (acahual), and (c) Bidens sambucifolia 

(Cav.) (aceitilla naranja) 

 
Source: Author’s own elaboration.

Vegetable Oil Extraction

The vegetable oil from the study weeds was extracted 
using the Soxhlet extraction technique, as it is the most 
commonly used method for extracting essential oils from 
seeds (Sekhar et al., 2021; Omeje et al., 2022). A 250 mL 
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Soxhlet apparatus (condenser, extraction chamber, 
and round-bottom flask) and a Lab Companion HP3100 
heating and magnetic stirring plate were utilized in 
this study. The solvents used were ACS-grade hexane 
PM 86.18, ACS-grade butyl alcohol PM 74.12, and 96° 
potable alcohol (ethyl alcohol). All reagents were pro-
cured from Merck Chemical Co. and used as received. 
For experimental tests, the receptacle and androecium 
of the flower were manually crushed to break down 
their spherical form and reduce the volume that the 
weed seed would occupy in the porous material car-
tridge (a thimble made of medium-pore filter paper) of 
the Soxhlet apparatus, but primarily used to facilitate 
the penetration of the solvent into the biomass matrix, 
allowing it to reach and extract the target oil substan-
ce effectively. The experimental tests were conducted 
under an orthogonal Taguchi design L9(34) as reported 
by Gutiérrez-Pulido and De la Vara-Salazar (2008) and 
shown in Table 1. The following variables (factors) were 
established for study: (1) type of weed species, (2) type 
of solvent (alcohol or alkane), (3) amount of biomass 
(weed seed), and (4) year of weed harvest. Specifically, 
three levels were established for each factor according 
to the selected arrangement. Additionally, other quasi-
constant operating variables were established: (a) amou-
nt of solvent - 250 mL of solvent was used in all tests; 
(b) operating temperature - for each test and depending 
on the type of solvent, the temperature was set to the 
boiling point of the solvent itself, i.e., 69, 119, and 78.29 
°C for hexane, butanol, and ethanol, respectively; (c) 
particle size - that of the crushed seed (not measured), 
and (d) operating time - for each test and depending 
on the type of solvent, the extraction time of vegetable 
oil from the studied weeds was determined based on a 
specific number of siphons until no more vegetable oil 
was extracted, and the siphons contained clear liquids 
(at least 3 consecutive siphons). Upon concluding the 
Soxhlet extraction time, a concentrated extract, referred 
to as residue 1, was observed in the round-bottom flask. 
Residue 1 had a green or light-yellow hue (depending on 
the weed type) and consisted of a mixture of vegetable oil 
and solvent. Figure 3 illustrates the resulting appearance 
of residue 1 from run C1.5. In all tests with hexane, and 
depending on the weed species, the Soxhlet extraction 
times ranged between 40 and 60 minutes. For tests with 
ethanol and butanol, the times varied between 160 and 

220 minutes, depending on the weed used. Overall, all 
experimental Soxhlet extraction runs produced between                                                                    
155 and 205 mL of residue 1, depending on the type of 
weed and solvent employed. Subsequently, the residue 
from each experimental run was subjected to a simple 
distillation process. This technique has also been used 
to extract essential oils (Tefera et al., 2018; Swathanthra 
and Naik, 2022) to purify (separate the solvent) and reco-
ver the oil. A Liebig (straight) condenser apparatus of 300 
mm, a 250 mL round-bottom flask, and a Lab Companion 
HP3100 heating and magnetic stirring plate were used. 
The distillation operation aimed to remove the excess 
solvent present in residue 1, obtaining only the vegetable 
oil from the studied weeds. Distillation took place for 
average times between 30 and 45 minutes until reaching                                                                                                                         
a second extract, referred to as residue 2, which conta-
ins a higher concentration of vegetable oil and a darker 
green or yellow color. Distillation temperatures were by 
the boiling point of the employed solvent. The appea-
rance of residue 2 from run C1.5 is shown in Figure 4. 
On average, all experimental runs –in their distillation 
stage– produced between 10.5 and 19.5 mL of residue 2 
(depending on the type of weed and solvent used). Re-
sidue 2 underwent transesterification tests. For this pur-
pose, each run was repeated until a sufficient volume of 
residue 2 for the conversion reactions was accumulated.

Table 1. Factors and experimental levels used in the 
L9(34) study design

 
Source: Author´s own elaboration 
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Figure 3. The appearance of residue 1 resulting from 
the Soxhlet extraction of run C1.5

 
Source: Author’s own elaboration.

Figure 4. The appearance of the concentrated residue 
2 resulting from the distillation of residue 1 from run 

C1.5 (accumulated from multiple distillations)

 
Source: Author’s own elaboration.

Yields of Obtained Biodiesel

The biodiesel yield (%) was calculated using Equation 
(1) as reported by Kiliç et al. (2013), Bateni et al. (2014), 
Bateni and Karimi (2016), and Rodríguez-Bustamante 
et al. (2022). 

(1)

 

Transesterification of Weed Specie
The transesterification process was realized through 
chemical reactions to obtain alkyl esters of fatty acids 
derived from the vegetable oil obtained in the extraction 
and distillation tests (residue 2). The transesterification 
methodology was defined based on the work of Cha-
mola et al. (2019), Onukwuli et al. (2020), Hoseini et al. 
(2021), Jain et al. (2023), and Ramírez et al. (2023). NaOH 
solution 50% in H2O (industrial grade, PM 40.0, ρ=1.52 
g/mL) was used as a catalyst, and ACS grade methanol 
(PM 32.04) was used as the excess alcohol. The reagents 
were procured from Golden Bell and used as received. 
Transesterification reactions were conducted in triplicate 
under an orthogonal Taguchi design L4(23) as reported 
by Gutiérrez-Pulido and De la Vara-Salazar (2008), with 
the following variables (factors): (1) volume of vegeta-
ble oil (mL), (2) volume of excess alcohol (mL), and (3) 
volume of the catalyst (µL). Two levels were set for each 
factor. Table 2 specifies the factors and experimental 
levels defined for the transesterification reactions. To 
carry out the reactions, a 100 mL glass reactor (preci-
pitation beaker) equipped with a Brannan Lo-Tox Blue 
immersion thermometer and a Lab Companion HP3100 
heating and magnetic stirring plate was used. To deter-
mine the quantities of excess alcohol and catalyst, the 
recipe for producing biodiesel from virgin vegetable oil 
defined by Varty and Lishawa (n.d.) was employed. The 
following methodology was used in all transesterifica-
tion experimental tests. Firstly, the volume of vegetable 
oil was heated to a temperature of 55 ±1 °C, and once 
the working temperature was reached, magnetic stirring 
was applied (at a turbulent regime of 100 rpm to ensure 
homogeneous mixing), and immediately excess alcohol 
followed by the catalyst was added. The complete reac-
tion was maintained for 30 minutes. After the operation 
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time, the final liquid residue was allowed to settle for 48 
hours in a separation funnel. At the end of the resting 
period, the formation of two or three layers was observed, 
clearly separated by density differences. These layers co-
rrespond to byproducts of the transesterification process, 
such as glycerin (also called glycerol) and the biodiesel 
itself (Vávra, Hájek, and Kocián, 2021; Menéndez et al., 
2023; Analuisa et al., 2024). At this stage, two or three 
layers were identified: (a) a lower first layer that mostly 
corresponded to the formation of glycerin with some 
traces of concentrated saponified compounds, (b) an 
intermediate second layer that is a mixture of glycerin 
and other obtained saponification compounds, and (c) 
an upper third layer (the one of interest) where the achie-
ved biodiesel was deposited. After the separation time, 
only the upper layer of interest (liquid with a pH between 
10.0 and 11.0) was collected, and it underwent a washing 
test with distilled water to remove the excess unreacted 
catalyst, saponified residues still present, and reach a 
neutral pH. Finally, any trace of water was separated 
from the resulting final liquid. The final product was 
characterized. The appearance of the transesterification 
reaction from run C2.2 using ragweed vegetable oil is 
shown in Figure 5. 

Table 2. Factors and experimental levels used in 
transesterification

 
Source: Author´s own elaboration 

Figure 5. Transesterification reaction from run C2.2 
with T. tubaeformis vegetable oil obtained from run 

C1.5

 
Source: Author’s own elaboration.

Characterization of biodiesel samples

The obtained biodiesel samples were characterized using 
Fourier-Transform Infrared Spectroscopy (FTIR) and Ra-
man Spectroscopy techniques. Infrared spectra of all 
biodiesel samples were obtained using an Agilent Cary 
670 FTIR spectrophotometer. The infrared spectra were 
recorded in the range of 3500-500 cm-1 with a resolution 
of 0.1 cm-1 and 20 scans. Isobutanol was used to clean and 
purify the crystal of the equipment between each measu-
rement, and the results of each scan were processed with 
the equipment’s proprietary computer software. Raman 
spectra were obtained using a Micro Raman system with 
an excitation wavelength of 632.8 nm and recorded in 
the range of 3500-500 cm-1 with a resolution of 1 cm-1. In 
both instruments, the samples were analyzed without 
any prior treatment.

Results and discussion

Weed-to-Biodiesel Tests

For this study, the number of layers formed was esta-
blished as the first indication of biodiesel production. 
Specifically, weeds treated with hexane and butanol 
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solvents displayed three separation layers, while those 
treated with ethanol only showed two layers. These re-
sults can be explained in terms of the polar or non-polar 
nature of the solvents used during the extraction stage. 
Predominantly, vegetable oils are considered non-polar, 
even though they may contain slight traces of polar com-
pounds (Ramírez-Botero et al., 2012) On the other hand, 
hexane and ethanol are non-polar and polar solvents, 
respectively (Calle-Chumo et al., 2023). In the case of 
butanol, it is mainly considered non-polar due to its pre-
dominant long C4H9 chain although it can also behave 
slightly as a polar compound due to the OH group in its 
molecule (ChemicalBook, 2024). This is why hexane and 
butanol were able to extract the triglycerides from the 
vegetable oil in the seeds of the studied weed species 
with greater dissolution affinity, ultimately resulting in 
the formation of sufficient biodiesel esters relative to 
the three layers of interest. Figure 6 shows two samples 
with three layers. Only experiments resulting in three 
separation layers underwent washing tests. The washing 
process is one of the main wet purification methods for 
biodiesel, which effectively removes excess catalysts and 
other impurities present in the samples. This operation 
is characterized by requiring several washing cycles 
to achieve neutrality. It is easy to implement because, 
throughout the process, the wash water settles at the 
bottom while the biodiesel remains on the surface (Polis-
hchuk et al., 2020). Consequently, in this study, the phy-
sical property of immiscibility of the sample during the 
washing tests was established as the second indicator of 
biodiesel production. Only samples initially treated with 
hexane (from the extraction stage) showed immiscibility 
with the washing water. All experiments conducted with 
butanol were miscible with the washing water. In this 
latter case, even though three layers of separation were 
previously observed, the polar part of the butanol mole-
cule played a decisive role in causing the biodiesel sam-
ples associated with this alcohol to completely dissolve 
in the wash water (as a polar compound). This highlights 
the complex interactions between the chemical nature 
of the solvents used in biodiesel production and their 
behavior during purification processes. An example of an 
experimental sample resulting in immiscibility is shown 
in Figure 7, where the separation of liquids is observed. 
All immiscible samples underwent spectroscopic analy-

sis, so only weeds subjected to extraction with hexane 
were characterized.

Figure 6. Test resulting in three layers and treated with 
hexane. (a) T. tubaeformis biodiesel obtained from runs 

C1.5 and C2.2, and (b) B. ferulifolia biodiesel 
obtained from runs C1.2 and C2.2

 
Source: Author’s own elaboration.

Figure 7. Immiscible sample of B. ferulifolia biodiesel 
obtained from runs C1.2 and C2.2

 
Source: Author’s own elaboration.

Characterization of Weed Biodiesel Samples

Every one FTIR and Raman spectra of the final biodiesel 
samples were analyzed. The FTIR spectra of B. ferulifolia 
(aceitilla amarrilla), T. tubaeformis (acahual), and, B. 
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sambucifolia (aceitilla naranja), both from their vege-
table oil and the biodiesel obtained, are shown in Fi-
gures 8, 9, and 10, respectively. Analyzing Figure 8, the 
characteristic biodiesel peak at 1740 cm-1 is observed, 
corresponding to the stretching of the C=O in the methyl 
esters of fatty acids present in biodiesel (Lafont et al., 
2011; Tariq et al., 2011; O’Donnell et al., 2013; Cunha 
et al., 2017; Atabani et al., 2019; Kamaronzaman et al., 
2020). Additionally, a peak at 1693 cm-1 in the vegetable 
oil spectrum corresponds to the stretching of the carbon-
yl group C=O (Gore, 1972; Baeten et al., 2005; Silverstein 
et al., 2005; Concha-Herrera et al., 2009) present to the 
carbonyl group in the triglycerides of the vegetable oil 
samples. These two peaks were the most characteristic 
identified in each of the spectra. Specifically, the abs-
ence of the peak at 1693   cm-1 in the biodiesel spectra 
confirmed the conversion of the vegetable oil from the 
studied weed species into the desired biofuel. In the case 
of Figure 9, the same signals at 1740 and 1693 cm-1 were 
observed. For Figure 10, the biodiesel peak at 1740 cm-1 
is clearly shown, but there is also a peak at approxima-
tely ~1702 cm-1, which, due to its location, corresponds 
to the C=O of the triglycerides in the vegetable oil. In 
general, the analysis and comparison of the FTIR spectra 
of the biodiesel and the vegetable oil –from each of the 
study weeds– confirmed that biodiesel was successfully 
obtained using the proposed methodology. In Table 3, 
other bands and peaks present in the FTIR spectra of the 
study samples are described. On the other hand, Figure 
11 displays the Raman spectra of vegetable oil and bio-
diesel from B. ferulifolia. The vibrations of the functional 
groups present in the Raman spectra are specified in 
Table 4. Analyze Figure 11, Raman vibrations in 1000 to 
1750 cm-1 region are observed in the biodiesel spectrum 
but absent in the vegetable oil spectrum, indicating the 
conversion of vegetable oil into biodiesel. The main sig-
nal is the vibration at 1450 cm-1 corresponding to the 
stretching of the methyl ester C=O in biodiesel (Socra-
tes, 2001; Firdous et al., 2016). The Raman spectra of T. 
tubaeformis and B. sambucifolia are shown in Figure 12. 
The Raman spectra of these two weeds (in comparison 
with the spectrum of B. ferulifolia) were affected by a 
very high fluorescence background, which prevented 
the visibility of the Raman peaks in the samples. In the 
case of T. tubaeformis, there are no visible Raman peaks, 
while in B. sambucifolia, they are almost imperceptible. 

This is because the photons from the excitation laser in 
the Raman system have enough energy to generate the 
phenomenon of fluorescence more efficiently.

 Figure 8. Ftir of vegetable oil (Oil) [obtained from 
run C1.2] and biodiesel (Bio) [obtained from run 

C2.2] from B. ferulifolia 

 
Source: Author’s own elaboration.

Figure 9. Ftir of vegetable oil (Oil) [obtained from run 
C1.5] and biodiesel (Bio) [obtained from run C2.2] 

from T. tubaeformis 

 
Source: Author’s own elaboration.
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Figure 10. Ftir of vegetable oil (Oil) [obtained from 
run C1.8] and biodiesel (Bio) [obtained from run C2.2] 

from B. sambucifolia

 
Source: Author’s own elaboration.

 Table 3. Ftir frequencies of common functional 
groups present in biodiesel samples obtained from B. 

ferulifolia, T. tubaeformis, and B. sambucifolia

 
Source: Author’s own elaboration 

Figure 11. Raman spectra of vegetable oil (Oil) [obtai-
ned from run C1.2] and biodiesel (Bio) [obtained from 

run C2.2] from B. ferulifolia 

 
Source: Author’s own elaboration.

Table 4. Raman vibrations of present functional groups 
present in B. ferulifolia biodiesel spectra 

 
Source: Author´s own elaboration 

Figure 12. Comparison of Raman spectra of biodiesel 
from B. ferulifolia (Bio B. f.), T. tubaeformis (Bio T. t.), 

and B. sambucifolia (Bio B. s.) 

 
Source: Author’s own elaboration.
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Biodiesel Yield Percentages

In Table 5, the average biodiesel yield percentages 
obtained under the proposed study methodology are 
described. For any weed (regardless of the year of its 
harvest) treated with hexane –from the extraction stage– 
biodiesel was efficiently obtained with average yields 
ranging from 10.3 to 15.3%. No other study was found 
in the literature has analyzed the biodiesel production 
potential of the selected weed species as done in this 
work. However, other studies using NaOH as a catalyst 
reported biodiesel production yields above 80% (Cha-
mola et al., 2019; Onukwuli et al., 2020; Jain et al., 2023; 
Ramírez et al., 2023). Therefore, while the objective of 
producing biodiesel was achieved in this study, further 
analysis of operating conditions is necessary to opti-
mize the process. For example, using a heterogeneous 
catalyst, employing purer solvents, establishing different 
experimental designs, and performing a pretreatment 
on the seed to facilitate greater solvent penetration into 
the seed’s cellular matrix could be considered. Figure 13 
illustrates the final appearance of the biodiesel obtained 
from each weed. In the case of biodiesel from B. ferulifolia 
and T. tubaeformis, their yellow colors were very similar, 
ranging from honey-yellow to canary-yellow. Conversely, 
the color of the biodiesel from B. sambucifolia resulted 
in a brownish hue.

Table 5. Average Biodiesel Yields Produced

 

Source: Author´s own elaboration

Figure 13. The appearance of biodiesel obtained from 
weeds (a) B. ferulifolia, (b) T. tubaeformis, and (c) B. 

sambucifolia

 
Source: Author’s own elaboration. 

Conclusions

Through the proposed methodology, biodiesel was suc-
cessfully obtained from the vegetable oil of the weed 
species Bidens ferulifolia (Jacq.) DC. (aceitilla amarrilla), 
Tithonia tubaeformis (Jacq.) Cass. (acahual) and Bidens 
sambucifolia (Cav.) (aceitilla naranja). This was achie-
ved using hexane as the solvent, NaOH as the catalyst, 
methanol as the excess alcohol, a transesterification 
temperature of 55 ±1°C, stirring at 100 rpm, an L9(34) 
design for the extraction, and an L4(23) design for the 
transesterification. In the case of samples treated with 
hexane from the extraction, three separation layers were 
observed, immiscibility with the wash water, and FTIR 
and Raman spectroscopy analysis confirmed the pro-
duction of characteristic biodiesel esters. On the other 
hand, biodiesel was not obtained using ethanol and 
butanol solvents under the established operating con-
ditions. On average, biodiesel yield percentages ranged 
between 10.3 and 15.3%. FTIR characterization confirmed 
the production of biodiesel, as a peak at 1740 cm-1 co-
rresponding to the carbonyl group (C=O) of the methyl 
esters present in biodiesel was observed. Raman charac-
terization also confirmed the production of the biofuel                                                                                                                
due to the presence of vibration at 1450 cm-1 correspon-
ding to the methyl ester C=O stretch of biodiesel. Howe-
ver, the proposed methodology needs to be optimized 
to achieve better yields through the use of a different 
catalyst, employing purer solvents, defining other ex-
perimental designs, and providing pre-treatment to the 
seed before oil extraction (future work).   
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