

Desarrollo de modelos ecológicos para carbono y nitrógeno en lagunas facultativas secundarias

Developing Ecological Models on Carbon and Nitrogen in Secondary Facultative Ponds

Aponte-Reyes Alexander

Grupo de Investigación Saneamiento Ambiental Universidad del Valle, Cali, Colombia Correo: alexander.aponte.reyes@correounivalle.edu.co

Información del artículo: recibido: febrero de 2013, reevaluado: abril de 2013, aceptado: julio de 2013

Resumen

El modelo se formuló para COT y CO₂, y NH⁺₄, NO₃ y NTK, a partir de información de literatura y lo que se obtuvo en campo durante el seguimiento a tres unidades piloto de laguna facultativa secundaria: laguna convencional, LC, laguna de bafles, LB y laguna de bafles-mallas LBM. Los modelos mostraron sensibilidad a las variables caudal de entrada, radiación solar, pH y contenido de oxígeno; a nivel de parámetros se encontró que el modelo de Carbono resultó sensible a: K_{COT Ba}, u_{max Ba}, u_{max Al}, K_{10X}, V_{Al}, R1D_{CH4}, YB_h. El modelo de Nitrógeno resultó sensible a los parámetros: K_{COT Ba}, u_{max Ba}, u_{max Al}, V_{AV} K_{OPH}, K_{OPA}, r_{4An}. Las pruebas *t pareada* realizadas indicaron que el modelo de Carbono reprodujo de manera confiable el comportamiento del COT en una laguna facultativa secundaria; mientras que el modelo de Nitrógeno lo hizo para el caso de NH4⁺. Diferentes topologías afectan la ecología del sistema promoviendo distintas rutas de transformación del nitrógeno; la topología LBM podría alcanzar transformaciones de C empleando volúmenes inferiores, sin embargo se requiere una calibración de los modelos propuestos. Los modelos podrían ser acoplados a modelos hidrodinámicos para un modelado eco-hidrodinámico.

Descriptores:

- ecología
- modelado
- lagunas facultativas
- biorremediación

Abstract

Ecological models formulated for TOC, CO_2 , NH_4^+ , NO_3^- and NTK, based in literature reviewed and field work were obtained monitoring three facultative secondary stabilization ponds, FSSP, pilots: conventional pond, CP, baffled pond, BP, and baffled-meshed pond, BMP. Models were sensitive to flow inlet, solar radiation, pH and oxygen content; the sensitive parameters in Carbon Model were $K_{COT Ba'} u_{max Ba'} u_{max Al'} K_{10X'} V_{Al'} R1D_{CH4'} YB_h$. The sensitive parameters in the Nitrogen model were $K_{COT Ba'} u_{max Ba'} u_{max Ba'} u_{max Al'} V_{Al'} K_{OPH'} K_{OPA'} r_{4An'}$. The test t-paired showed a good simulating of Carbon model refers to TOC in FSSP; on the other side, the Nitrogen model showed a good simulating of NH₄⁺. Different topological models modify ecosystem ecology forcing different transformation pathways of Nitrogen; equal transformations of the Carbon BMP topology could be achieved using lower volumes, however, a calibration for a new model would be required. Carbon and Nitrogen models developed could be coupled to hydrodynamics models for better modeling of FSSP.

Introducción

Controlar la contaminación hídrica ocasionada por aguas residuales municipales tiene justificación en problemas ambientales como la generación de gases efecto invernadero, GEI, la presencia de disruptores endocrinos (Janex et al., 2009), la eutrofización de fuentes de agua (Zimmo et al., 2004; Wallace y Austin, 2008) y el deterioro de la calidad de las fuentes de agua. Un enfoque ecológico en el estudio de lagunas facultativas secundarias, LFS (figura 1), apunta a conocer las relaciones establecidas entre la estructura de este ecosistema y las funciones que cumple. Un proceso de simulación-modelación puede explicar dichas relaciones, haciéndolo una herramienta útil para su análisis (Jamu y Piedrahita, 2002). Para analizar una LFS es posible apelar a procedimientos matemáticos que analicen los fenómenos multidimensionales (Legendre y Legendre, 2004) que suceden en estos complejos ecosistemas; el modelado puede integrar variables hidrodinámicas y cinéticas y es una herramienta con amplias posibilidades en el campo del tratamiento de las aguas residuales (Zima et al., 2009; Alvarado et al., 2012; Sah, 2009; Beran y Kargi, 2005; Houweling et al., 2008; Abbas et al., 2006). Disponer de modelos de LFS que conjuguen su ecología, incorporen sus propiedades dinámicas, componentes y variables (Jamu y Piedrahita, 2002) posibilitará la búsqueda de un ambiente sano con criterios de justicia ambiental (Rees, 2008).

La abundancia y disponibilidad del carbono, C, y nitrógeno, N, en la biósfera como constituyentes de la materia orgánica, dependen de transformaciones biogeoquímicas (Jenkins y Zehr, 2008) como las existentes en un LFS, además regulan la productividad de los eco-

Keywords:

- ecological modeling
- facultative ponds
- bioremediation

sistemas acuáticos y terrestres, pues posibilitan la existencia de los productores primarios (Lampert y Sommer, 2007). Por otro lado, el modelado de la generación de gases efecto invernadero desde LFS podría validar modelos ecológicos que plantean balances de compuestos orgánicos y nutrientes (Pepperell *et al.*, 2011). Así mismo, los mecanismos de eliminación de nitrógeno se siguen estudiando (Zimmo *et al.*, 2004; Shen *et al.*, 2012) pues existen divergencias frente a cuáles son los más efectivos y cuáles son los predominantes en estos reactores (Camargo, 2008). De ahí la importancia de desarrollar modelos ecológicos en LFS para C y N. Este documento aborda una propuesta de modelado ecológico en LFS para ambos elementos.

Desarrollo

La investigación fue ejecutada en la Estación de Investigación de Aguas residuales y reúso de Ginebra, EIG, localizada en el Valle del Cauca, Colombia, a 3° 43′ 50″ latitud norte y 76° 16′ 20″ longitud este, a 1040 ms.n.m. La temperatura promedio es 23°C y la precipitación promedio es 1280 mm. Se hizo seguimiento a tres LFS con distintas configuraciones físicas (tabla 1). El diseño de las unidades piloto se realizó empleando la metodología de carga orgánica superficial (Mara, 2001) aplicando un análisis de incertidumbre (Von Sperling, 1996) con base en la propuesta de Banda (2003).

La figura 2 ilustra los pilotos y los puntos de muestreo. En P1 y P2 se tomaron muestras puntuales a dos profundidades, 0.05 m y 0.75 m, a las 10:00, 13:00, 17:00 y 22:00 horas teniendo en cuenta las variaciones meteorológicas; también se tomaron muestras puntuales y compuestas a la entrada y la salida de cada unidad. Se Aponte-Reyes Alexander

Figura 1. Ecosistema en una LFS. Fuente: Metcalf y Eddy (1995)

Características de diseño	Piloto 1. Bafles Mallas, LBM	Piloto 2. Convencional, LC	Piloto 3. Bafles, LB
Modificación	Construcción bafles e instalación de mallas a L/3 y 2/L3		Construcción de dos bafles a L/3 y 2/L3
Caudal (L/s)	0.275	0.275	0.275
Relación L/B	3.01	3.10	3.15
Altura (m)	1.39	1.31	1.32
Talud X:Y	0.99	0.91	0.91
Ancho espejo de agua (m)*	5.81	5.64	5.58
Largo espejo de agua (m)*	17.46	17.49	17.57
Volumen (m ³)*	99.01	92.01	94.64
TRH (días)**	4.17	3.99	3.98
Área (m²)	45.08	49.25	48.16
Carga aplicada (kg DBO/Ha)	271.23	278.92	280.64

Tabla 1. Características de las unidades piloto

* Las diferencias responden a condiciones constructivas. Se admitieron diferencias menores a 5% en las variables TRH, Área y Carga aplicada

** Corresponde al TRH teórico o nominal

midieron caudales en forma volumétrica a la entrada y a la salida y se realizaron pruebas físico-químicas de las variables de interés a todas las muestras recolectadas (tabla 2). Con esta información de seguimiento se obtuvo información para la validación y calibración de los modelos ecológicos propuestos.

La formulación de los modelos fue guiada por la propuesta de Jorgensen y Bendoricchio (2001) (figura

3). El diagrama conceptual se desarrolló con el *software* Structural Thinking Experimental Learning Laboratory with Animation, Stella, de ISEE Systems Inc.® Este *software* se ha utilizado para simular modelos ecológicos y ofrece ventajas desde el punto de vista gráfico y de cuantificación (Jamu y Piedrahita, 2002). Las expresiones de balance de materia para cada especie fueron la base para la formulación matemática de los

Parámetro	Unidades	Método de medición	Lugar de medición	Ref. Standard methods
pH	Unidades	Potenciómetro	In situ	4500-H ⁺ B
Temperatura	°C	Térmico	In situ	2550 B
Oxígeno disuelto	mg/L	Potenciómetro	In situ	4500-0 G
Potencial Redox	mV	Potenciómetro	In situ	2580B
Clorofila a	μg/L	Fluorometria	Laboratorio	10200H
DQO*	mg/L	Digestión	Laboratorio	5220D
DBO ₅ *,**	mg/L	Winlker	Laboratorio	5210B
SST	mg/L	Gravimétrico	Laboratorio	2540D
N/NH_4^+	mg/L	Potenciómetro	Laboratorio	4500-NH ₃ A
NTK	mg/L	Kjeldahl	Laboratorio	$4500_{-\text{org}}B$
N/NO ₃ -	mg/L	Potenciómetro	Laboratorio	4500-NO ₃ D
Alcalinidad	mg/L			
COT	mg/L	Combustión-infrarrojo	Laboratorio	5310A

Tabla 2. Variables medidas en las unidades piloto

Fuente: APHA-AWWA-WEF (2005)

* Total y filtrada para las muestras compuestas

** Solo se midió en muestras compuestas

modelos ecológicos (ecuación 1). Los modelos consideraron condiciones no estacionarias, lo que definió una variación con respecto al tiempo de las especies químicas estudiadas.

$$\frac{dM}{dt} = Q_i * \left[C_i\right] - Q_e * \left[C_e\right] \pm R_c$$
(1)

donde:

 $\begin{array}{l} Rc = r_{M}^{*} V(MT^{-1}) \\ r_{M} = transformación de la especie de interés en la LFS (aparición o desaparición) (ML^{-3}t^{-1}) \\ V = volumen de la laguna. (L^{3}) \\ Q = caudal (L^{3}t^{-1}) \\ [C_{i}] = concentración de la especie a la entrada (ML^{-3}) \\ [C_{e}] = concentración de la especie a la salida (ML^{-3}) \end{array}$

(MtCada ecuación de balance de materia para las especies de interés fue implementada en el *software Stella*®. Se construyeron sub modelos (Pereira *et al.,* 2006) para:

- Carbono orgánico total
- Carbono inorgánico total
- Nitrógeno orgánico particulado
- Nitrógeno orgánico disuelto
- Nitrógeno de nitratos
- Nitrógeno amoniacal

A partir de los resultados para LC se verificó el modelo correspondiente a LBM, ajustando los parámetros respectivos. El *software Stella*® fue utilizado en un equipo Toshiba Tecra, Procesador Intel® Core™2 Duo, CPU T8100 @ 2.10 GHz 2.09 GHz 1.99 GB de RAM. El Apéndice 1 resume las expresiones matemáticas empleadas para la formulación de los modelos; la mayoría de ellas respondieron a cinéticas tipo Monod, considerando las condiciones hipertróficas de las LFS. La tabla 3 y 4 presentan los parámetros y valores empleados para ambos modelos. La LC se asumió como *reactor completamente mezclado*, RCM, con base en información de estudios de trazadores realizados en la LC y la LBM (Bravo y Rodriguez, 2010; Fichmann,

2012) los cuales arrojaron como resultado un comportamiento de flujo mixto con tendencia a RCM, correspondiente con lo planteado por otros investigadores (Mara, 2004), los números de dispersión hallados para LBM oscilaron entre 0.31 y 0.43 y para LC entre 0.19 y 1.5. Las concentraciones de biomasa algal y bacterial se hallaron a partir de los contenidos de COT en las lagunas piloto.

Los valores de nitrógeno asociado a microalgas y bacterias se estimaron a partir de la literatura (Mišurcová *et al.*, 2010; Bradley y Nichols, 1918; Fagerbakke *et al.*, 1996). En la tabla 5 se presentan las interacciones entre las distintas especies de análisis de los modelos propuestos para C y N.

Parámetro	Definición	Unidades	Rango	Fuente
Y _{Bha}	Relación sustrato y biomasa (bacterias heterotróficas)		0.788	(Mashauri y Kayombo, 2002)
X _{Ba}	Concentración Biomasa Bacterias	g N m ⁻³	Variable	Experimental
u _{max Ba}	Tasa crecimiento máximo Bacterias	d^{-1}	3.8, 2-10	(Kayombo <i>et al.,</i> 2003; Tchobanoglous <i>et al.,</i> 2004)
COT	Carbono orgánico Total	g C m ⁻³	Variable	Experimental
K _{COT Ba}	Constante saturación media para oxidación (COT) por Bacterias	g C m ⁻³	200, 40-50	(Kayombo <i>et al.,</i> 2003; Tchobanoglous <i>et al.,</i> 2004)
K _{O2Ba}	Constante saturación media para O_2 por Bacterias	$gO_2m^{\text{-}3}$	1	(Fritz et al., 1979)
K_{4Ba}	Constante saturación media para nitrógeno tomado por Bacterias	$g N m^{-3}$	0.05	(Henzen et al., 1995)
$\begin{array}{l} T_{optBa} \\ Tx_{Ba} \\ Opt_{pHBa} \\ K_{pHBa} \\ K_{e} \\ I_{S} \end{array}$	Temperatura óptima crecimiento Bacterias Temperatura para crecimiento bacterias pH óptimo para crecimiento Bacterias Constante media de velocidad para pH Coeficiente de extinción de luz Radiación solar en superficie	°C °C m ⁻¹ Langley d ⁻¹	20-50 0-15 6-11 150-250 13 0-596.6	(Tortora <i>et al.,</i> 2007) Ídem (Kayombo <i>et al.,</i> 2000) Ídem (Heaven y Zotova, 2005) Experimental
D	Profundidad para la intensidad de luz	m	0.18	Experimental
I_k	Intensidad óptima	Langley d ⁻¹	250, 450	(Fritz <i>et al.,</i> 1979; Beran and Kargi, 2005
X _{Al}	Concentración de biomasa algal	g N m ⁻³		Experimental
u _{max Al}	Tasa de crecimiento Microalgas	d^{-1}	0.5-2, 2	(Asaeda y Van, 1997; Sah, 2009)
T _{opt Al} Tx _{Al} CO _{2d}	Temperatura óptima crecimiento microalgas Temperatura máxima crecimiento Algas Concentración de CO ₂ en el día Constante de saturación media CO2 tomado	$s \circ C$ $\circ C$ $g CO_2 m^{-3}$	25 40 Calibración	(Muñoz y Guieysse, 2006) Ídem Experimental (Fritz <i>et al.</i> , 1979: Chen y
K _{CO2 Al}	por microalgas Constante de saturación media para	$g CO_2 m^2$	1, 0.5-0.6	Orlob, 1975)
K _{N Al}	nitrógeno tomado por microalgas	g N m [∞]	0.025	(Beran y Kargi, 2005)
$\begin{array}{c} \text{Opt}_{\text{pHAl}} \\ \text{K}_{\text{pHAl}} \\ \text{K}_{10X} \end{array}$	pH optimo para crecimiento microalgas Constante media de velocidad Tasa de crecimiento	d ⁻¹	6-11 150-250 0.1-1.2	(Kayombo <i>et al.,</i> 2000) Ídem (Reed <i>et al.,</i> 1998)
K ₁₀₂	Constante saturación media para oxígeno disuelto en la respiración aerobia	$gO_2m^{\text{-}3}$	0.1-1	(Tchobanoglous et al., 2004)
Θ_{10x}	Coeficiente temperatura para respiración aerobia		0.967-1.104	(Mashauri y Kayombo, 2002)
V _{Al}	Velocidad sedimentación Algas	m d ⁻¹	0.27-0.89	(Jorgensen y Bendoricchio, 2001)
V _{Ba} h V K _{al} K _{1D}	Velocidad sedimentación Bacterias Profundidad laguna Volumen laguna Coeficiente de respiración microalgas Constante de saturación media del CO ₂	m d ⁻¹ m m ³ d ⁻¹	0.005-0.5 1.31 92.01 0.9664-0.0208*T	(Mashauri y Kayombo, 2002) Experimental Experimental (Fritz <i>et al.</i> , 1979) (Beran y Kargi, 2005)
A K ₀₂	Area laguna Constante de saturación media del O ₂	m	98.64 ($0.728W_{A-L0.5} \cdot 0.31W_{A-L} + 0.0372W_{A-L}^{-2}$) ($1.0241(T-200)$	(Beran y Kargi, 2005)
W	Velocidad del viento sobre la laguna	m s ⁻¹	20)) Variable	Experimental
W _{L-A}	Velocidad del viento sobre la superficie de	m s ⁻¹	Variable	Experimental
R _{DBe}	Tasa difusión del bentos CO_2	g C d ⁻¹	0.09	
R _{CH4Be}	Tasa difusión del bentos CH₄	g C d ⁻¹	Calibración	Experimental
V _b	Volumen del bentos	m ³	Calibración	Experimental
R _{1DCH4}	Tasa volatilización CH₄ desde la columna de agua	g C d ⁻¹	162.756	(Lasso, 2010)

Tabla 3. Parámetros modelos de Carbono

Tabla 4.	Parámetros	modelos	de	Nitrógeno

Parámetros	Definición	Unidades	Rango	Fuente
K _{Den}	Tasa velocidad denitrificación	d^{-1}	0.1	(Chao et al., 2007)
θ_{Den}	Coeficiente temperatura		1.045	(Jorgensen y Bendoricchio, 2001)
V _{Al}	Velocidad sedimentación algas	$m d^{-1}$	0.27-0.89	Ídem
V_{Ba}	Velocidad sedimentación bacterias	$m d^{-1}$	0.005-0.5	(Mashauri y Kayombo, 2002; Farrás, 2005)
h	Profundidad laguna	m	1.31	Experimental
K _{O2N}	Constante saturación media para el oxígeno en la nitrificación	$g \ O_2 \ m^{-3}$	1.3-0.5	(Fritz <i>et al.,</i> 1979 Henzen <i>et al,</i> 1995)
K_{4N}	Constante saturación media para amonio en la nitrificación	$g \ N \ m^{-3}$	0.025	
u _N	Tasa crecimiento máximo nitrosomonas	d^{-1}	0.008	(Fritz et al., 1970)
Y _N	Factor crecimiento nitrosomonas		0.15	Ídem
C_{pH}	Factor inhibición para crecimiento nitrosomonas por pH		(1-0.8333*(7.2-pH))	Ídem
K _{oda}	Tasa amonificación NOD	d^{-1}	0.1	(Qitao y Youngchul, 200)
θ_{ODA}	Coeficiente temperatura amonificación NOD		1.02	(Jorgensen y Bendoricchio, 2001)
K _{oph}	Tasa velocidad hidrólisis NOP	d^{-1}	0.001-0.01	(Qitao y Youngchul, 2009)
K _{OPA}	Tasa amonificación NOP	d ⁻¹	0.01-0.03	(Jorgensen y Bendoricchio, 2001)
θ_{OPA}	Coeficiente temperatura amonificación NOP		1.02-1.08	Ídem
X _{Ba}	Concentración biomasa bacterias	g N/m ³	Variable	Experimental
U _{max Ra}	Tasa crecimiento máximo bacterias	d^{-1}	3.8, 2-10	(Kayombo <i>et al.</i> , 2003;
COT	Carbono orgánico total	g C m⁻³	Variable	Experimental
К	Constante saturación media oxidación (COT)	$\sigma C m^{-3}$	200 40-50	(Kayombo <i>et al.,</i> 2003;
K	por bacterias Constante saturación media O, por bacterias	$g O 2 m^{-3}$	1	Tchobanoglous <i>et al.,</i> 2004) (Fritz <i>et al.,</i> 1979)
CO2Ba	Constante saturación media nitrógeno tomado	NI -3	0.05	
$K_{4 Ba}$	por bacterias	g N m	0.05	(Henzen <i>et al.</i> , 1995)
T _{opt Ba}	Temperatura óptima crecimiento bacterias	°C	20-50	(Tortora <i>et al.,</i> 2007)
T _{xBa}	Temperatura minima crecimiento bacterias	ů	0-15	Idem (Keyembe et al. 2000)
Орі _{рнва} К	Constante media de velocidad		0-11 150_250	(Kayoliido et ut., 2000) Ídem
K K	Coeficiente de extinción de luz	m^{-1}	13	(Heaven v Zotova, 2005)
I _c	Radiación solar en superficie	Langlev d^{-1}	0-596.6	Experimental
D	Profundidad para la intensidad de luz	m	0.18	Experimental
I_k	Intensidad óptima	Langley d ⁻¹	250, 450	(Fritz <i>et al.</i> , 1979; Beran y Kargi, 2005)
X _{Al}	Concentración biomasa algal	g N m ⁻³	Variable	Experimental
u _{máx Al}	Tasa crecimiento para microalgas	d^{-1}	0.5-2, 2	(Asaeda y Van, 1997; Sah, 2009)
T _{opt Al}	Temperatura óptima crecimiento microalgas	°C	25	(Muñoz y Guieysse, 2006)
Tx _{Al}	Temperatura máxima crecimiento microalgas	°C	40	ldem
CO_2	Concentración CO_2	g CO ₂ m	Variable	Experimental (Fritz at al. 1979, Chop y Orloh
KC _{02 Al}	microalgas	g CO ₂ m ⁻³	1, 0.5-0.6	(1975)
K _{NAl}	por microalgas	$g N m^{-3}$	0.025	(Beran y Kargi, 2005)
Opt _{pHAl} K	pH óptimo crecimiento microalgas Constante media de velocidad	Un	6-11 150-250	(Kayombo <i>et al.,</i> 2000) Ídem
K _{pHAl}	Coeficiente transferencia de masa en la fase	1-1	100-200	
K_{4V}	líquida	d	$(0.0566/h)^{*}(e^{(0.05(0.05))})$	(Zimmo <i>et al.,</i> 2003)
NH_4^+	Concentración amonio libre en columna de agua	g N m ⁻³		
А	Porcentaje $\mathrm{NH_4^+}$ presente en columna de agua		Variable	(Camargo, 2008)
pk _b	Constante equilibrio disociación de NH_4^+		0.09018 + (2729.92/(273.2 + T))	Ídem
T _{AmoBen}	Tasa amonificación NOP bentos		Calibración	Experimental
V	Volumen laguna	m ³	90.12	Experimental
r _{4An}	Tasa anammox	$g \ N \ m^{-3} \ d^{-1}$	0.000802	(Van <i>et al.,</i> 2010)

Variable	Definición	COT	CO_2	$\mathrm{NH_4}^+$	NO ₃ ⁻	NOP	NOD
R _{1Ran}	Tasa consumo carbono orgánico por anaerobiosis	Х	Х				
R_{1Rae}	Tasa consumo carbono orgánico aerobiosis	Х	Х				
R_{1Ras}	Tasa consumo carbono orgánico asimilación	Х					
R_{1CA}	Tasa producción carbono orgánico microalgas	Х		Х	Х		
R_{1CB}	Tasa producción carbono orgánico aerobiosis	Х		Х	Х	Х	
R_{1CBA}	Tasa producción carbono orgánico anaerobiosis	Х		Х		Х	
RD _{CH4Be}	Tasa transferencia metano bentos	Х					
RV ₁₅ , R _{OPS}	Tasa sedimentación biomasa (COP, NOP)	Х				Х	
RD _{1CH4}	Tasa volatilización metano	Х					
R_{Fo}	Fotosíntesis		Х				
R_{DBe}	Liberación desde el bentos CO ₂		Х				
R_{DA-L}	Transferencia atmósfera – columna agua CO_2		Х				
R_{DL-A}	Transferencia columna agua – atmósfera CO_2		Х				
R_{Alk}	Transformación CO ₂ a carbonatos		Х				
R_A, R_{OPA}, R_{ODA}	Amonificación NOP y NOD			Х	Х	Х	Х
R_{4N}	Nitrificación			Х	Х		
R_{4An}	Annamox			Х			
R_{4V}	Volatilización CH_4			Х			
R_{3D}	Nitrificación				Х		
R _{OPH}	Hidrólisis NOP					Х	Х

Tabla 5. Matriz de adyacencia

Los diagramas conceptuales para los modelos de C y N, se presentan en las figuras 4 y 5.

Análisis y discusión

Tabla 6. Resumen de estadísticas descriptivas de entrada de agua a los sistemas. Muestras puntuales

Variable	Máximo	Mínimo	Promedio	SD	CV	n
pH (un)	7,71	6,16				32
TEMP AGUA (°C)	27,90	23,90	25,78	1,25	0,05	32
OXÍGENO DISUELTO (mgL ⁻¹)	1,14	0,07	0,63	0,32	0,51	32
DQO TOTAL (mgL ⁻¹)	562,01	198,39	322,82	73,17	0,23	32
SST (mgL ⁻¹)	260,00	20,00	77,94	53,85	0,69	32
NITRATOS (NO3 ⁻) (mgL ⁻¹)	3,99	0,01	1,14	1,17	1,03	32
NITROGENO TOTAL KJELDAHL (NTK) (mgL ⁻¹)	55,91	28,22	39,83	6,26	0,16	32
NITROGENO AMONIACAL (NH4+) (mgL ⁻¹)	38,64	19,99	29,81	5,05	0,17	32
CLOROFILA a (μ gL ⁻¹)	697,03	26,72	142,39	129,55	0,91	32
COT (mgL ⁻¹)	81,90	18,39	55,45	13,99	0,25	32

Aponte-Reyes Alexander

Figura 4. Diagrama conceptual modelo carbono

Figura 5. Diagrama conceptual modelo nitrógeno

Las siguientes tablas ilustran las diferencias encontradas entre las unidades piloto. Las pruebas estadísticas fueron adelantadas usando el *software* SPSS® v. 13.0 for Windows®.

Tabla 7. Prueba t -student Salida pilotos. Muestras puntuales

Variable	BM / C	BM / B	C / B
DQO T	0.055	0.076	0.425
SST	0.000	0.002	0.176
NO ₃	0.159	0.356	0.257
NTK	0.055	0.315	0.114
$\mathrm{NH_4^+}$	0.022	0.489	0.033
Clorofila a	0.385	0.266	0.187
COT	0.273	0.199	0.392

Se realizaron pruebas de normalidad para los datos y se definieron las pruebas estadísticas a utilizar. Se emplearon pruebas *t–pareada* para establecer diferencias en términos de gradientes horizontales y verticales (tablas 9,10 y 11).

Tabla 8. Estadísticas descriptivas Salida pilotos. Muestras puntuales

Variable ((mgL ⁻¹))	Estadígrafo	BM	С
	Media	266.53	298.83
DQO Total	SD	98.23	108.96
	n	54.00	53.00
	Media	39.51	61.72
SST	SD	23.46	36.58
	n	57.00	57.00
	Media	2.18	3.81
Nitratos (NO ₃ ⁻)	SD	4.38	10.18
	n	47.00	48.00
NT. / 1	Media	29.79	28.24
Nitrogeno total Kieldahl (NTK)	SD	5.21	4.49
Rjeldall (NTR)	n	50.00	50.00
NT'L /	Media	23.96	22.35
Nitrogeno	SD	4.28	4.86
$anomacar(1)(1)_4)$	n	51.00	51.00
	Media	941.50	910.55
Clorofila a (µg/l)	SD	650.39	665.87
	n	77.00	77.00
	Media	42.06	43.21
COT	SD	9.01	9.62
	n	48.00	48.00

Lo anterior indica que existieron condiciones distintas de transformación de C y N en las unidades teniendo en cuenta las variaciones identificadas entre los puntos cercanos a la salida y las salidas (P21/Sal, P22/Sal). Encontrar gradientes de Clorofila a como indicador de la presencia de microalgas en el caso de la LBM sugiere que la transformación de los compuestos de C y N está ligado a la fotosíntesis; esta aseveración coincide con los gradientes de microalgas identificados en otros ejercicios de modelado (Beran y Kargi, 2005; Sah, 2009). El uso del modelo de RCM quedó verificado para LC y para LBM, en el sentido de suponer disponibilidad de recursos de manera homogénea; sin embargo, los bafles y las mallas de las LBM promueven una mayor compartimentación de los procesos, como lo encontrado en el modelado hidrodinámico de lagunas con bafles que indican tendencia a Flujo Pistón, (Shilton y Harrison, 2003; Sah, 2009; Abbas *et al.*, 2006).

Verificación de los modelos de Carbono y Nitrógeno en LC

Los modelos se consideraron verificados si para alguno de los parámetros la prueba *t–pareada* era positiva (aceptación de hipótesis nula) o si los errores entre las estimaciones y los valores de campo fueron inferiores a 50%. Las etapas de análisis de sensibilidad y calibración del modelo dieron respuesta a que las pruebas *t–pareada* para todas las variables en estudio resultaran en la aceptación de la hipótesis nula. Para la verificación (tabla 11), se definieron las siguientes condiciones de configuración en el *software Stella* (isse-Systems, 2005).

Periodo simulación, t. 25 días. Paso temporal, dt. 1/40. Método de integración de las ecuaciones. método Runge–Kutta (isse-Systems, 2005). Unidad de medida, u. Días.

La tabla 12 presenta los resultados obtenidos en el proceso de verificación. Las pruebas estadísticas indican que los datos se distribuyeron de forma normal y que los valores de COT del modelo (tabla 13) fueron estadísticamente iguales a los medidos en campo. Dado que los promedios de las diferencias entre los valores simulados y los valores medidos para las variables CO_2 , COT y NTK fueron inferiores a 50%, a excepción de las variables NH_4^+ y NO_3^- , se consideró que los modelos quedaron verificados. Las etapas de análisis de sensibilidad y calibración permitirían ajustar los modelos para las variables CO_2 , NO_3^- , NH_4^+ y NTK; solo se presenta el ejercicio para COT y NH₄⁺.

Se hicieron ajustes al modelo de nitrógeno, pues los valores obtenidos para NH_4^- no fueron satisfactorios y contrastaron con cerca de 60% que representa en el NTK según datos de campo. Durante el análisis de sensibilidad se modificó el modelo articulando en el modelo las formas de nitrógeno particulado con las de NH_4^- y NO_3^- como generadores de biomasa (figura 6).

	1.1/1.2	1.1/2.1	1.2/2.1	1.2/2.2	2.1/2.2	2.1/Sal	2.2/Sal	n	G.V.	G.H.
DQO Total	0.120	0.446	0.161	0.357	0.168	0.416	0.113	24	NO	NO
SST Total	0.281	0.396	0.416	0.252	0.232	0.029	0.007	24	NO	NO
NO ₃ ⁻	0.051	0.439	0.423	0.105	0.063	0.293	0.232	18	NO	NO
NTK Total	0.280	0.199	0.404	0.263	0.134	0.190	0.003	20	NO	NO
NH₄ ⁺ Total	0.101	0.022	0.007	0.029	0.111	0.155	0.055	21	SÍ	SÍ
ÔD	0.000	0.000	0.000	0.000	0.000	0.000	0.007	24	SÍ	SÍ
Clorofila a	0.001	0.000	0.000	0.005	0.002	0.285	0.006	24 - 32	SÍ	SÍ
COT	0.114	0.091	0.001	0.094	0.011	0.204	0.187	18	SÍ	NO

Tabla 9. Comparación entre puntos internos y entre salida LBM. Pruebas t-pareada

G.V., Gradiente Vertical; G.H. Gradiente Horizontal

Tabla 10. Comparación entre puntos internos y entre salida LC – Pruebas t- pareada

	1.1/1.2	1.1/2.1	1.2/2.1	1.2/2.2	2.1/2.2	2.1/Sal	2.2/Sal	n	G.V.	G.H.
DQO Total	0.406	0.196	0.211	0.480	0.244	0.121	0.325	23 - 24	NO	NO
SST Total	0.153	0.199	0.374	0.261	0.138	0.084	0.453	21 – 27	NO	NO
NO ₃ -	0.322	0.364	0.262	0.339	0.38	0.236	0.434	18	NO	NO
NTK Total	0.396	0.074	0.215	0.293	0.558	0.005	0.054	20	NO	NO
NH₄ ⁺ Total	0.304	0.049	0.029	0.095	0.010	0.01	0.235	21	SÍ	SÍ
ŌD	0.000	0.036	0.000	0.115	0.000	0.000	0.237	24	SÍ	SÍ
Clorofila a	0.161	0.391	0.077	0.395	0.076	0.077	0.267	24 - 32	NO	NO
COT	0.012	0.07	0.002	0.088	0.052	0.000	0.019	18	SÍ	SÍ

G.V., Gradiente Vertical; G.H. Gradiente Horizontal

Tabla 11. Datos de entrada, verificación de modelos de carbono y nitrógeno

CO ₂ COMO C	COT	NO3 COMO N	NH4 ⁺ COMO N	NOD	NOP	CAUDA	ALES
gr/m ³	gr/m ³	gr/m ³	gr/m ³		gr/m ³	m³/día	m³/día
24.0	51.7	0.08	21.1	4.7	4.3	24.2	17.4
26.4	60.6	0.08	22.8	4.1	3.8	24.6	18.1
25.9	66.3	0.11	24.6	4.7	4.3	23.8	23.7
24.0	60.2	0.08	18.4	3.0	2.7	23.7	26.2
24.7	60.8	0.08	20.6	5.6	5.1	24.4	17.8
22.8	48.5	0.09	18.4	5.9	5.4	21.9	24.8
21.6	43.3	0.07	14.9	4.1	3.8	21.2	23.6
25.9	68.43	0.62	28.10	2.4	2.2	30.2	22.5
21.6	63.14	0.90	28.54	6.2	5.6	23.8	22.5
26.9	63.07	0.75	18.9	4.7	4.3	25.5	21.9
104.7	58.47	3.00	25.7	8.0	7.3	22.7	24.8
96.8	53.80	0.70	26.2	7.7	7.0	27.3	25.8

Tabla 12. Resultados de verificación

n	CO	<u>-</u> C	CC	ЭТ	N –	NO ₃ ⁻	N	ГК	N – 1	NH_4^+
	gr/	/m ³	gr/	m ³	gr	/m ³	gr/	m ³	gr/	m ³
	1	2	1	2	1	2	1	2	1	2
1	16.80	11.8	38.34	45.2	0.10	0.00	30.48	25.0	14.93	0.2
2	18.24	13.8	39.36	52.5	0.09	0.00	31.61	25.7	13.61	0.3
3	19.20	11.0	43.05	46.0	0.14	0.00	23.71	22.2	11.42	0.4
4	19.20	9.0	44.78	38.2	0.12	0.00	21.45	14.7	13.17	0.5
5	18.00	12.5	34.35	52.7	0.18	0.00	31.61	26.1	17.12	0.2
6	19.44	7.9	30.73	29.7	0.14	0.00	22.58	17.9	13.61	0.4
7	18.00	7.2	32.74	26.3	0.08	0.00	24.84	13.7	14.05	0.2
8	23.76	15.7	52.79	63.1	0.24	0.01	37.26	28.0	23.71	0.5
9	22.03	8.8	49.23	44.7	0.44	0.01	39.51	28.2	23.71	0.5
10	23.04	13.3	54.67	50.0	0.16	0.01	52.36	21.5	15.92	0.2
11	24.96	10.8	43.99	37.1	0.26	0.01	49.50	22.6	14.81	0.3
12	24.48	12.2	57.24	40.0	0.12	0.00	47.60	25.8	15.55	0.3
Promedio	20.60	11.16	43.44	43.78	0.17	0.003	34.38	22.60	20.53	0.32
Error	44	%	20	%	> 5	0%	32	%	> 50)%

1: Medido

2: Simulado

Tabla 13.	Prueba <i>t_p</i>	areada.	Medición	– Simulación
Tabla 15.	i iucba i–p	arcaua.	MCCICION	- Simulacion

Varia	ables comparadas*	Sig. (2 colas)
Par 1	CO ₂ - CO ₂ Sim	.000
Par 2	COT - COTSim	.938
Par 4	NTK - NTKSim	.0019
Par 5	$\mathrm{NH_4^+}$ - $\mathrm{NH_4^+}\mathrm{Sim}$.000

* Para la variable $NO_3^{=}$ no se cumplió hipótesis de normalidad, se corrió una prueba Wilcoxon y se logró que los valores medidos y los valores simulados fueran distintos.

Análisis de sensibilidad, AS

Las variables y parámetros en este análisis se presentan en las tablas 14 y 5, respectivamente; para su selección se analizaron los valores medidos en campo y se revisaron los parámetros que fueron objeto de calibración en otros estudios (Beran y Kargi, 2005; Sah, 2009; Senzia *et al.*, 2002).

Tabla 14. Variables para AS

Variable Caudales

Oxígeno mínimo en LC

Temperatura

pН

Radiación solar

Figura 6. Modelo de nitrógeno ajustado

Las formas de biomasa $NH_4^+ y NO_3^- y$ sus tasas de conversión a NOP señaladas con línea punteada fueron las modificaciones planteadas al modelo inicial presentado antes.

Tabla 15. Para	ametros para AS
Parámetro	Definición
K _{COT Ba}	Constante saturación media para la oxidación (COT) por la bacterias. (200, 40 - 50)
u _{max Ba}	Tasa crecimiento máximo para bacterias (3.8, 2 – 10)
u _{max Al}	Tasa crecimiento para microalgas (0.5 – 2, 2)
K _{CO2 Al}	Constante saturación media CO2 tomado por microalgas (1, 0.5 – 0.6)
K _{10X}	Tasa crecimiento $(0.1 - 1.2)$
V _{Al}	Velocidad sedimentación para el alga (0.27 – 0.89)
R _{DBe}	Tasa difusión del bentos $CO_2(0.09)$
R _{1DCH4}	Tasa volatilización CH ₄ desde la columna de agua (162.756)
K _{OPH}	Tasa velocidad para la hidrólisis del NOP (0.001 – 0.01)
K _{opa}	Tasa para la amonificación del NOP (0.01 – 0.03)
r _{4An}	Tasa anammox (0.000802)
Y _{bb}	Relación sustrato / biomasa

. . 4 F D

Los modelos se corrieron empleando los valores promedio de los datos de entrada utilizados durante la etapa de verificación (tabla 16). Los resultados corresponden al promedio del último día de simulación (tabla 17). El oxígeno mínimo afectó los modelos hasta en 10% para COT y NH₄⁺, fue una relación inversa. El pH tuvo una relación inversa con NO₃⁻ con diferencias superiores a 10%. La temperatura afectó de manera inversa todas las especies analizadas. La temperatura afectó NO₃⁻ y NH₄⁻ en más de 10%. La influencia de la radiación solar generó variaciones hasta de 25%. Luego se efectuó el AS para los parámetros de interés y se relacionaron con base en las relaciones halladas entre ellos y las especies, así como lo encontrado en la etapa de verificación, se procedió a realizar la calibración de los modelos de C y N (tabla 18).

Tabla 16. Datos de entrada para AS

	CO ₂ COMO C	COT	NO3 ⁼	NTK	NH_4^+	NOT	NOD	NOP	CAUE	DALES
	gr/m ³	gr/m ³	gr/m ³	gr/m ³	gr/m ³	gr/m ³	gr/m ³	gr/m ³	gr/m ³	gr/m ³
Promedio	24.90	58.19	1.36	37.26	27.51	9.74	5.10	4.64	24.44	22.42

abia 17. Resultatios A3 – valiables					
	CO ₂	COT	NO3 ⁼	NTK	$\mathrm{NH_4^+}$
Caudal salida (m ³ d ⁻¹)					
20.4	13.2	49.28	0.11	29.70	2.19
21.4	12.0	46.28	0.07	28.18	1.10
22.4	11.2	43.89	0.03	27.09	0.62
23.4	10.6	41.57	0.01	26.16	0.36
24.4	10.4	39.22	0.01	25.40	0.24
Oxígeno mínimo en LC (mg L ⁻¹)					
0.05	11.26	47.00	0.03	27.88	2.17
0.638	11.19	44.81	0.03	27.31	1.11
1.23	11.16	43.85	0.03	27.07	0.62
1.81	11.15	43.29	0.03	26.96	0.34
2.40	11.32	42.67	0.03	26.95	0.24
pH máximo (un)					
7.1	11.20	43.27	0.04	27.07	0.53
8.1	11.20	43.28	0.03	27.07	0.53
9.1	11.20	43.28	0.02	27.07	0.53
10.1	11.20	43.28	0.01	27.06	0.53
11.1	11.20	43.28	0.01	27.06	0.53
Temperatura máxima (ºC)					
21	12.00	43.18	0.06	27.15	0.66
22	11.50	43.31	0.03	27.07	0.53
23	11.20	43.28	0.02	27.00	0.43
24	10.90	42.99	0.01	26.94	0.34
25	10.90	42.51	0.01	26.89	0.27
Radiación solar (W m ⁻²)					
368	13.70	39.28	0.40	38.06	19.90
568	12.38	41.37	0.38	33.22	13.15
768	11.16	43.28	0.13	25.64	2.18
968	10.05	45.02	0.03	24.98	1.25
1168	9.06	46.57	0.02	24.94	1.19

Tabla 17. Resultados AS – Variables

$\mathcal{C}\mathcal{O}_{2}$	0.01	1 1 0 2	1 1 1 1 1	
0	D	0	D	 D
11.14	46.51	0.30	41.06	24.01
11.19	48.50	0.31	42.45	25.95
11.23 11.25	49.60 50.27	0.31	43.01 43.31	26.73 27.15
11.25	50.74	0.31	43.50	27.13
0	I	D	I	I
11.25	50.34	0.31	43.45	27.34
11.19	48.35	0.31	42.49	26.01
11.09	44.82	0.30	38.68	20.69
11.05	43.24	0.28	34.11	14.28
I 15 20		0	I 44.12	I 28.27
13.29	39.33 42.89	0.31	44.12	26.27
11.14	46.51	0.30	41.06	24.01
8.84	50.40	0.29	37.50	19.05
6.41	54.49	0.23	29.14	7.23
11.07	43.64	0.30	41.02	23.96
11.11	46.57	0.30	41.04	23.98
11.14	46.51	0.30	41.06	24.01
11.18	40.40	0.30	41.07	24.03 24.06
D	I	0.00	11.07	24.00
10.78	47.13			
10.91	46.89 46.51			
11.14	46.10			
11.64	45.67			
0	I	0	I	I
11.19 11 14	48.29 46 51	0.30	42.68 41.06	24.19 24.01
11.09	44.87	0.30	39.93	23.88
11.05	43.32	0.30	39.10	23.79
11.01	41.88	0.30	38.47	23.72
11 14	46.51			
Ídem	Ídem			
Ídem	Ídem			
Idem Ídem	Idem Ídem			
0	I			
11.25	50.24			
11.19	48.42			
11.14 11.09	40.60 44 78			
11.04	42.96			
0				
10.64 10.96	28.78 40.21			
11.14	46.51			
11.26	50.52			
11.36	53.29	0	Π	Л
		0.30	40.99	23.98
		0.30	41.03	24.00
		0.30	41.06	24.01
		0.30	41.09 41.11	24.02
		0	D	24.04 D
		0.30	40.79	23.59
		0.30	40.97	23.84
		0.30	41.15	24.08 24.31
		0.30	41.47	24.53
		0	0	0
		0.30	40.79	23.59
		0.30	41.15	23.04 24.08
		0.20	/1 21	24.21
	$m{0}$ 11.14 11.19 11.23 11.25 11.26 $m{0}$ 11.25 11.19 11.14 11.09 11.05 $m{I}$ 15.29 13.28 11.14 8.84 6.41 0 11.07 11.11 11.14 11.88 11.21 $m{D}$ 10.78 10.91 11.14 11.39 11.64 $m{0}$ 11.19 11.14 11.09 11.05 11.01 $m{0}$ 11.14 11.09 11.14 11.26 11.36	0 D 11.14 46.51 11.19 48.50 11.25 50.27 11.26 50.74 0 I 11.25 50.34 11.19 48.35 11.14 46.51 11.09 44.82 11.09 44.82 11.09 44.82 11.09 44.82 11.09 44.82 11.09 44.82 11.09 44.82 11.09 44.82 11.07 43.64 11.11 46.51 8.84 50.40 6.41 54.49 0 0 0 0 0 0 11.07 43.64 11.11 46.57 11.12 46.39 D I 10.78 47.13 10.91 46.89 11.14 46.51 11.39 46.10 11.64 45.67 0 I <t< td=""><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td></t<>	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

Tabla 18.	Resultados AS–Parámetros
-----------	--------------------------

0: efecto nulo, D: relación directa, I: relación inversa

El modelo de C resultó sensible a: $K_{COT Ba'} u_{max Ba'} u_{max Al'} K_{1OX'} V_{Al'} R1D_{CH4'} YB_h$. Sin embargo, solo $u_{max Al} y K_{1OX}$ tuvieron influencia sobre el CO₂⁼. El modelo de N resultó sensible a: $K_{COT Ba'} u_{max Ba'} u_{max Al'} V_{Al'} K_{OPH'} K_{OPA'} r_{4An}$. En ambos modelos la radiación solar, afectó sensiblemente todas las especies en estudio.

Calibración

Para el caso del modelo de C se calibró el COT. Se aceptó un error promedio hasta de 10% entre los datos del modelo y los de campo. Se adoptó un valor constante de $CO_2^{=}$ correspondiente al promedio de los datos de campo, dado que la influencia de esta variable sobre el COT no fue significativa, el caudal de salida se adoptó igual al de entrada (tabla 19).

Tabla 19. Calibración de parámetros modelos C y N

Parámetro	Modelo C	Modelo N
$u_{max Ba}$	4	5
u _{max Al}	1.7	2.7
K _{10X}	0.125	
V_{Al}	0.2	0.2
R1D _{CH4}	75	
Y_{Bh}	0.6	
Radiación	668	768
K _{oph}		0.01
K _{opa}		0.01
r _{4An}		0.000102
K _{COT Ba}		40

Los resultados de la calibración se probaron con una prueba *t–pareada*, relacionando los datos de campo y los datos de la simulación (tabla 20).

Tabla 20. Prueba *t – pareada*. Datos campo - Datos simulados. Calibración LC

		Sig. (2colas)
Par 1	NH ₄ Campo - NH ₄ Sim	.386
Par 2	COTCampo - COTSim	.772

Los valores arrojados por los modelos para las especies NH_4^+ y COT no presentaron diferencias con los valores medidos en campo. De acuerdo con los datos de campo solo se encontraron diferencias en el caso de la especie NH_4^+ entre las unidades piloto evaluadas LC y LBM, entre LBM y LC no se evidenciaron diferencias, por lo anterior se procedió a calibrar los modelos de C y N en la LBM. Para el caso del modelo de C, para la LBM se modificaron los valores del modelo topológico, volumen y profundidad; adicionalmente; se detectó que para un valor de μ Máx_{Al} igual a 1.1 d⁻¹, los resultados de las pruebas estadísticas fueron similares (tabla 21). Es importante mencionar este elemento, ya que abre la posibilidad de reducir el tamaño de esta unidad piloto, pues una tasa de menor producción de microalgas corresponde a la menor liberación de materia orgánica del sistema. Para el caso del NH_4^+ se ajustaron los parámetros así: KOpH: 0.005, μ Máx_{Al}: 1.7 y r_{4An}: 0.0. Los errores entre lo medido y lo simulado no superaron 10%.

Tabla 21. Prueba *t–pareada*. Datos campo - Datos simulados. Calibración LBM

		Sig. (2 colas)
Par 1	NH ₄ Campo - NH ₄ Sim	.348
Par 2	COTCampo - COTSim	.784

Al igual que para el caso de la LC los modelos arrojaron resultados satisfactorios para COT y NH₄⁺ de la LBM. El AS demostró que existen variables que le dan características redundantes al modelo, la selección de una u otra variable o parámetro hace que el modelo pueda ser afectado de igual forma por distintas vías; las etapas de sensibilidad y calibración pudieron reducir las suposiciones que otras experiencias de modelado ecológico han tomado (Sah, 2009), haciendo que existan más elementos de juicio para evaluar el modelo propuesto. Es necesario llevar a cabo ajustes y validación del componente de bentos de los modelos para corroborar el papel que juega, pues funciona de manera independiente de la columna de agua (Roy et al., 2008). El desarrollo de todas las etapas de construcción del modelo fueron determinantes para darle validez al ejercicio (Legendre y Legendre, 2004). La sensibilidad del modelo a variables como radiación solar se evidencia por otros autores (Sweeney et al., 2005) y en esta experiencia fue posible validarlo.

Conclusiones

La información que se obtuvo durante la investigación permitió seguir un proceso riguroso de verificación, validación y calibración de dos modelos topológicos de LFS, LC y LBM. Se encontraron diferencias significativas en la transformación de las sustancias de interés SST y NH₄⁺, entre los dos modelos topológicos. Los modelos ecológicos arrojaron resultados satisfactorios en la simulación de las variables de interés y lo medido en campo y contrastado con otras propuestas de modelado de LFS; su implementación sobre una plataforma hidrodinámica permitiría contar con una herramienta de diseño significativa en la perspectiva de proponer innovaciones de la tecnología. El modelado ecológico para LBM promete la posibilidad de reducir el tamaño de LFS promoviendo eliminación de C y N a distintos niveles utilizando facilidades como bafles y mallas. Es conveniente llevar a cabo el modelado bajo propuestas de comportamiento hidráulico distintas al de RCM. El modelado permite explorar las variables y parámetros que dan redundancia a estos sistemas y facilitan de esa manera su resiliencia.

Agradecimientos

El autor agradece al Departamento Administrativo de Ciencia, Tecnología e Innovación, Colciencias, Colombia, a ACUAVALLE S.A. ESP y a la Universidad del Valle por el soporte financiero y logístico de la investigación.

APÉNDICE 1

Expresiones matemáticas de los modelos ecológicos para las formas de Carbono y Nitrógeno

Carbono orgánico

COT = Afluente - efluente - respiración anaeróbica - respiración aeróbica (oxidación de materia orgánica) - consumo carbono asimilación bacterias + fotosíntesis (microalgas) + asimilación aeróbica + asimilación anaeróbica + transferencia de CH₄ desde el bentos - sedimentación de materia orgánica al bentos - transferencia de CH₄ desde la columna

 $\frac{\partial C_{_{Org}}}{dt} = C_{_{Af}} - C_{_{Ef}} - R_{_{1Ran}} - R_{_{1Rae}} - R_{_{1Ras}} + R_{_{1CA}} + R_{_{1CB}} + R_{_{1CBA}} + R_{_{BBE}} + RD_{_{BCH4}} - RV_{_{1S}} - RD_{_{1CH4}} - RV_{_{1S}} - RU_{_{1S}} - RU$

	Definición	Expresión	Expresión matemática extendida	Fuente
$C_{\rm Af}$	Carbono orgánico total afluente	$Q_{Af} * COT_{Af}$	Dato de campo	
$C_{\rm Ef}$	Carbono orgánico total efluente	$Q_{_{E\!f}} * COT_{_{\mathrm{E}\!f}}$	Dato de campo	
R_{1Ran}	Tasa consumo de carbono orgánico por anaerobiosis	$V \times r_{_{1Ran}}$	$r_{1:Res} = COT * X_{co2} - r_{1:Res}$	(Picot et al., 2003)
$R_{_{1Rae}}$	Tasa consumo de carbono orgánico aerobiosis	$V\!\times\!r_{_{1Rae}}$	$r_{1Rae} = \left[K_{1ax} * \theta_{10x}^{(T-20)} * \frac{O_2}{K_{10x} + O_2} \right] * COD$	(Mashauri y Kayombo, 2002)
R _{1Ras}	Tasa consumo carbono orgánico asimilación	$V \times r_1$	$r_{1} = \frac{X_{Bu}}{Y_{Bhu}} * \mu_{maxBu} * f(N_{Bu}) f(T_{Bu}) * f(pH_{Bu})$ $f(N_{Bu}) = \left(\frac{NH4}{K_{4bu} + NH4} * \frac{O_{2}}{k_{O2Bu} + O_{2}} * \frac{COT}{k_{COTBu} + COT}\right) f(T_{Bu})$ $e^{-2.3 \left(\frac{T - ToptBa}{TxBa - ToptBa}\right)^{2}}, f(pH_{Bu}) = \frac{K_{pHBa}}{K_{pH}Ba + 10^{(Opt \ pHBa - pH)} - 1}$	(Mashauri y Kayombo, 2002; Beran y Kargi, 2005)
R _{1CA}	Tasa producción de carbono orgánico en microalgas	$V \times r_{1CA}$	$\begin{aligned} r_{1CA} &= \mu_{BAI} \ \mu_{AI} = X_{AI} \ ^{*} \mu_{maxAL} \ ^{*} f\left(N_{AI}\right)^{*} f\left(I\right)^{*} f(T_{AI})^{*} f(pH_{AI}) \\ f\left(N_{AI}\right) &= \frac{NH4 + NO_{3}}{K_{NAI} + NH4 + NO_{3}} \ ^{*} \frac{CO2}{K_{CO2AI} + CO2}, \ f\left(I\right) &= \frac{I}{I_{\kappa}} \ ^{*} e^{\left(I - \frac{I}{I_{\kappa}}\right)}, \ I &= I_{*} \ ^{*} e^{-(k_{*} \times D)} \\ f(T) &= e^{-2 S \left(\frac{T - TopAI}{T_{XAI} - TopAI}\right)^{2}}, \ f(pH) &= \frac{KpHAI}{KpHAI + 10^{0ppHAI - pH} - 1} \end{aligned}$	(Jorgensen y Bendoricchio, 2001)
R _{1CB}	Tasa producción de carbono orgánico por aerobiosis	$V \times r_{1CB}$	$\begin{split} r_{1CB} &= \mu_{B}, \ \mu_{B} = X_{Ba} \times \mu_{maxBa} \times f\left(NO3_{Ba}\right) \times f(T_{Ba}) \times f\left(O_{Ba}\right) \times f(NH4_{Ba}), \\ f(NO3_{Ba}) &= \left(\frac{NH4}{K_{4ba} + NH4} * \frac{O_{2}}{k_{02Ba} + O_{2}} * \frac{COT}{k_{00TBa} + COT}\right), \ f\left(T_{Ba}\right) &= e^{-23\sqrt{\frac{T - ToptBa}{T_{xBa} - ToptBa}}^{2}, \\ f\left(pH_{Ba}\right) &= \frac{K_{pHBa}}{K_{xa}Ba + 10^{(Opt pHBa - pH)} - 1} \end{split}$	(Beran y Kargi, 2005)
$R_{\scriptscriptstyle BBe}$	Tasa producción de carbono orgánico por anaerobiosis	$V_{b} imes r_{\scriptscriptstyle BBe}$	$V_b = Densidad Bentos * Bentos, r_{BBe}$	Calibración
RD _{CH4Be}	Tasa transferencia de metano desde el bentos	$V_b \times r_{CH4Be}$	V_b =Densidad Bentos * Bentos, r_{CH4Be}	Calibración
RV_{1S}	Tasa sedimentación de biomasa	$V_{1Al} + V_{1Ba}$	$V_{1Al} = \frac{V_{Al}}{L} * X_{Al} = \frac{V_{Al}}{L} * 0.6 * COP, V_{1Ba} = \frac{V_{Ba}}{L} * X_{Ba} = \frac{V_{Ba}}{L} * 0.4 * COP$	(Senzia <i>et al.,</i> 2002)
RD_{1CH4}	Tasa volatilización metano		n n n n Dato de campo	(Lasso, 2010)

Carbono inorgánico

C Inorgánico = afluente – efluente + respiración aeróbica (oxidación de materia orgánica) + respiración anaeróbica– fotosíntesis (asimilación microalgas) + transferencia de CO₂ desde el bentos – transferencia de CO₂ desde la columna + transferencia de CO₂ desde la atmósfera – disolución de CO₂ a carbonatos

$$\frac{\partial C_{Inor}}{\partial t} = CI_{Af} - CI_{Ef} + R_{1Rae} + R_{1Ran} - R_{Fo} + R_{DBe} - R_{DL-A} + R_{DA-L} - R_{Alk}$$

	Definición	Expresión resumida	Expresión matemática extendida	Fuente
CI _{Af}	Carbono inorgánico total afluente	$Q_{Af}^{*}CO_{2Af}$	Dato de campo	
CI_{Ef}	Carbono inorgánico total efluente	$Q_{Af} * CO_{2Ef}$	Dato de campo	
R_{1Ran}	Respiración anaerobia	$V imes \mathbf{r}_{\mathrm{1Ran}}$	$r_{1Ran} = COT * X_{co2} - r_{1Rae}$	(Picot <i>et al.</i> , 2003)
R _{1Rae}	Respiración aerobia	$V imes \mathbf{r}_{1\mathrm{Rae}}$	$r_{1Rae} = \left[K_{1ox} * \Theta_{10x}^{(T-20)} * \frac{O_2}{K_{1O_2} + O_2}\right] * COD$	(Mashauri y Kayombo, 2002)
$R_{\rm FO}$	Fotosíntesis	$V imes \mathbf{r}_{\mathrm{2F}}$	$r_{2F} = \mu_{Al} - X_{Al} * K_{al}$	
$R_{\scriptscriptstyle DBe}$	Liberación desde el bentos CO ₂	$V_b imes \mathbf{r}_{\mathrm{CO2Be}}$	V_b = Densidad Bentos * Bentos, r_{CO2Be} ,	Calibración
R _{DA-L}	Transferencia atmósfera – columna de agua CO ₂	$V \times \mathbf{r}_{DA-L}$	$r_{2DA-L} = \frac{12}{44} \frac{A}{V} K_{1D} (CO_{2s} - CO_{2d}), K_{1D} = \frac{44}{32} K_{o2}$ $K_{O2} = (0.728 W_{A-L}^{0.5} - 0.31 W_{A-L} + 0.0372 W_{A-L}^{2}) (1.0241^{(T-20)})$ $CO_{25} = 0.9664 - 0.0208T$	(Beran y Kargi, 2005)
R_{DL-A}	Transferencia columna de agua – atmósfera CO ₂	$V \times \mathbf{r}_{DL-A}$	Ídem	Ídem
R _{Alk}	Transformación CO ₂ a carbonatos	$V imes \mathbf{r}_{\mathrm{2Alk}}$	$r_{2Alk} = CO_2 * X_{Alk}$	(Picot <i>et al.</i> , 2003)

Nitrógeno amoniacal

$$\begin{split} \mathbf{NH}_{4}^{+} &= \mathbf{Afluente} - \mathbf{efluente} + \mathbf{amonificación NO} - \mathbf{nitrificación} - \mathbf{asimilación biomasa} - \mathbf{annamox} - \mathbf{volatilización} \\ \frac{\partial \mathbf{N}_{4}}{\mathbf{dt}} &= \mathbf{NH}_{4+\mathbf{Af}} - \mathbf{NH}_{4+\mathbf{Ef}} + \mathbf{R}_{\mathbf{A}} - \mathbf{R}_{4\mathbf{C}} - \mathbf{R}_{4\mathbf{N}} - \mathbf{R}_{4\mathbf{V}}) \end{split}$$

	Definición	Expresión resumida	Expresión matemática extendida	Fuente
$NH4_{Af}$	Nitrógeno amoniacal afluente	$Q_{Af} * NH4_{Af}$		
$NH4_{Ef}$	Nitrógeno amoniacal efluente	$Q_{\rm Ef}$ * $NH4_{\rm Ef}$		
R_A	Amonificación nitrógeno orgánico particuladoy disuelto	$V \times (r_{OPA} + r_{ODA}) + V_B \times r_{AB}$	$r_{OPA} = k_{OPA} \theta_{OPA} \theta_{OPA}^{(T-20)} * OP, r_{ODA} = k_{ODA} \theta_{ODA}^{(T-20)} * OD$	(Ji, 2008)
R_{4N}	Nitrificación	$V imes r_{4N}$	$\begin{split} r_{4N} &= \frac{\mu_N}{Y_N} * \frac{O_2}{K_{O_2N} + O_2} * \frac{NH_4}{NH_4 + K_{4N}} * C_{pH} * C_T, \\ C_{pH} &= 1 - 0.833 \big(7.2 - pH\big) \ C_T = e^{(0.098(T-15))}, \ K_{4N} = 10^{(0.051^*T-1.58)} \end{split}$	(Fritz et al., 1979)
R_{4C}	Asimilación amonio para crecimiento de biomasa	$V \times (r_{1CB} + r_{1CAI} + r_{1CBA})$	$\begin{split} r_{4CB} &= PN * r_{opCB} \ PN = NH_4 * \frac{NO_3}{\left(K_{NAI} + NH_4\right) * \left(K_{NAI} + NO_3\right)} + NH_4 \\ & * \frac{K_{NAI}}{\left(NO_3 + NH_4\right) * \left(K_{NAI} + NO_3\right)} r_{opCB} = \mu_{AI} + \mu_{Ba} \end{split}$	(Ji, 2008)
R_{4An}	Annamox	$V \times r_{\rm 4An}$	$0.000202 \ gN/m^3$	(Van Hulle et al., 2010)
R_{4V}	Volatilización	$V imes r_{4V}$	$r_{4V} = K_{4v} * NH_3$	(Zimmo et al., 2004)

Nitrógeno de nitratos

 NO_3^- = Afluente + nitrificación – efluente – asimilación biomasa – denitrificación

 $\frac{\partial \text{NO}_3}{\partial t} = \text{NO3}_{\text{Af}} + \text{R}_{4\text{N}} - \text{NO3}_{\text{Ef}} - \text{R}_{3\text{CB}} - \text{R}_{3\text{D}}$

	Definición	Expresión resumida	Expresión matemática extendida	Fuente
$NO3_{Af}$	Nitrógeno nitratos afluente	$Q_{Af} * NO3_{Af}$		
NO34 _{Ef}	Nitrógeno nitratos efluente	$Q_{Ef} * NO3_{Ef}$		
R_{4N}	Nitrificación	$V \times r_{4N}$		
R_{3D}	Denitrificación	$(V \times r_{\rm 3D})$	$r_{3D} = \theta_{Den}^{(T-20)} * K_{Den} * NO_3$	(Fritz et al., 1979)
R _{3CB}	Asimilación nitrato para crecimiento de biomasa	$(V \times r_{_{3CB}})$	$r_{3CB} = (1 - PN) * (r_{1AI} + r_{1CB})$	(Senzia <i>et al.,</i> 2002)

Nitrógeno orgánico particulado

NOP = Afluente + biomasa - efluente - hidrólisis - amonificación NOP - sedimentación

 $\frac{\partial \text{NOP}}{\partial t} = \text{NOP}_{\text{Af}} + \text{R}_{\text{OPCB}} - \text{NOP}_{\text{Ef}} - \text{R}_{\text{OPH}} - \text{R}_{\text{OPA}} - \text{R}_{\text{OPS}}$

	Definición	Expresión resumida	Expresión matemática extendida	Fuente
NOP _{Af}	Nitrógeno nitratos afluente	$Q_{Af} * NOP_{Af}$		
NOP_{Ef}	Nitrógeno nitratos efluente	$Q_{Ef} * NOP_{Ef}$		
R _{OPCB}	Tasa de producción de biomasa	$V \times (r_{1Al} + r_{1CB} + r_{1CB A})$		
R _{OPH}	Hidrólisis nitrógeno orgánico particulado	$V \times r_{ m OPH}$	$r_{OPH} = K_{OPH} * NOP$	(Qitao y Youngchul, 2009)
R _{OPA}	Amonificación nitrógeno orgánico particulado	$V \times r_{OPA} + T_{AmoBen}$	$r_{OPA} = K_{OPA} \theta_{OPA}^{(T-20)} * NOP$	(Jorgensen y Bendoricchio, 2001)
R _{OPS}	Sedimentación nitrógeno orgánico particulado	$V_{OPS} = V_{OPAL} + V_{OPBac}$	$V_{OPAI} = \frac{V_{AI}}{h} * 0.6 * NOP, V_{OPBac} = \frac{V_{Ba}}{h} * 0.4 * NOP$	(Senzia <i>et al.,</i> 2002)

Nitrógeno orgánico disuelto

NOD= Afluente + hidrólisis - efluente - amonificación NOD

 $\frac{\partial NOD}{\partial t} = NOD_{Af} + R_{OPH} - NOD_{Ef} - R_{ODA}$

	Definición	Expresión resumida	Expresión matemática extendida	Fuente
NOD _{Af}	Nitrógeno orgánico disuelto afluente	$Q_{Af} * NOD_{Af}$		
NOD_{Ef}	Nitrógeno orgánico efluente	$Q_{Ef} * NOD_{Ef}$		
R _{OPH}	Hidrólisis nitrógeno orgánico particulado	$V \times r_{_{OPH}}$		
R _{ODA}	Amonificación nitrógeno orgánico disuelto	$V \times r_{NOD}$	$r_{NOD} = k_{ODA} \theta_{ODA}^{(T-20)} * NOD$	(Jorgensen y Bendoricchio, 2001)

Referencias

- Abbas H., Nasr R., Seif H. Study of Waste Stabilization Pond Geometry for the Wastewater Treatment Efficiency. *Ecological Engineering*, volmen 28, 2006: 25-34.
- Alvarado A., Vedantam S., Goethals P. et al. A Compartmental Model to Describe Hydraulics in a Full-Scale Waste Stabilization Pond. Water Research, volumen 46, 2012: 521-530.
- APHA-AWWA-WEF. Standart Methods for the Examination of Water and Wastewater, 21st ed., 2005.
- Asaeda T., Van T. Modelling the Effects of Macrophytes on Algal Blooming in Eutrophic Shallow Lakes. *Ecological Modelling*, volumen 104, 1997: 264-287.
- Banda C. Modern Design of Waste Stabilization Ponds in Warm Climates, Comparison with Traditional Design Methods, University of Leeds, Leeds, 2003.
- Beran B., Kargi F. A Dynamic Mathematical Model for Wastewater Stabilization Ponds. *Ecological Modelling*, volumen 181, 2005: 39-57.
- Bradley H.C., Nichols M.S. Nitrogen Content Bacterial Cells. Journal of Biological Chemistry, 1918.
- Bravo A.M., Rodriguez P.H. Estudio del comportamiento hidrodinamico en lagunas facultativas secundarias para el tratamiento de aguas residuales domésticas, Unpublished Pregrado, Universidad del Valle, Cali, 2010.
- Camargo M.A. Nitrogen Transformation Pathways and Removal Mechanisms in DomesticWastewater Treatment by Maturation Ponds, Unpublished Ph.D., University of Leeds, Leeds, 2008.
- Chao X., Jia Y., Douglas F. et al. Numerical Modeling of Water Quality and Sediment Related Processes. Ecological Modelling, volumen 201, 2007: 385-397.
- Chen C., Orlob G. *Ecological Simulation of Aquatic Environments*, Patten Systems Analysis in Ecology 3, 1975.
- Fagerbakke K.M., Heldal M., Norland S. Content of Carbon, Nitrogen, Oxygen, Sulfur and Phosphorus in Native Aquatic and Cultured Bacteria. *Aquatic Microbial Ecology*, volumen 10, 1996:15-27.
- Farrás L.E.P. *Teoría de la sedimentación*, Buenos Aires, Universidad Tecnológica Nacional, Facultad Regional Bahía Blanca, 2005.
- Fichmann J.J. Estimación de los coeficientes cinéticos de transformación de nitrógeno en lagunas facultativas secundarias utilizadas en el

tratamiento de aguas residuales municipales, Unpublished MSc, Universidad del Valle, Cali, 2012.

- Fritz J.J., Middleton A.C., Meredith D.D. Dynamic Process Modelling of Wastewater Stabilization Ponds. *Journal WPCF*, volumen 51, 1979: 2724-2743.
- Heaven S.B., C. Zotova E. Light Attenuation Parameters for Waste Stabilization Ponds. *Water Science and Technology*, volumen 41, 2005:143-152.
- Henzen M., Gujer W., Mino T. et al. Activated Sludge Model, Núm. 2, 1995.
- Houweling D., Kharoune L., Escalas A., et al. Dynamic Modelling of Nitrification in an Aerated Facultative Lagoon. Water Research, volumen 42, 2008: 424-432.
- Isse-Systems: Stella Technical Documentation, en: edited by, 2005.
- Jamu D.M., Piedrahita R.H. An Organic Matter and Nitrogen Dynamics Model for the Ecological Análisis of Integrated Aquaculture/Agriculture Systems: I Model Development and Calibration. Environmental Modelling & Software, volumen 17, 2002: 571-582.
- Janex-Habibi M.L., Huyard A., Esperanza M. *et al*. Reduction of Endocrine Disruptor Emissions in the Environment: The Benefit of Wastewater Treatment. *Water Research*, volumen 43, 2009:1565-1576.
- Jenkins B.D., Zehr J.P. *Molecular Approaches to the Nitrogen Cycle*, in Nitrogen in the Marine Environment, 2008.
- Ji Z.G. Hydrodynamics and Water Quality. Modeling Rivers, Lakes, and Estuaries, Wiley-Interscience, New Jersey, John Wiley and Sons, 2008.
- Jorgensen S.E., Bendoricchio G. Fundamentals of Ecological Modelling, 3rd ed., Kidlington, UK, Elsevier, 2001.
- Kayombo S., Mbwette T.S.A., Mayo A.W. *et al*. Modelling Diurnal Variation of Dissolved Oxygen in Waste Stabilization Ponds. *Ecological Modelling*, volumen 127, 2000: 21-31.
- Kayombo S., Mbwette T., Katima J. et al. Effects of Substrate Concentrations on the Growth of Heterotrophic Bacteria and Algae in Secondary Facultative Ponds. Water Research, volumen 37, 2003: 2937-2943.
- Lampert W., Sommer U. Limnoecology. The Ecology the Lakes and Streams, 2nd ed., New York, USA, Oxford University Press, 2007.

- Lasso A.P. Cámaras estáticas para la estimación de emisiones de gases de efecto invernadero en lagunas de estabilización para tratamiento de aguas residuales domésticas, (tesis), Universidad del Valle, Cali, 2010.
- Legendre P., Legendre L. Numerical Ecology: Developments in Environmental Modelling, 20, Amsterdam, The Netherlands, Elsevier, 2004.
- Mara D.D. Domestic Wastewater Treatment in Developing Countries, en: Earthscan/James y James, UK, 2004.
- Mashauri D.A., Kayombo S. Application of the two Coupled Models for Water Quality Management: Facultative Pond Cum Constructed Wetland Models. *Physics and Cchemistry of the Earth*, volumen 27, 2002: 773-781.

Metcalf, Eddy, 1995.

- Mišurcová L., Kráčmar S., Klejdus B. et al. Nitrogen Content, Dietary Fiber and Digestibility in Algal Food Products. Czech J. Food Sci., volumen 28, 2010: 27-35.
- Muñoz R., Guieysse B. Algal–Bacterial Processes for the Treatment of Hazardous Contaminants: A Review, 17, 2006.
- Pepperell C., Foley J., Choong L. *et al.* An Improved Method for Estimating Fugitive Methane Emissions from Wastewater Treatment Lagoons, en: 9th IWA Specialist Group Conference on Waste Stabilisation Ponds, Adelaida, Australia, 2011, pp. 339-336.
- Pereira A., Duarte P., Norro A. Different Modelling Tools of Aquatic Ecosystems: a Proposal for a Unified Approach. *Ecological Informatics*, volumen 1, 2006: 407-421.
- Picot B., Paing J., Sambuco J.P., *et al.* Biogas Production, Sludge Accumulation and Mass Balance of Carbon in Anaerobic Ponds. *Water Science & Technology*, volumen 48, 2003: 243-250.
- Qitao Y.C., Youngchul H.K. Modeling Nitrogen Removal in Water Hyacinth Ponds Receiving Effluent from Waste Stabilization Ponds. *Ecological Engineering*, volumen 35, 2009: 75-84.
- Reed S., Crites R., Middlebrooks E. Natural Systems for Waste Management And Treatment, McGraw-Hill Professional, 1998.
- Rees W.E. Human Nature, Eco-Footprints and Environmental Injustice. *Local Environment*, volumen 13, 2008: 685-701.
- Roy M., Mandal S., Ray S. Detrital Ontogenic Model Including Decomposer Diversity. *Ecological Modelling*, volumen 215, 2008: 200-206.
- Sah L. 3D Modelling of Secondary Facultative Ponds. (tesis), UNESCO-IHE, Delft, 2009.
- Senzia M., Mayo A., Mbwette T. *et al*. Modelling Nitrogen Transformation and Removal in Primary Facultative Ponds. *Ecological Engineering*, volumen 154, 2002.
- Shen L.D., He Z.F., Zhu Q. et al. Microbiology, Ecology, and Application of the Nitrite-Dependent Anaerobic Methane

Oxidation Process. *Frontiers in Microbiology*, volumen 3, 2012: 1-5.

- Shilton A., Harrison J. Guidelines for the Hydraulic Design of Waste Stabilisation Ponds. Palmerston North, New Zealand, Institute of Technology and Engineering, 2003.
- Sweeney D.G., Cromar N.J., Fallowfield H.J. et al. Profiling and Modelling of Thermal Changes in a Large Waste Stabilisation Pond. Water Science & Technology, volumen 51, 2005:163-172.
- Tchobanoglous G., Burton F.L., Metcalf et al. Wastewater Engineering: Treatment and Reuse, McGraw-Hill, 2004.
- Tortora G., Funke B., Case C. Introducción a la microbiología, editorial médica panamericana, 2007.
- Van Hulle S.W., H. Meesschaert B., Vanrolleghema P. et al. Engineering Aspects and Practical Application of Autotrophic Nitrogen Removal from Nitrogen Rich Streams. Chemical Engineering Journal, volumen 162, 2010: 1-20.
- Von Sperling M. Design of Facultative Ponds Based on Uncertainly Analysis. Water Science Technology, volumen 33, 1996: 41-47.
- Wallace S., Austin D. Emerging models for Nitrogen Removal in Treatment Wetlands. *Journal of Environmental Health*, volumen 71, 2008: 10-16.
- Zima P., Makinia J., Swinarski M. et al. Combining Computational Fluid Dynamics with a Biokinetic Model for Predicting Ammonia and Phosphate Behavior in Aeration Tanks. Water Environmental Research, volumen 81, 2009: 2353-2362.
- Zimmo O., Steen N., Gijzen H. Comparison of Ammonia Volatilisation Rates in Algae and Duckweed-Based Waste Stabilisation Ponds Treating Domestic Wastewater. *Water Research*, volumen 37, 2003: 4587-4594.
- Zimmo O.R., Van Der Steen N.P., Gijzen H.B. Nitrogen Mass Balance Across Pilot-Scale Algae and Duckweed-Based Wastewater Stabilisation Ponds. *Water Research*, volumen 38, 2004: 913-920.

Este artículo se cita:

Citación estilo Chicago

Aponte-Reyes, Alexander. Desarrollo de modelos ecológicos para carbono y nitrogeno en lagunas facultativas secundarias. *Ingeniería Investigación y Tecnología*, XV, 03 (2014): 437-456.

Citación estilo ISO 690

Aponte-Reyes A. Desarrollo de modelos ecológicos para carbono y nitrogeno en lagunas facultativas secundarias. *Ingeniería Investigación y Tecnología*, volumen XV (número 3), julio-septiembre 2014: 437-456.

Semblanza del autor

Alexander Aponte-Reyes. Es ingeniero sanitario, con maestría en ingeniería sanitaria y ambiental, actualmente es candidato a doctor en la misma área. Sus áreas de trabajo son el abastecimiento de agua y el control de la contaminación ambiental a través de un enfoque ecológico, incluyendo proyectos de investigación y desarrollo sobre tecnologías naturales, el empoderamiento de la comunidad y el comportamiento higiénico. Su perfil profesional incluye proyectos de investigación y la experiencia en las actividades relacionadas con la promoción y ejecución de proyectos de desarrollo, orientados hacia las zonas rurales, municipios pequeños y medianos.