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Abstract

Electromagnetic transient calculation of overhead transmission lines is 
strongly influenced by the natural resistivity of the ground. This varies from 
1-10K (Ω·m) depending on several media factors and on the physical com-
position of the ground. The accuracy on the calculation of a system transient 
response depends in part in the ground return model, which should consi-
der the line geometry, the electrical resistivity and the frequency dependen-
ce of the power source. Up to date, there are only a few reports on the 
specialized literature about analyzing the effects produced by the presence 
of an imperfectly conducting ground of transmission lines in a transient sta-
te. A broad range analysis of three of the most often used ground-return 
models for calculating electromagnetic transients of overhead transmission 
lines is performed in this paper. The behavior of modal propagation in 
ground is analyzed here into effects of first and second order. Finally, a 
numerical tool based on relative error images is proposed in this paper as an 
aid for the analyst engineer to estimate the incurred error by using approxi-
mate ground-return models when calculating transients of overhead trans-
mission lines.
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Introduction

The analysis of wave propagation effects on overhead 
transmission systems due to the presence of an imper-
fectly conducting ground, is critically important to as-
sess the frequency dependent losses and phase delay of 
ground modes. By its own structure, the electric line 
parameters Z (series-impedance) and Y (shunt-ad-
mittance) characterize the ground-return effects on a 
first and second order, respectively.

First order effects arise when the influence of the 
ground prevails over the geometric influence of the 
line. This is the case when the characteristic impedance 
of the system, YZZC = , plays an important role in 
the simulation; e. g., on transient short-circuit currents 
calculation (Marti and Uribe, 2002). In this case, the fre-
quency dependence of ZC is entirely due to the ground-
return path (Wedepohl, 1965).

The second order effects arise in the calculation of 
the modal voltage propagation function of the line e–g⋅l 
where YZ ⋅=g  and l is the line length. In terms of 
propagation functions, when forming the product Z×Y 
the geometric effects tend to cancel out each other, ex-
cept for the different influence of the ground (Marti and 
Uribe, 2002).

The problem here is that, up-to-date, there is no ge-
neral criterion to evaluate the ground conduction 
effects on transmission line propagation. Another pro-
blem is the evaluation of how the ground-return con-
duction effects impact on transmission line systems 
when switching transients occur.

Thus, it is the main idea of this paper to perform a 
new algorithmic methodology to analyze the first and 
second order ground-return conduction effects on vol-
tage and current transient waveforms of overhead 
transmission systems.

First, a broad range solution of the Carson’s integral 
(Carson, 1926) is developed and implemented in this pa-
per based on a previously established algorithmic tech-
nique published in (Uribe et al., 2004; Ramirez and Uribe, 
2007). In addition, normalized dimensionless parameter 
comparisons with the Carson’s series and complex-
depth closed-form approximations (Gari, 1976; Kos-
tenko, 1955; Deri et al., 1981; Alvarado and Betancourt, 
1983) are obtained here through the relative error crite-
rion. This methodology yields a new technique propo-
sed here as an aid to estimate ground-return modeling 
error on transients calculation through error images.

Finally, the impact of ground-return modeling errors 
on transients calculation is identified here with an appli-
cation example accurately solved via the Numerical La-
place Transform (Uribe et al., 2002).

Algorithmic solution of carson’s integral

Figure 1 shows two overhead infinite thin perfect con-
ductors over an imperfectly conducting ground 
0 < s2 < . The series-impedances contribution (in Ω∙m) 
is given by (Marti and Uribe, 2002)

0 ,
2 M Con E

j
Z P Z Z

wm
= + +

p
			   (1)

Resumen

El cálculo de transitorios electromagnéticos en líneas aéreas de transmisión está 
fuertemente influenciado por la resistividad natural eléctrica del suelo. Esta puede 
variar de 1-10K (Ω·m) dependiendo de diversos factores en el medio y de la com-
posición física del suelo. La precisión en el cálculo de la respuesta transitoria en un 
sistema depende en parte del modelo de retorno por tierra, el cual debe considerar 
la geometría de la línea, la resistividad eléctrica y la dependencia frecuencial de la 
fuente de alimentación. Hasta la fecha hay pocos reportes en la literatura especia- 
lizada acerca del análisis de los efectos producidos por la presencia de un suelo 
conductor imperfecto de líneas de transmisión en estado transitorio. En este artí-
culo se realiza un análisis de amplio rango a tres de los modelos de tierra actual-
mente más utilizados para cálculo de transitorios electromagnéticos en líneas 
aéreas de transmisión. El comportamiento de la propagación modal en tierra se 
analiza aquí en dos tipos de efectos de retorno por tierra. Finalmente, se propone 
en este artículo una herramienta numérica basada en imágenes de error relativo 
como una ayuda para que el ingeniero analista pueda estimar el error incurrido 
por utilizar modelos aproximados de tierra para el cálculo de transitorios en líneas 
aéreas de transmisión.

Descriptores: 

•	 efectos de retorno por tierra
•	 impedancias de tierra
•	 efectos de baja frecuencia
•	 transitorios electromagnéticos
•	 imágenes de error
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where PM is the dimension-less Maxwell’s potential-
coefficient, ZCon is the internal conductor impedance 
and ZE introduces the ground-return impedance contri-
bution. Assuming a uniform line, homogeneous soil 
and neglecting inner displacement currents, the self or 
mutual ground-return impedances are given by the 
Carson’s integral (in MKS system) (Carson, 1926)

			   (2)

where

(3)2

0

( , ) ( ) exp( ) cos( ) .J p q j p q  d
+∞

= a + − a ⋅ − ⋅ a ⋅ ⋅ a a∫
	

A characterization of the Carson´s dimensionless para-
meters p and q is useful to analyze the regular oscilla-
ting pattern of the integrand where a is the dummy 
variable. Carson introduced in (Carson, 1926) the fo-
llowing physical variables of the medium properties 
according to Figure 1

				    (4a)

and

				    (4b)

Expression (4a) and (4b) are normalized by the magni-
tude of the Skin Effect (Marti and Uribe, 2002; Wedepo-
hl, 1965; Carson, 1926; Uribe et al., 2004; Ramírez and 

Uribe, 2007; Gari, 1976; Kostenko, 1955; Deri et al., 1981; 
Alvarado and Betancourt, 1983; Uribe et al., 2002; Pies-
sens et al., 1983; Using MATLAB, 2011; Dommel, 1986). 
Now, Carson’s dimensionless parameter p and q for the 
self-impedance case are given by

2   and 0,p h  q′= = 			   (5a,b)

and for mutual impedances:

  and  .i jp h  h q x′ ′ ′= + = 			   (6a,b)

The integrand in (3) contains three factors. The first two 
are of the damping type while the third is regular osci-
llatory. The pattern of these factors suggests a new stra-
tegy for its numerical efficient solution. Consider the 
solution of the first factor radical function in (3) as (Uri-
be et al., 2004; Ramirez and Uribe, 2007)

2 G ,j F( ) j ( )a + = a + ⋅ a 		  (7a)

where

4( ) 1 1 1
2

F a
a = + + a 		  (7b)

4( ) 1 1 1.
2

G a
a = + a − 		 (7c)

Functions F(a) and G(a) provide the additional dam-
ping components to the integrand. Substituting (7b) 
and (7c) in (3) and decomposing into real and imagi-
nary components, (3) becomes

0

( , ) ( ) - exp(- ) cos( ) ...J p q F p q  d
+∞

=  a a ⋅ a ⋅ a a ∫

           
0

( ) exp(- ) cos( )j G p q  d
+∞

+  a  ⋅ a ⋅ a a ∫ 		  (8)

Functions F(a) – a and G(a) in the first complex factor 
of (8) are monotonically decreasing. Figure 2 illustrates 
the behavior of these functions that for a > 1 tends as-
ymptotically to “1/(8a3)” and “1/(2a)”, respectively 
(Uribe et al., 2004; Ramirez and Uribe, 2007).

The second complex factor in (8) only depends on 
the normalized parameter p. This factor is a pure dam-
ping exponential function. The truncation criterion de-
veloped in (Uribe et al., 2004; Ramirez and Uribe, 2007) 
with a relative error control can be extracted from its 
properties as
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Figure 1. Two overhead conductors and their ground-images
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		  (9)

and the truncating criterion by approximating “J(p,q)” 
for the new truncated range would be (Uribe et al., 2004; 
Ramírez and Uribe, 2007)

amax = l / p		  (10a)

and

ln( )rrorl = − e 			   (10b)

The error level can be controlled refining l. A value of  
l = 10 has proved satisfactory enough for many practi-
cal application cases.

The third factor in (8) provides regular oscillations 
to the integrand which increases equal times as the ar-
gument q×a exceeds the value of p / 2. This argument is 
related to the horizontal distance between conductors 
(x in Figure1) and to the magnitude of Skin Effect Layer 
Thickness (Carson, 1926; Uribe et al., 2004; Ramírez and 
Uribe, 2007). Within the range [0, amax] this factor will 
not oscillate if

max / (2 ).qa ≤ p 		  (11a)

If condition (11a) is not satisfied, the integrand oscilla-
tions would produce magnified round-off errors when 
integrating with generic quadrature routines (Piessens 
et al., 1983). To avoid this problem, it is necessary to 
detect the zero crossings with:

max
1int , 1, 2, 3, ...,
2

qk k     K a 
= + = 

p 
	 (11b)

where k is the corresponding oscillation sequence, “int” 
is the complete integer value and Kmax indicates the 
maximum number of oscillations that are given by

max
1int .
2

qK
p

  l = + ⋅  p   
		  (11c)

Notice in (11c) that (q/p) = (x’/h’). Obviously, from (11b) 
for each value of k the integrand zero crossing would be

( )
max

2 1
, 1, 2, 3, ...,

2k

k
k     K

q
p −

a = = 	 (11d)

A new reliable and efficient broad range algorithmic 
evaluation of the Carson’s integral has been obtained 
by using the truncating criterion in (10) with the zero 
crossing identification in (11) for 10 × 532 samples insi 

 
 
 
 
 
 
 
 
 
 
 
 
de Table 1 ranges (Uribe et al., 2004; Ramirez and Uribe, 
2007).

The physical variable ranges in Table 1 have been 
used to calculate the normalized Carson parameters 
shown in Table 2 to perform the algorithmic calculation 
of (8).

Figures 3a and 3b depict the broad solution set ob-
tained with the algorithmic technique proposed in this 
paper.

The figures were generated solving Carson’s inte-
gral 10 × 532 times which takes about more than one 
second on a 3.4GHz, 8GB RAM computer, running 
MATLAB V. 7.12 (Using MATLAB®, 2001).

Table 1. Application ranges for physical variables
0.1   ≤  hi,j  ≤  2×102 [m]
10–1  ≤  x    ≤  103 [m]
2p    ≤  w    ≤  2p×106 [rad/s]
10–4  ≤  σ    ≤  1 S/m

Table 2. Ranges for Normalized Dimensionless Vector 
Parameters

10–4  ≤  p  ≤  104

10–7  ≤  q  ≤  107

Implementation of Carson’s series and complex 
depth formulae

In the synthesis of frequency dependent electromagne-
tic transients the need of a higher sampling refinement 
interval is often required (Wedepohl, 1965; Uribe et al., 
2002). There are cases when it is necessary to handle 
very small or high ground conductivity values; e.g., 
from rocky to moist ground (Dommel, 1986). Also there 
are other cases when the distance between conductors 
is wider (qC > p/4); e.g., interference on communication 
lines due to a power line fault (Dommel, 1986). In all 
these cases, it is highly convenient to have an accurate 
methodology for calculating the mutual ground-return 
impedances between both energy systems.

máxexp ( ) ,rror pe = − ⋅ a

Figure 2. Carson’s integrand first factor analysis
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A numerical version of the Carson’s series has been also 
implemented here to test and verify the efficiency and 
accuracy of the algorithmic solution proposed in this 
paper (Carson, 1926; Dommel, 1986). However, in the 
treated application case, the series solution presented 
some serious disadvantages; the number of terms is 
practically unpredictable, numerical discontinuities 
emerges when switching from infinite to finite conver-
gence ranges and also, it turns time consuming. For the-
se reasons, the original series solution in Carson (1926) 
cannot be used to generate the error images proposed 
in the following paper section.

Thus, using the original Carson’s parameters the fo-
llowing normalized distance according to Figure 1 is 
introduced as (Carson, 1926) 

2 2D p q= + 				    (12a)

with a Carson´s angle between vectors of

( )1tan /C q p−q = 			  (12b)

Regarding the component partition (8), one can infer 
that

( ), ,J p q P j Q= + ⋅ 			   (12c)

and according to this paper nomenclature

0

( ) exp( ) cos( )P F p q  d
+∞

=  a − a ⋅ − a ⋅ a a ∫ 	 (12d)

0

( ) exp( ) cos( )Q G p q  d
+∞

=  a  ⋅ − a ⋅ a a ∫ 	 (12e)

The following Carson parameter introduces the norma-
lized distance between a real conductor in the air and 
the image of the other conductor inside the ground. 
This parameter also was used as a boundary quantity to 

adjust the switching process of the series when chan-
ging from a finite range a ≤ 5 into an infinite one a > 5 
(Carson, 1926; Dommel, 1986):

44 5 10 2a D−= p × ⋅ ⋅ ws p 		  (12f)

As an application example, consider an aerial transmis-
sion line with conductor height h = 20 m. The distance 
between conductors is 0 ≤ x ≤ 1 Km. The ground con-
ductivity is 0.01  S/m and the frequency range is 
1 ≤ w/2p ≤ 106 Hz.

To test accuracy and efficiency of the here develo-
ped algorithmic technique, an equivalent solution of 
J(p,q) in (12c) has been calculated using the Carson se-
ries (Carson, 1926). The real and imaginary components 
are shown in Figure 4. At first sight the differences ap-
pear to be indistinguishable, but in Figure 5, two types 
of numeric discontinuities arise when calculating the 
relative error (Ramirez and Uribe, 2007).

The first one is due to the series adjustment, while 
the second (in the form of peak discontinuities) is due 
to the switching series process, when changing from 
an infinite range into the new truncated range (Dom-
mel, 1986).

For this example layout, Figure 6 shows the magni-
tude and angle relationship between the vector compo-
nents P and Q from (12d, e) calculated with the Carson 
series varying parameter D. The here obtained curves 
match with the obtained ones in Carson’s paper confir-
ming the accuracy of the method (Carson, 1926). 

In addition, the obtained algorithmic solution set is 
used to confirm the accuracy ranges of the complex-
depth based formulas of Gary (1976), Kostenko (1955), 
Deri et al. (1981) and Alvarado et al. (1983).

Basically, classical images complex depth formulas 
are based in the following expression

2

2 2

2 1 ,
1

e− β⋅dβ
= −

β + β + d 			   (13a)

Figure 3. Carson’s integral algorithmic solution for ranges shown in Table 2, a) curves of ℜe{J(p,q)}, b) curves of ℑm{J(p,q)}
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where 0β = a ⋅ wm s . After some algebraic manipula-
tions (13a) is transformed into (Ramirez and Uribe, 
2007)

( )2j G 1 .
2

j j
n

jf F( ) ( ) e a= a − a + ⋅ a ≈ −
a

	 (13b)

The behavior of F(a) and G(a) is shown in Figure 2, as 
well as for fn. On introducing the right side of (13b) into 
(8) we have

2 -

0

-

0

( , ) cos( ) ...
2

cos( )
2

j j p

p

jJ p q e e q  d

jj e q  d

+∞
a a

+∞
a

 − 
= ⋅ ⋅ a a a 

 
+ ⋅ ⋅ a a a 

∫

∫
	 (13c)

An analytical solution can be obtained directly from 
(13c) (Gary, 1976; Kostenko, 1955; Deri et al., 1981; Alva-
rado et al., 1983). Now, the complex depth formulae are 
transformed into a normalized dimensionless parame-
ter expression of p and q. Thus, according to ZE in (2) the 
self-impedance Js and the mutual-impedance Jm for the 

Gary, Kostenko, Deri et. al., and Alvarado et. al. formu-
lae becomes

Gary ln 1
2s

j jjJ
p

 ⋅
 = −
 
 

			   (14a)

     

( )3

1 1ln 1 .
2 12 1

s Alv

j jjJ
p j p

 
   = − − ⋅   + ⋅ 

 

	 (14b)

	 (14c)

And for the mutual impedance case

(14d)

Figure 4. Application example layout, 
a) series real component, b) algorithm 
real component, c) series imaginary 
component, d) algorithm imaginary 
component

Figure 5. Numerical discontinuities 
presented between algorithmic solution 
set and the Carson series	
when calculating the relative error, 	
a) real component, b) imaginary 
component

2 2

2 2

( 2 )
ln

2m Gary

q p j jjJ
p q

 + − ⋅ =  
+  

( ) ( )2 2 2

2 2

1 4 1
ln

2s Kost

p q p j p jjJ
p q

 + − + ⋅ 
=  + 

 
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1 1 1ln
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2

m Alv

j j q
p pjJ  

q p j qjp p

    ⋅    − +        = − …
      +   ⋅ + ⋅ +            

	

(14e)

( ) 2
2

2

2

2

4 1 1
ln

2
1

m Kost

pp j j p
qjJ

pp j
q

  ⋅ + + ⋅ ⋅ +    =  
 ⋅ + 
  (14f)

The approximation (14) for self or mutual ZE in (2), 
substitutes J(p,q) in (8). In essence Gary, Kostenko, Deri 
et al. formulas have presented almost identical behavior 
between each other when plotting their error images. In 
consequence, only the images formed with the Gary 
and Alvarado et al. expressions are the only ones stu-
died in this paper. Thus, the broad range result set is 
used now to generate the curves shown in Figure 7 for 
the P and Q components of (12c) in a parametric ver-
sion of (14d) and (14e).

Error images estimation of ground models

The ground resistivity magnitude is introduced here 
into the electromagnetic transient calculation via the ZE 
model. Thus, an important problem arises when esti-
mating the ground modeling error. A new technique to 
estimate ground modeling errors on electromagnetic 
transient calculation is proposed in this paper section 
through error images. First, the broad range algorith-
mic solution (8), the approximated formulas by Gary in 

(14d) and the one by Alvarado et al. in (14e) are compa-
red here through the relative error criterion as (Uribe et 
al., 2004; Ramirez and Uribe, 2007)

( ),1 100rel E Approx EZ Ze = − × 	 (15a)

where ZE is the algorithmic solution ground impedance 
and ZE, Approx is the approximate images ground impe-
dance formula. Figure 8 shows the generated error ima-
ges (15a) using 102 samples inside data in Table 2. Each 
image shows five error regions. The error levels lie in 
the range of 1%≤ erel ≤ 10%.

Thus, a practical ground-modeling error estimation 
algorithm through images is proposed as follows:

First step. Using physical variables (hi, hj, x, r) and relati-
ve medium properties (mr, s, er), evaluate the parame-
ter relation q/p for each voltage coupling loop inside 
the system. The larger number of circuit loops, the 
more error line paths images are generated.

Second step. Calculate the NLT parameters (Uribe et 
al., 2002). Set the observation time Tobs and the num-
ber of samples Nsamp, then the other parameters can 
be calculated as

	 obs sampt T ND = 		  (15b)

	 tW = p D 			   (15c)

	 samp2 NDw = W 		  (15d)

	 ( ) obsln .c T= − n 		  (15e)

	 where w is the angular frequency, Dt is the sampled 
time increment, W is the truncating frequency, Dw is 
the sampled frequency increment, c is the complex 
frequency damping coefficient and n is the discreti-
zation relative error level. Further, evaluate the 
complex frequency variable

	 ,s c j= + ⋅ w 			   (15f)

Figure 6. Series solution varying physical 
parameters p and q in Table 1, 	
a) magnitude of the real component /P/, 	
b) magnitude of the imaginary 
component |Q|

3

1

1 1
2

p j qj
p



+ 

    ⋅ − ⋅ +   
     
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Third step. Find the maxima and minima boundary va-
lues of the transient Skin Effect variable using (15f) 
for calculating δ

	
0max/ minmax/ min

1 ,Tran sd = ⋅m s 		  (15g)

	 then, evaluate the normalized function pmax/min as

	
max/ min

max/ min
2 Tranp h= ⋅ d 		  (15h)

Fourth step. Plot the previously generated error image 
for the ground-model and trace the error line paths 
according q/p sorting min and max frequency sam-
ples.

Fifth step. Check the sampled error points region in the 
images. Their influence area would be their corres-
ponding error levels.

Ground-return conduction effects in transients

In this research paper, the ground-return effects are 
analyzed according to a first and second order kind. On 
one hand, first order effects are given when the influen-
ce of the ground prevails over the geometric influence 
of the line. This is the case when ZC has an important 
role in the numerical simulation. In the frequency limits 
ZC becomes

0

0 0 0

1
2 2

M M
C Con E

P P
Z Z Z

jw→

m
≅ ⋅ + ⋅ ⋅ +

e p pew
	 (16a)

0

0 2
M

C

P
Z

w→∞

m
≅ ⋅

e p
			   (16b)

Figure 7. J(p,q) complex depth based 
formulae varying physical parameters in 
Table 1, a) Gary P component (1976), 	
b) Alvarado et al., P component (1983), 	
c) Gary Q component (1976), 	
d) Alvarado et al. Q component (1983)

Figure 8. Error images to estimate 
numerical accuracy of complex depth 
formulas (Gary, 1976; Alvarado and 
Betancourt, 1983), a) P component of 
Jm(p, q)Gary, b) P component of Jm(p, q)
Alva, c) Q component of Jm(p.q)Gary, d) Q 
component of Jm(p, q)Alva



465

Uribe-Campos Felipe Alejandro

Ingeniería Investigación y Tecnología, volumen XV (número 3), julio-septiembre 2014: 457-468 ISSN 1405-7743 FI-UNAM

The frequency dependency of (16a) is entirely due to 
the ground-return contribution, since ZCon → 0.

On the other hand, the second order effects arise 
when forming the product Z⋅Y, because the geometric 
effects tend to cancel out each other, except for the di-
fferent influence of the ground (Marti, 2002).

This is the case of the voltage propagation function 
e–g×l. Thus, g tends asymptotically to

0
0

w→
g ≅ 				    (16c)

0 0j
w→∞

g ≅ w m e ⋅ U 			   (16d)

where U is the unit matrix (Wedepohl, 1965).
Consider a typical overhead transmission system as 

the one depicted in Figure 9. This is a homogeneous 
three-phase power line with a ground wire and a single 
communications line sharing a common right of way. 
The system length is 10  Km. The corresponding con-
ductors radii are ri = 3.20 cm, rj = 2.5 cm and rk = 1.5 cm. 
The soil conductivity is s = 0.005 S/m.

The frequency dependent behavior of modal propa-
gation functions ZC and e–g∙l for each numbered conduc-
tor in Figure 9 is illustrated in Figure 10. The impact of 
Gary and Alvarado ground-return models (Gary, 1976; 
Kostenko, 1955; Deri et al., 1981; Alvarado et al., 1983) in 
the transient step response is illustrated here the by 
means of a two circuit test using the NLT for the energy 
system shown in Figure 9 (Uribe et al., 2002).

The first test is the calculation of the transient step 
voltage-response at the remote end with an open circuit 
condition of the system using the here treated ground-
return models for comparison.

Figures 11a and 11b show the receiving end voltage 
response at the energized conductor (No. 1 in Figure 9) 
and the induced voltage response at the communica-
tions line (No. 5 in Figure 9), respectively.

Figure 11c and 11d show the corresponding relative 
errors (15a) calculated for the obtained voltages, for the 
Gary and Alvarado-Betancourt models with respect to 
the Carson solution (Gary, 1976; Kostenko, 1955; Deri et 
al., 1981; Alvarado et al., 1983). In this case the Gary mo-
del is amazingly accurate.

The second test consists in the calculation of the 
transient step current response at the remote end with a 
short circuit condition of the system calculated with the 
here treated approximated ground-return models.

Figure 12a show the current transient step response 
calculated at the energized conductor (No. 1), while Fi-

gure 12b depicts the corresponding circulating current 
at the victim circuit of communications line (No. 5).

Figures 12c and 12d, show the calculated relative 
errors (15a) for the circulating currents at the energized 
conductor and at the induced communications line, res-
pectively. One more time the accuracy of the Gary mo-
del can be noticed from these figures.

As ground-return models are strong frequency de-
pendent as can be seen in Figure 10b, a better general 
tool for analyzing the effects of a ground-return model 
in electromagnetic transients calculation is the images 
methodology proposed in Figure 13.

Consider the error images in Figure 8 calculated in 
magnitude quantities for the Deri et al.(1981) and Alva-
rado et al. (1983) models. Two sets of error line paths 
have been traced in each of both figures. The horizontal 
error line path, represents a particular coupling circuit 
loop for any set of two specific conductors present in 
the transmission system shown in Figure 9.

As an application example, consider the two sets of 
traced error line paths shown in Figure 13. The first set 
p1-p2 and p5-p6 corresponds to the loop formed between 
the energized power conductor and the victim commu-
nications line.

Figure 9. Power transmission system with a ground wire in the 
proximity of a victim communications line

The second set of error line paths p3-p4 and p7-p8 corres-
pond to the hypothetical case of calculating four times 
the magnitude q/p. An error less than 1% corresponds 
to the image points p5 and p7, which have an implicit 
frequency of 220 Hz. The error of p6 lies well within 1% 
and 2%. Points p1, p2 and p3 have an error between 4% 
and 6%. The image points p4 and p8 lie into region five, 
having an error greater than 10%. In this application 
case, any other image point has an implicit truncating 
frequency of 102 KHz.
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Figure 11. Voltage transient 
responses at the remote and ground 
modeling errors, a) voltage response 
at energized conductor, b) induced 
over-voltage at the remote end of 
communications line, c) relative 
error at energized conductor, 
d) relative error at induced 
communications line

Figure 10. Frequency behavior of 
propagation modal functions, a) 
characteristic impedance ZC and 
b) propagation function e–g⋅l

Figure 12. Current transient step 
response and relative ground 
modeling errors, a) response at the 
energized conductor, b) circulating 
current at the communications line, 
c) relative error at the energized 
conductor, d) relative error at the 
communications line
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Conclusions

An accurate numerical algorithm for solving the 
Carson’s integral, their classical series expansion and 
complex-depth approximate formulae, has been imple-
mented in this paper for a broad range of applications, 
emphasizing the case qC > p/2.

In the specific application example presented in this 
paper the transient-step responses calculated at the re-
mote end of open-circuit voltages and short-circuit cir-
culating currents, the ground-return model of Gary 
presented a more accurate result than the Alvarado et 
al. model. The main differences are probably due to the 
validity ranges of the implicit frequency in the transient 
calculation and, of the separation distance between 
conductors of the latter model.

A new technique for estimating ground-return mo-
deling errors on electromagnetic transients calculation 
is proposed in this paper through error images.

The frequency dependence of the ground has been 
separated here into effects of first and second order. 
These are mainly due to the modal propagation 
functions in the ground g(w) and to the characteristic 
impedance function ZC(w).

A methodology to analyze the impact of ground 
modeling errors on low frequency transients has been 
proposed here through error images, tracing simple 
error line paths on each image for a certain ground mo-
del having a universal applicability.

Nomenclature

w	 =   	angular frequency
m0	 =   	magnetic permeability of vacuum and air
e0	 =  	 dielectric permittivity of vacuum and air
s	 =   	soil conductivity
d	 =   	complex depth of the Skin Effect layer thick- 

	 ness 
01 jd = wm s

h	 =   	conductor height (hi or hj)
x	 =   	horizontal distance between conductors
d	 =   	distance between conductors
D	 =  	 distance between one real conductor and the  

      	image of the other

qC	 =   	Carson’s angle
h´ 	 =   	conductor height “h” normalized by the mag- 

		 nitude of the Skin Effect layer “/d/”,
x´	 = 	 horizontal distance between conductors “x” 

     	normalized by the magnitude of the Skin Effect  
     	layer “/d/”

p	 =   	sum of normalized conductor heights hi´+hj´ or    
     	h´ for the self impedance case

q	 =   	normalized horizontal distance between con	
		 ductors x´ or equal to zero for the self   
		 impedance case
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