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Currently, 3D printing has become an increasingly po-
pular technology across various industries, including 
automotive, aerospace, defense, and sports, to produce 
functional parts with complex shapes. The use of compo-
site materials in 3D printing has shown better performan-
ce in terms of mechanical properties than conventional 
filaments, enabling these components to withstand rigo-
rous usage conditions, such as impact testing.

A recent study conducted by Chihi et al. (2023) exa-
mines the impact behavior of 3D printed carbon fiber 
(cf) reinforced Polyethylene Terephthalate Glycol (petg) 
composite using the Split Hopkinson Pressure Bar (shpb) 
test. The researchers employed Fused Filament Fabri-
cation (fff) as a printing technique to produce the test 
specimens. The objective was to assess the influence 
of two infill patterns (rectilinear and honeycomb) and 
three infill densities (20%, 50%, and 75%) in 13 mm cu-
bic samples on the material’s dynamic properties. Four 
impact pressures (1.4, 1.7, 2, and 2.4 bar) were applied to 
characterize the material at different strain rates. When 
describing the behavior of a sample, we refer to infill 
density in terms of percentage and use the abbreviations 
REC and HON for rectilinear and honeycomb infill pat-
terns, respectively.

The shpb apparatus consists of a striker that impacts 
two aligned bars (incident and transmitted), between 
which the sample is placed. Strain gauges on the bars 
record the incident, reflected, and transmitted pulses, 
which are essential for obtaining the stress-strain (σ-
ε) and strain rate-strain (ε̇-ε) curves. The reflected and 
transmitted pulses are directly proportional to the strain 
rate and the stress applied to the sample.

According to the authors, the experimental results de-
monstrate the accuracy and reliability of the method for 
evaluating the behavior of cf-petg at high strain rates. A 
significant influence of the wave amplitudes due to the 

striker’s impact velocity was observed. Additionally, a 
high-speed camera was used to monitor the evolution of 
deformation and the kinetics of damage in the samples.

The combinations where the samples suffered ma-
cro-damage or permanent failure were 20%-REC and 
20%-HON for all pressures, 50%-REC, 50%-HON, and 
75%-REC at pressures of 2 and 2.4 bar. The rest of the 
tests exhibited micro-cracks and an elastic-plastic beha-
vior. It was observed that a higher infill density improves 
mechanical properties. The honeycomb pattern showed 
better performance in resistance to macro-damage and 
permanent failures compared to the rectilinear pattern 
due to a better stress distribution.

The recorded (σ-ε) curves show that increasing the 
strain rate makes the linear region more prominent and 
gradually increases the yield stress, indicating greater 
rigidity and energy consumption of the sample. When 
comparing the (σ-ε) curves of the infill patterns, the 
honeycomb pattern exhibits higher elastic moduli, 
more pronounced linear plastic regions, and maximum 
stresses almost twice as high compared to the rectilinear 
pattern, which showed more evident regions of plastic 
instability.

Both infill patterns improve compression strength (cs) 
and increase the compression modulus (cm) as the in-
fill density increases. In tests at 1.7 bar, the honeycomb 
pattern recorded compression stresses of 17.94 MPa, 
44.89 MPa, and 55.07 MPa for densities of 20%, 50%, 
and 75%, respectively. The rectilinear pattern showed 
strengths of 13.04 MPa, 21.68 MPa, and 35.85 MPa for the 
same densities. A maximum increase of 46% in stiffness 
was observed for the honeycomb pattern and 24.5% for 
the rectilinear pattern between the samples of lowest 
and highest density at a pressure of 1.7 bar. This trend is 
due to the increase in density reinforcing the bonding 
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between layers, resulting in greater stiffness and lower 
deformation capacity.

To define the strain rate sensitivity as a function of 
cs and cm of cf-petg, second-order polynomial mathe-
matical models were established for the samples 75%-
REC, 50%-HON, and 75%-HON, which did not present 
dynamic failure, where the coefficients of determination 
ranged between 0.93 and 0.98. The models showed that 
the maximum stress in samples 50%-HON and 75%-HON 
increases proportionally with the strain rate, while in 
sample 75%-REC, a threshold in maximum stress was 
presented at a strain rate of 587 s-¹. The compression 
modulus increased convexly in samples 50%-HON and 
75%-HON and proportionally in sample 75%-REC.

The high-speed images corroborated the results of the 
final state of the samples. Macro damage and final frac-
ture were detected in samples with 20% density at pres-
sures of 1.4 and 1.7 bar for both patterns. Macro damage 
was also observed in samples 50%-REC, 50%-HON, and 
75%-REC at a pressure of 2 bar. The sample 75%-HON did 
not show macro-damage at any pressure.

The behavior of stress and strain rate over time was 
described in five regions for samples without macro-
damage and six for those that did present them. The 
highlight of these graphs is that they exhibit a second 
peak in the strain rate, associated with the onset of 
macro-damage, confirming the failure of the sample. In 
samples without macro-damage, the strain rate takes 
negative values due to the elastic recovery of the sample.

The following highlights aspects that were unclear du-
ring the experiments to obtain the dynamic properties of 
cf-petg. Chihi et al. (2023) mention that the bars used are 
high-strength martensitic steel and 20 mm in diameter. 
However, to reproduce the experiments, it would be de-
sirable to detail the mechanical properties and geometric 
characteristics of the components of the shpb machine, 
as these aspects influence wave propagation and the 
accuracy of the results (Chen & Song, 2011; Govender                                                  
et al., 2018; Kariem et al., 2018, 2019; Miyambo et al., 
2023). Likewise, it would be helpful to know the impact 
velocity of the striker. Previous studies use aged mar-
tensitic steel bars and show that high-frequency oscilla-
tions in the incident pulse are eliminated using a pulse 
shaper (Chen et al., 2003; Parry et al., 1995; Samal & 
Sharma, 2021). The use of a pulse shaper in the research 
is evident, but information about its material and geo-

metric parameters is lacking. To obtain a constant strain 
rate, it is necessary to modify the shape of the incident 
pulse, as it directly impacts the reflected pulse, which 
is a function of the strain rate (Parry et al., 1995; Vec-
chio & Jiang, 2007). Upon analyzing the results, only 
one other study was found on cf-petg at high strain 
rates (Daly et al., 2024), conducted by the same authors 
and using the same results for the honeycomb pattern. 
However, some studies characterize the mechanical 
properties of cf-petg under quasi-static loads, showing                                                                                                          
compression strengths between 11.52 MPa and 60 MPa, 
depending on the printing parameters (Batista et al., 
2023; Daly et al., 2024; Faidallah et al., 2024; Jain                      
et al., 2023; Mansour et al., 2018; Patil et al., 2024; Pa-
til & Sathish, 2024). It is noteworthy that the reported 
maximum dynamic compression stress is similar to that 
obtained in quasi-static tests when a higher value under 
dynamic loads would be expected, as occurs in other 
studies (Ji et al., 2024; Lei et al., 2020; Priyanka et al., 
2021; Utzeri et al., 2021).

One of the essential requirements to validate the re-
sults of shpb tests is dynamic equilibrium, which in-
volves evaluating the relationship between the loads 
applied on the faces of the specimen. This ratio should 
be equal to or less than 0.05 (Song & Chen, 2005; Vecchio 
& Jiang, 2007; Xu et al., 2018). In this work, this equili-
brium is not demonstrated. Additionally, to reduce the 
self-alignment time of the specimen and the bars, it is ne-
cessary to use lubricant between them, reducing friction 
and improving coupling for wave transmission (Aghayan 
et al., 2022; Chen & Song, 2011; Gama et al., 2004).

The mismatch of mechanical impedance between 
the bars and the sample causes when the compression 
wave reaches the interface between the bar and the 
sample, part of the wave is reflected as a tensile wave, 
and another part is transferred to the sample and sub-
sequently to the transmitted bar (Gama et al., 2004). 
When the impedance of the bars is much greater than 
that of the sample, the reflected wave almost equals the 
incident wave in magnitude, and the transmitted wave 
has a very small amplitude, which can be confused with 
electrical noise. This is observed in the signals shown 
by Chihi et al. (2023), especially in samples 50%-REC, 
20%-REC, and 20%-HON. Gary (2014) indicates that if a 
maximum stress of 50 MPa is reported using steel bars, 
difficulties may arise in the precise measurement of the 
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properties of cf-petg.

incident force due to the cancellation of incident and 
reflected waves. Therefore, it is advisable to validate 
the dynamic equilibrium of the tests conducted by Chihi 
et al. (2023), especially in samples that do not exceed 
maximum stresses of 50 MPa. However, if it is desired to 
keep the same bar material, it is recommended to use a 
hollow transmitted bar to increase the amplitude of the 
transmitted pulse. Nonetheless, the most appropriate 
approach is to change the bars to materials with lower 
mechanical impedance, such as aluminum, titanium, 
or magnesium (Hughes et al., 2013; Liao & Chen, 2018; 
Song & Chen, 2005).

Finally, it is advisable to conduct tests with the same 
conditions of density and filling pattern of the cf-petg 
but modifying printing parameters such as extruder or 
bed temperatures, printing speed, layer height, or orien-
tation to identify how these variables affect the dynamic 
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