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Abstract

This paper presents a solution to the motion control problem for a rotary wing
vehicle powered by four rotors. It is considered that the rotary wing vehicle
performs an indoor low speed flight mission so that aerodynamic effects are not
taken into account. The proposed controller is based on a combination of the
well-known backstepping nonlinear control design technique and bounded
controllers. It is shown that the resulting closed—loop dynamics evolves inside a set
where singularities are avoided. Numerical simulations show the performance of
the proposed controller.

Keywords: Nonlinear control, bounded control, unmanned aerial vehicle, rotary
wing vehicle,trajectory tracking asymptotic stability.

Resumen

En este artículo se presenta una solución al problema de seguimiento de trayectorias en un

vehículo de ala rotativa impulsado por cuatro rotores. Se considera que el vehículo de ala

rotativa realiza una misión en un espacio cerrado con baja velocidad de manera que los

efectos aerodinámicos no se toman en cuenta. Se muestra que la dinámica en lazo cerrado

resultante evoluciona en un espacio en el cual no se tienen singularidades. Por medio de si-

mulaciones numéricas se muestra el desempeño de la estrategia de control propuesta.

Desciptores: Control no lineal, control acotado, vehículo aéreo no tripulado, vehículo de

ala rotativa, seguimiento de trayectorias, estabilidad asintótica.

Introduction

In the past years there has been a steady increase in
the development of sophisticated unmanned aerial
vehicles (UAVs) for military and civilian applica-
tions. The UAVs have a variety of potential uses,

including local reconnaissance, fire control, and detec-
tion of intruders. Law enforcement organizations use
UAVs for hostage rescue, border patrol, traffic survei-
llance and riot control (Davis et al., 1998). The com-
mercial success of UAVs together with the revolutio-
nary advances in the miniaturization of computers,



sensors and mechanical actuators has posed new cha-
llenges to control engineers. Nowadays, UAVs are con-
sidered challenging benchmarks for the development of
new nonlinear controllers to solve the motion control
problem on existing UAV configurations and recently
proposed UAV configurations (Kendoul et al., 2005).

Existing UAVs can be classified mainly in two
classes: rotary wing vehicles and fixed wing vehicles.
For missions requiring the vehicle to remain stationary
(hover) or to maneuver in tightly constrained environ-
ments rotary wing vehicles have significant advantages
over fixed wing vehicles. For example, a traffic surveil-
lance mission around buildings requires a hovering ve-
hicle with good maneuverable characteristics. How-
ever, it is important to point out that hover flight con-
sumes approximately twice the power of a similarly
loaded fixed wing vehicle moving forward. This energy
consumption difference between fixed and rotary wing
vehicles is expected to be solved by new power technol-
ogies. The hope is that new power technologies will
allow achieving reasonable endurance for rotary wing
vehicles.

In this paper a rotorcraft powered by four non-tilt-
ing rotors known as the X4-flyer (Hamel et al., 2002) or
the Dragan-flyer is considered. It is assumed that the
vehicle performs an indoor low speed flight mission so
that aerodynamic effects are disregarded. Although dis-
regarding aerodynamic effects is a quite restrictive as-
sumption it is common in most of the existing litera-
ture about this rotorcraft.

Besides its practical relevance, the Dragan-flyer sys-
tem is an interesting case of study, e.g. it is a six degrees
of freedom mechanical system whose dynamics is de-
scribed by an under-actuated twelfth order highly cou-
pled nonlinear model.

The goal of this paper is to address and solve the tra-
jectory tracking problem. In particular, the problem is
solved by combining the backstepping technique intro-
duce in (Sepulchre et al., 1997) and the results on
bounded controllers of (Kaliora et al., 2001). It is impor-
tant to point out that the trajectory tracking problem
for this rotary wing vehicle has been addressed in
(Salazar et al., 2005) using a nested saturation control
algorithm and in (Hamel et al., 2002) using the backst-
epping technique. However, it is necessary to under-
score that the proposed controller in this paper is differ-
ent to the controller presented in (Hamel et al., 2002) as
the translational dynamics has a different closed-loop
behavior.

The rest of the paper is organized as follows. In Sec-
tion II the rotorcraft dynamical model and a precise

definition of the control problem of interest are de-
fined. Section III is devoted to the design of the state
feedback controller. In Section IV the effectiveness of
the control design is shown through a series of numeri-
cal simulations. Finally, in Section V some concluding
remarks are presented.

II. The model

The rotary wing vehicle is shown in figure 1. It is powe-
red by four non-tilting rotors attached to a rigid frame.
The dynamical model of the rotary wing vehicle can be
obtained as follows. Let Ox y ze e e denote a right-hand
inertial frame (earth frame) such that z e points down-
wards into the earth and Ox y zb b b a right-hand frame
fixed to the centre of mass of the aircraft structure
(body frame). The vehicle dynamics in the body frame
is described by (Roskam, 1982)

mV m VCM

b

CM

b
�

� �� = Fe
b

(1)
I I�� � �� � = � e

b

where m represents the vehicle mass,

V u v w
CM

b T�[ ]

denotes the linear velocity of the vehicle centre of mass
expressed in the body axis frame, � �[ ]p q r T denote
the angular velocity of the body frame, I is the vehicle
inertia matrix1, Fe

b represents the external applied for-
ces expressed in the body frame and Me

b represents the
external applied moments expressed in the body frame.

In order to express the vehicle dynamics (1) referred
to earth axis, it is necessary to specify the orientation of
the body axis with respect to the earth frame. Consid-
ering the classical Euler yaw-pitch-roll rotation se-
quence. The rotation matrix that describes the orienta-
tion of the body reference frame relative to the earth
frame is given by
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where � � 	 
�[ ]T are the Euler angles with � the roll
angular displacement, 	 the pitch angular displacement
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and 
 the yaw angular displacement. Moreover,
c xx � cos( ) and s xx � sin( ). On the other hand, the body
frame angular velocity � is related to the Euler angles
velocity as follows (Roskam, 1982)
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From equation (2) we have that the relationship be-
tween the velocity components in the earth frame and
the velocity components in the body frame is defined as

V R V
CM

b

CM

e� (4)

where V x y z
CM

e T�[ � � � ] is the linear velocity of the vehi-
cle centre of mass expressed in the earth frame. Thus,
the vehicle dynamics expressed in the earth frame can
be written as

m V
CM

e
� = R FT

e
b

(5)
I W IW W W I WT T
�� � � ���

�

� ( � � )� � � = W MT
e
b

where the following facts have been considered
R R R R V Sk VT T

CM

b

CM

b� � � �1 , � ( )� , with Sk( )� a skew

symmetric matrix such that � �� �V Sk V
CM

b

CM

b( ) and
the new inertia matrix I W I WT

� � has been introduced.
Since we are not considering aerodynamic effects,

the external applied forces expressed in the body frame
are the vehicle weight and the total thrust produced by
the four rotors, that is,
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where T T
T i i� � �1

4 with Ti the thrust of each rotor. It is
shown in (Gressow et al., 1978) that the thrust genera-
ted by each rotor can be expressed as

T C ri T i i
i

� � � �4 2

where C
T

is the thrust coefficient of rotor i, � is the air
density, ri is the radius of rotor i and �i is the angular
velocity of rotor i.

The external applied moments in the body frame
are defined as follows. The pitching motion is actuated
by the moment around yb produced by increasing the
thrust of rotor 1 and reducing the thrust of rotor 3.
The roll movement is generated in a similar way, that

Figure 1. Rotary wing vehicle



is, by producing a differential thrust between rotors 2
and 4. Due to the torque applied to the rotor shaft by
the motors a reaction torque of the same magnitude
but opposite direction is experienced on the structure
of the vehicle. By manipulating these reaction torques
it is possible to control the yaw moment. Finally, the
external applied moment is given by
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where � is the distance between the rotor rotation axis
and the aircraft centre of mass and Qi is the reaction
moment produced by rotor i. The reaction moment is
given as (Gressow et al., 1978)

Q C ri Qi i i� � � �5 2

As shown in (Hamel et al., 2002) there exist a glob-
ally defined change of coordinates from

[ ]�T L M N
T

T to[ ]� � � �1
2

2
2

3
2

4
2 T for C

Ti
�0 and

C
Qi

�0.

The control objective is to asymptotically track pre-
scribed trajectories for the vehicle spatial position (x, y,
z) and the yaw orientation 
. In the following, we
show that the considered control objective is achiev-
able with a nonlinear time variant state feedback under
the following standing assumption

– All system states are measurable and all system
physical parameters are known.

Control design

In this section we present a bounded backstepping con-
trol design for the rotary wing vehicle modeled by
equation (5). The control strategy is developed as fol-
lows. First, the controller for the vehicle vertical mo-
tion is designed and then through the pitch and roll an-
gles the vehicle position in the plane xy is controlled.
The motion in the yaw direction is controlled inde-
pendently. From the first equation of (5) we have that
the translational dynamics is described by

m ��x = T
T

sin( )	
m ��y = �T

T
cos( )sin( )	 � (8)

m ��z = � �T m g
T

cos( ) cos( )	 �

Vertical motion control can be obtained by defining
the total thrust as

T m
g

T
z�

��

	 �cos( ) cos( )
(9)

where � z is a function defined in such a way that the
dynamic equation

��z z� �

globally asymptotically satisfies

lim
t d

z z
��

�

The translational dynamics (8) in closed loop with
the controller (9) is described by the following
equations

��x =
g z��

�
	

cos( )
tan( )

��y = � �( )g z� tan( )� (10)

��z = � z

Following the backstepping nonlinear control de-
sign methodology (Sepulchre, 1997) the motion control
in the x and y directions can be achieved through 	 and
� as follows.

Consider the functions

� 	
�

�
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�
�x

z

x y

z

y
g g

� �
�

� �
�

tan( )
cos( )

, tan( ) 1 (11)

where � x and � y are functions that will be defined in a
similar way to � z . Note that the new variables �x and
�x will be well defined provided

g z� �� 0

therefore � z needs to satisfy the following condition

| |� z g� (12)

The condition above will be fulfilled by designing � z

as a bounded function; this will be achieved following
the bounded control design technique proposed in
(Kaliora et al., 2001).

Solving equation (11) for tan( )	 and tan( )� , and re-
placing them into equation (10) we obtain
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�x

z
x

g
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cos
��y = � � �� � �y z yg( ) (13)

��z = � z

Supposing that �x and �x are vanishing perturba-
tions the trajectory tracking problem in the plane x–y
can be solved by selecting the functions � x and � y in
such a way that the following dynamic equations

�� ,��x yx y� � �� �

globally asymptotically satisfy

lim , lim
t d t d

x x y y
�� ��

� �

Now, we force the variables �x and �x to be vanish-
ing perturbations. For, let us define the following
linearizing feedback for the angular dynamics
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where     � 	 #�[ ]T is the new control input. With
the controller defined by (14) the rotational dynamics
reads as follows
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is the decoupling matrix. The main characteristics of
the proposed controller can be stated as follows.

Proposition 1

Consider the rotary wing vehicle dynamics described
by equations (5). Let x t

d
( ), y t

d
( ), Z t

d
( ) and 


d
t( ) be re-

ference signals with bounded derivatives. The state
feedback control law defined by (9), (11) (14) and
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where 3(. )1 and 3(. ) 2 are constants such that the poly-
nomial s s2

2 1� �3 3(. ) (. ) has all roots with negative real
part, positive constants 2 x , 2 y and
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generates a closed loop dynamics such that, for any ini-
tial conditions in the set
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the trajectories of the closed loop system remain in S
and are such that
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for any positive constant 4 z �0.

Proof

To begin with, note that the vertical motion dynamics
expressed in terms of the vertical tracking error is des-
cribed by
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as shown in (Kaliora et al., 2001) the dynamics (23) is
globally asymptotically stable (GAS) and locally expo-
nentially stable (LES) so that z t( ) converges to z t

d
( ).

Moreover, from (21) we have that

g z z� �� 4

thus the new coordinates defined in (11) are well de-
fined in the set S. In a similar way we have that the
dynamics
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are GAS and LES. As a consequence, there exist quadra-
tic Lyapunov functions

V e e V e ex x x y y y( , � ), ( , � ) (25)

such that

� ( , � ), � ( , � )V W e e V W e ex x x x y y y y� � � �

with Wx and Wy positive definite functions along (24).
Additionally, it is easy to verify that for the dynamic
equations
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Consequently, there exist constants 7 x and 7 y such
that
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Note now that the vehicle dynamics (5) in
closed—loop with (9), (14) and (18) can be expressed in
terms of the
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Consider now equation (27) and some positive con-
stants 71 , 7 2 and 7 3 .Then the Lyapunov function time
derivatives (29) can be bounded as follows
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this implies that along the trajectories of the closed
loop dynamics Vx and Vy are bounded. As a result, the
tracking errors ex and ey and their time derivatives are
bounded and, by standard properties of cascade
systems x t( ) and y t( ) converge to x t

d
( ) and y t

d
( ) respec-

tively. It is easy to verify that the last equation of (28)
is GAS and 
( )t converges to 
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t( ). Finally, straightfor-

ward computations show that
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where
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Note that the functions � , � , �� � �x y z , and �( , , )F z y y� � �
can be written in terms of { , , , , }� � � � �x y x y z then the

diffeomorphism from { , � , , �}� � 	 	 to { , � � }� � : � : �x x y y is well
defined in the set S. This completes the proof.

Remark

The control law of Proposition 1 has 2 x and 2 y as free
parameters that could be used to enforce saturation li-
mits on the actuators. Moreover, as the closed-loop
dynamics evolves inside S the singularities in equations
(9) and (14) are avoided.

Simulation results

Numerical simulations were carried out to asses the per-
formance of the controller proposed. The numerical va-
lue of the vehicle parameters are presented in table 1.

Note that we consider similar characteristics for all
rotors. The desired trajectory is defined as follows
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In the numerical simulations we have considered
the following initial conditions

[ ( ) ( ) ( ) ( ) ( ) ( )]x y z T0 0 0 0 0 0� 	 

=[ ]0 12 20 0 0 0 T

[ �( ) �( ) �( ) �( ) �( ) � ( )]x y z T0 0 0 0 0 0� 	 

=[ ]0 0 0 0 0 0 T

Table 1. Rotary wing vehicle parameters

Parameter Value Parameter Value

m (kg) 1 CQi
, i=1,...,4 0.1

g(m/s2) 9.81 � (m) 0.25

r (m) 1 Ixx (kg m2) 1.25

� (kg/m3) 1 Iyy(kg m2) 2.2

CTi
, i=1,...,4 0.5 Izz(kg m2) 1.23



In order to tune the controller parameters we do
need to be careful to fulfill condition (12) this can be
achieved by selecting adequately the controller gain 2 z .
Note that through the controller gains 2 x , 2 y the func-
tions � x and � y can be arbitrarily bounded. However, by

bounding � x and � y we bound the available control
force and slow the controller response. In the following
numerical simulations we select the controller parame-
ters presented in table 2.
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Figure 2. Tracking error ex (left) and tracking error ey (right)

Figure 3. Tracking error ez (left) and tracking error e
 (right)

Table 2. Controller parameters

Parameter Value Parameter Value

2 2 2x y z, , 15, 15, 9.21 3 3x x1 2, 0.49, 1.4

3 3y y1 2, 0.81, 1.8 3 3z z1 2, 0.25, 1

3 311 12, 1,2 3 321 22, 1, 2

3 331 32, 0.36, 1.2 4z 0.4
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Figure 6. Roll angle � (continuous line) and roll angular velocity �� (dashed line) (left).

Pitch angle 	 (continuous line) and pitch angular velocity �	 (dashed line) (right)

Figure 5. Moment applied on the pitch direction M (left) and moment applied in the yaw direction N (right)

Figure 4. Total thrust TT (left) and moment applied on the roll direction L (right)



In order to test the controller robustness in the fol-
lowing simulations the linearizing controller (14) is not
included. Figures 2 and 3 show the time histories of the
trajectory tracking as it can be observed they converge
asymptotically to zero. The divergence observed at
t=50 seg corresponds to the non smooth change of ref-
erence. However, after a transient period the trajectory
tracking errors converge asymptotically to zero.

Figures 4 and 5 display time histories of the control
signals, as it can be they remain bounded. Finally, in
Figures 6 and 7 the time histories of the states ( , )� 	 as
well as ( , )� �x y and its time derivatives are shown. Note
that all these signals remain bounded showing that the
diffeomorphism from { , � , , �}� � 	 	 to { , � , , � }� � � �x x y y is well
defined.

Conclusions

The trajectory tracking problem for a rotary wing vehi-
cle powered by four rotors has been addressed and sol-
ved by means of a full information control law, which
is based on the backstepping technique and bounded
controllers. Numerical simulations have been proposed
to illustrate the properties of the closed loop system.

A few issues are left open in the present paper. First,
all the system parameters are assumed to be known.
Second, all the states are assumed to be measurable,
hence further work is necessary to relax (or avoid) these
assumptions. A straightforward solution to the issues
left open in this paper is to include an observer/estima-
tor to observe some system’ states and to estimate
some system’s parameters, for instance translational
velocities, angular displacements and vehicle mass. The
main complications in this direction is to be able to

conclude some kind of stability of the new resulting
nonlinear closed—loop dynamics now composed of
vehicle dynamics, controller and observer.
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