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Abstract

There are a lot of applications of the Thomson ring: levitation of supercon-
ductor materials, power interrupters (used as actuator) and elimination of 
electric arcs. Therefore, it is important the numerical modeling of Thomson 
ring. The aim of this work is to model the stationary levitation of the Thom-
son ring. This Thomson ring consists of a copper coil with ferromagnetic 
core and an aluminum ring threaded in the core. The coil is fed by a cosine 
voltage to ensure that the aluminum ring is in a stationary levitated position. 
In this situation, the state of the electromagnetic field is stable and can be 
used the phasor equations of the electromagnetic field. These equations are 
discretized using the Galerkin method in the Lagrange base space (finite ele-
ment method, FEM). These equations are solved using the COMSOL software. 
A methodology is also described (which uses the Newton-Raphson method) 
that obtains the separation between coil and aluminum ring. The numerical 
solutions of this separation are compared with experimental data. The con-
clusion is that the magnetic coupling of the aluminum ring on the coil can be 
neglected if the source voltage is high.
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Introduction

In the electric industry is important to have electric sys-
tems of immediate breaking and safe. Some of these 
electric systems consist of power switchers, which use 
the Thomson ring (Alferov et al., 2008; Meyer and Rufer, 
2006). Other systems utilize the Thomson ring as actua-
tor to eliminate the electric arcs (Li et al., 2010). Other 
applications of the Thomson ring consist in the levita-
tion of superconductor materials (Patitsas, 2011). There-
fore, it is important the numerical modeling of the 
Thomson ring. The Thomson ring consists of a coil with 
ferromagnetic core on which an aluminum ring levi-
tates. The coil is fed by a cosine voltage.

The modeling of the electromagnetic field of any elec-
tric device (as the Thomson ring) requires of the knowl-
edge of the current density. However, this knowledge 
cannot be known a priori. It is known a priori the power 
source voltage instead of current density. In the litera-
ture, several methods (Belforte et al., 1985; Bissal et al., 
2010; Konrad, 1982; Lombard and Meunier, 1992, 1993; 
Meunier et al., 1988; Piriou and Razek, 1989) have been 
developed to calculate the electromagnetic field if the 
power source voltage is supplied: integro-differential 
method (Konrad, 1982); direct methods (Belforte et al., 
1985; Meunier et al., 1988; Piriou and Razek, 1989); and 
methods that use electric networks equations (Barry and 
Casey, 1999; Bissal et al., 2010; Lombard and Meunier, 
1992, 1993). In this work is supposed that the power 
source voltage is known and the current density is calcu-
lated using electric networks equations.

Several studies have analyzed the mathematical and 
physics models of the Thomson ring. In the work of Bis-
sal et al. (2010) is modeled the dynamic behavior of the 
Thomson ring, which consist of a coil without ferro-
magnetic core. In this work, the coil is fed by a capaci-
tor. Barry and Casey (1999) obtained analytical solutions 
of the force acting on the aluminum ring in a stationary 
levitated position. In the work of Li et al. (2010) is ana-
lyzed the dynamic characteristics of the Thomson ring 
used as actuator to eliminate the electric arcs. In the 
work of Patitsas (2011) is developed a new modality of 
Thomson ring. This modality consisted in keeping the 
stable levitation of a superconductor sphere immerse in 
a magnetic field supplied by a coil.

The aim of this work is to analyze the Thomson ring 
when the aluminum ring is a stationary levitated posi-
tion. This situation is reached if the coil is fed by a cosine 
voltage. In the stationary levitation, the state of the elec-
tromagnetic field is stable and can be used the phasor 
equations of the electromagnetic field. These equations 
are discretized using the Galerkin method. These dis-
cretized equations are solved using the COMSOL soft-
ware (COMSOL, 2008). It is described the methodology 
(which uses the Newton-Raphson method) that obtains 
the separation between the coil and the aluminum ring 
in stationary levitation (mechanical equilibrium). Also, 
the separation obtained with this methodology is com-
pared with the experimental data for different values of 
the power source voltage. It is concluded that the mag-
netic coupling of the aluminum ring on the coil can be 
neglected if the source voltage is high.

Resumen

Existen una gran cantidad de aplicaciones del anillo de Thomson: levitación de ma-
teriales superconductores, interruptores de potencia (usados como actuadores) y 
eliminación de arcos eléctricos. Por lo tanto, es importante la modelación del anillo 
de Thomson. El objetivo de este trabajo es modelar la levitación estacionaria del 
anillo de Thomson. Este anillo de Thomson consiste de una bobina de cobre con nú-
cleo ferromagnético y un anillo de aluminio enhebrado en el núcleo. La bobina se 
alimenta por un voltaje cosenoidal para asegura el anillo de aluminio en una posición 
de levitación estacionaria. En esta situación, el campo electromagnético se puede 
considerar estable y se pueden emplear las ecuaciones fasoriales del campo electro-
magnético. Estas ecuaciones se discretizan usando el método de Galerkin en el espa-
cio base de Lagrange (método de elementos finitos, FEM). Estas ecuaciones 
discretizadas se resuelven usando el código COMSOL. Además, se describe una 
metodología con la cual se puede obtener la separación entre la bobina y el anillo de 
aluminio. Esta metodología usa el método de Newton-Rapson. Las soluciones nu-
méricas de esta separación se comparan con datos experimentales. Se concluye que el 
acoplamiento magnético entre el anillo de aluminio sobre la bobina se puede despre-
ciar si el voltaje de alimentación es alto.

Descriptores: 

•	 anillo de Thomson
•	 levitación
•	 estacionaria
•	 modelación
•	 MEF
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Experimental setup	

The Thomson ring used in this work consists 
of a coil with ferromagnetic core; where an 
aluminum ring is threaded on the core, as 
shown in Figure 1. The ferromagnetic core 
consists in a solid cylinder that is collocated 
vertically, as is illustrated in Figure 1. In this 
figure, ZS represents the distance between 
the coil and the aluminum ring.

The coil is made of copper wire and consists of 1140 
turns (see, Table 1). This coil is fed by a cosine voltage 
given by

( )cos0V V tω= 		  (1)

where, V0 is the amplitude; ω = 2πf is the angular fre-
quency (f being the natural frequency), as shown in 
Table 1. The electric and magnetic characteristics of the 
materials used in the Thomson ring are indicated in 
Table 1. The ferromagnetic core is iron whose relativity 
permeability is taken from the data base of COMSOL 
(2008).

In order to take advantage of axial symmetry, the 
Thomson ring is represented by means of axisymmetric 
geometry as depicted in Figure 2. In this Figure, a cylin-
der coordinate system is chosen so that the r-axis repre-
sents the horizontal axis, the z-axis represents the vertical 
axis. The dimensions of the aluminum ring are: interior 
radius of 0.031 m, exterior radius of 0.0365 m and height 

of 0.018 m as illustrated in Figure 2. In this figure, ZS is 
the separation distance between aluminum ring and 
copper coil.

The copper coil forms a toroid with dimensions: in-
terior radius of 0.025 m, exterior radius of 0.039 m, and 
height of 0.075 m, as shown in Figure 2. The distance 
between base of ferromagnetic core and base of copper 
coil is 0.025 m. The copper coil is threaded on a ferro-
magnetic cylinder (ferromagnetic core). The ferromag-
netic core has a radius of 0.0235 m and height of 0.41 m, 
as depicted in Figure 2.

Solution methodology	

Electromagnetic field equations

In this section the equations that describe the electro-
magnetic field in the Thomson ring are presented. The 
magnetic field B A=∇×

 

 (


A  being the magnetic vector 
potential) satisfies the Ampere-Maxwell equation

( ) DA J
t

ν ∂
∇× ∇× = +

∂



 

		   (2)

where, v is the reluctivity, J


 is the current density; and 
D Eε=
 

 (ε  being the permittivity) is the electric density. 
The second term in the Eq. (2) represents the displace-
ment current, which can be dropped if the frequency of 
the power source is small; in this case, the Eq. (2) is given 
by

( )ν∇× ∇× =
 

A J 		  (3)

The current density J


 in this equation depends of the 
type of region (cupper coil, aluminum ring, air or fer-
romagnetic core) and is given by:

1) Air and ferromagnetic core region

The current density in air and ferromagnetic core re-
gions is 0J =

 

; therefore

( ) 0A∇× ∇× =
 

.			 

Table 1. Parameters used in the Thomson ring

Aluminum ring Copper coil Ferromagnetic core
Relativity permittivity (εr) 1 1 1
Relativity permeability (μr) 1 1 4000
Electric conductivity (σ) 3.77107 S/m 5.99107 S/m 1.12107 S/m
Coil turn (N) 1140 turns
Natural frequency (f) 60 Hz

aluminum ring 

cupper coil power source 

ferromagnetic 
core

z

r

sz

Figure 1. Thomson ring setup
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2) Aluminum ring region

The current density J Erσ=
 

 (being σr the electric con-
ductivity of the aluminum ring) is found using the Far-
aday law

BE
t

∂
∇× = −

∂





	 (5)

Solving this equation for the vector potential A


AE
t

∂
= −

∂





	 (6)

It is observed that this equation does not contain the 
term of the scalar electric potential gradient (∆V) due to 
that there is not a power source in the aluminum re-
gion. Substituting Eq. (6) in J Erσ=

 

AJ
trσ

∂
= −

∂





	  (7)

Substituting Eq. (6) in Eq. (3)

( ) 0AA
trν σ ∂

∇× ∇× + =
∂



 

		  (8)

3) Copper coil region

The region of the copper coil is modeled as a region that 
contains N turns where each turn carries the same cur-

rent iC. In this case, the current density J is uniform with 
value

Ni
J

S
c

c
= 			  (9)

where, SC is the cross section area of the copper coil re-
gion. Substituting Eq. (9) in Eq. (3) 

( ) ˆNi
A I

S
c

c
ν∇× ∇× =



		   (10)

where, Î  is a unit vector pointed in direction of the cur-
rent density.

Electrical network equations		

If the current is known, the solution of the Eq. (10) can 
be realized. However, this current cannot be known a 
priori. We know a priori the voltage V between the ter-
minals of the coil. An additional equation is required. 
This equation is obtained using the Kirchhoff voltage 
law

dV Ri
dtc
F

= + 	 (11)

where, R is the resistance, F is the magnetic flux that 
cross all the turns of the coil. The resistance is given by

σ
=

NLR
Sc c

	            (12)

Figure 2.  a) axisymmetric representation of 
the Thomson ring, b) experimental setup
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where, σC is the electric conductivity of the coil and L is 
the length of all the turns of the coil. The magnetic flux 
is given by

c

B dS

S

F = ⋅∫
 	 (13)

where, the surface SC comprises all the surfaces of the 
turns of the coil. Using the fact B A= ∇×

 

 and the Stokes 
theorem in Eq. (13) we obtain

A dr

C

F = ⋅∫


 	  (14)

where, the trajectory C comprises all the turns of the 
coil. Substituting Eq. (14) in Eq. (11) 

dV Ri A dr
dtc

C
= + ⋅∫



 		   (15)

Phasor equations

The current in the copper coil is cosine to ensure that 
the aluminum ring stays in a stationary levitated posi-
tion. In this situation, the state of the electromagnetic 
field is stable and the equations of the electromagnetic 
field can be given in phasor form. In phasor notation, 
the operator d/dt becomes iω in Eqs. (4), (8) and (10):

air and ferromagnetic core regions

( ) 0∇× ∇× =
 

A 		  (16)

aluminum ring region

( ) 0irν σ ω∇× ∇× + =
  

A A 		  (17)

copper coil region

( ) ˆN
I

S
c

b
ν∇× ∇× =

 i
A 			     (18)

where, 


A  and iC are phasors of the potential 


A  and the 
current iC, respectively.

The phasor equation of the electrical network equation 
Eq. (15) is

R i drc
C

ω= + ⋅∫


V i A 	  (19)

where, V is the phasor of the voltage V.

Boundary conditions 	

It is observed that Eq. (3) is a second order partial dif-
ferential equation for the magnetic vector potential 



A . 
The solution of this partial differential equation re-
quires boundary conditions for the vector potential 



A . 
The boundary of the solution domain is chosen so that 
the vector potential can be dropped (magnetic insula-
tion). The magnetic insulation condition is expressed as

0 on A = Γ
 

		   (20)

where, Γ is the boundary of solution domain. In phasor 
notation, the condition of magnetic insulation is

0 on A = Γ
 

		   (21)

Discretization

Using the Galerkin method (Hoole, 1989; Lombard and 
Meunier, 1992, 1993), Eqs. (16)-(19) can be discretized:

air and ferromagnetic core regions

' 0S    =       A 	  (22)

aluminum ring region

' ' 0S i Gω    +     =       A A 		   (23)

copper coil region

'S Cc    =       A i 		  (24)

electrical network equation

'Ri i B T
cω ω= +       V i A 	  (25)

With

'A rA= 		  (26)
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where N represents the number of nodes. The matrices 
and vectors are defined as

( ) 2

d
S N N dS

r i jij S

πν β β  × = ∇ ∇  ∫ 		  (27)

( ) 2

d
G N N dS

r
r

i jij S

πσ
β β  × =  ∫ 		   (28)

( ) 21
d

NC N dS
S ii c S

π β  × = −  ∫ 	 (29)

( )1B N drii
C

β  × =  ∫ 		   (30)

where, the vector potential A is expanded in the base 
function βi: A = ΣβjAj. The surface Sd is the surface of 
the solution domain.

Mechanical equilibrium	

The voltage is a cosine in order to maintain the alumi-
num ring in a stationary levitated position. This station-
ary levitation is obtained when the mechanical equilibrium 
is reached; this is, the Lorentz force averaged in a cycle, 
fzav equals the gravity force fg. Using the complex nota-
tion, the Lorentz force fzav (Barry and Casey, 1999; Hayt 
and Buck, 2006) is given by

1
2

r

f dVzav
V

= ×∫
 

J B* 			    (31)

with

( )complex=
 

B B* 	 (32)

where, 


B  and 


J  are the phasors of magnetic density 
B


 and current density J


, respectively. The factor 1/2 in 
Eq. (31)  is due to that the Lorentz force period is half of 

the magnetic field period (Barry and Casey, 1999). Fig-
ure 3 shows the flowchart of the obtaining of the aver-
age Lorentz force. The steps of this methodology are:

1) 	Calculate the phasor potential using the phasor 
equations (Eqs. 22-25) along with boundary condi-
tion of magnetic insulation ˆ 0n⋅ =



A  on Γ (see Eq. 20).
2) Determine the phasor magnetic density = ∇×



B A  
and phasor current density riωσ=



J A  (see Eq. 6) in 
the aluminum ring region.

3) Calculate the average Lorentz force 1
2

r

f dVzav
V

= ×∫
 

J B*  
(see Eq. 31).

The space distribution of the electromagnetic field de-
pends of the separation sz between the aluminum ring 
and the copper coil. Therefore, the average Lorentz 
force  fzav is a function of the separation (fz = fz(sz)). In 
order to reach the stationary levitation of the aluminum 
ring, the average Lorentz force fzav equals to the gravity 
force fg.

'f z fzav s g
  = 
 

 		  (33)

where, zs’ is the separation in stationary levitation and 
represents the root of Eq. (33). It is observed that Eq. 
(33) is a transcendental equation. The root of this tran-
scendental equation can be found using a variant of 
the Newton-Raphson method: secant method (Arfken 
and Weber, 2005). The convergence of Newton-Raph-
son is guaranteed due to that the average Lorentz 

Figure 3.  Flowchart of the obtaining of fzav

Calculate  


B A  y ri


J A  in 

aluminum ring 

Calculate
1
2
r

f dVzav
V

 
 

J B*

Calculate


A  using Eqs. (22-25) 

Boundary condition ˆ 0n 


A  on 
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force fzav(zs) is a function decreasing of the separation zs 
(see Figure 5). The secant method is defined by the re-
currence relation

( ) ( ) ( )( )1
1

1

z z
z z f z f

f z f z
n n

n n zav n g
zav n zav n

−
= − −

−
+

+
+

	

(34)

Experimental validation

In this section we compared the numerical and experi-
mental results for the separation in stationary levitation 
zs’ as a function of the voltage amplitude in rms,  

2
0V

Vrms = . The experimental setup was described in  

the second section. The numerical results are obtained 
using the proposed methodology in the section above. 
Figure 4 shows the separation zs’ as function of the volt-
age amplitude Vrms for both experimental and numerical 
results. The discrepancy between the theoretical and 
experimental data is at most 12%. This difference can be 
due to the fact that the numerical modeling does not 
take into account the temperature effect in the electric 
conductivity σ.

Results and discussion

In this section some results obtained by the proposed 
modeling are studied. The average Lorentz force is ex-
amined as a function of the separation distance; the ra-
tio between coil current and ring current, and the 
spatial distribution of the magnetic field.

Figure 5 depicts the average Lorentz force fzav as 
function of the separation zs for a representative voltage 
amplitude Vrms = 120 V. It is observed that the Lorentz 
force is a decreasing function of the distance zs. This 
guarantees the convergence of the Newton-Raphson  
 
method due to that the derivative 

df
dz
zav

s
 is negative.

Figure 6 shows the spatial distribution of the radial 
component Br0 of the magnetic density amplitude, for a 
representative voltage amplitude Vrms = 120 V in state of 
stationary levitation (zs’ = 0.057 m). It also presents the 
positions of the ferromagnetic core, copper coil and alu-
minum ring. This Figure 6 shows that the radial compo-
nent is higher in regions close to the core, coil and ring 
edges. In contrast, the radial component Br0 presents 
small values in positions far away from above edges.

The total current in the ring ir is realized by means of  

i J dSr
ring

= ⋅∫


; while the total current in the region of 

 the coil is Nic. In Figure 7 is shown the ratio 
i

Ni
r
c

 as  

function of voltage amplitude Vrms in stationary levita-
tion. It is observed that the highest value (ir / NiC = 0.47) 
occurs in Vrms = 43.4 V corresponding to a separation  
zs’= 0. The ratio ir / NiC decreases if the voltage ampli-
tude Vrms increases. Also, in a first order approach, the 
magnetic field originated by any system is proportional 
to the current of this system. Therefore, the magnetic 
coupling of the ring on the coil can be neglected for 
high values of voltage amplitude.

Figure 7.  i
Ni

r
c

 as function of Vrms 

Conclusions			   título
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Figure 4.  zs’ vs V0 for theoretical and experimental data

Figure 5.  Average Lorentz force fzav as a function of the 	
distance zs 
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Conclusions

The aim of this work was to present a numerical mod-
eling based upon the use of the Galerkin method to 
simulate the electromagnetic field of the Thomson 
ring. Also, this modeling is capable of simulating nu-
merically the separation between aluminum ring and 
copper coil in situation of stationary levitation (the av-
erage Lorentz force equals gravity force). This calcula-
tion of the separation uses the Newton-Raphson 
method.

The proposed modeling was validated comparing 
theoretical and experimental results. The compared re-

sults were the separation between the aluminum ring 
and the copper coil (in stationary levitation) for differ-
ent voltage amplitudes.

It is concluded that the magnetic coupling of the 
aluminum ring on the coil can be neglected if the source 
voltage is high. Therefore, the coil current can be mod-
eled without taking into account the coupling ring-coil. 
This means that the coil current is found using a RL 
(resistance-inductance) circuit; where, the resistance 
and inductance are parameter of the coil.
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