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ABSTRACT
Computation and statistics have given a great contribution to chemical research and education be-
cause both sciences make possible to deal with many different types of information about atoms and 
molecules. This paper describes the use of computation and statistics to study 20 different groups in 
monosubstituted benzene. Firstly, compounds had their geometries optimized and molecular de-
scriptors were computed. Then, two exploratory methods, principal component analysis and hierar-
chical cluster analysis, were employed to classify these groups according to their activating and deac-
tivating effects on rate of electrophilic aromatic substitution reactions. The pedagogical objective is 
to show an interdisciplinary application in organic chemistry and motivate students and teachers to 
apply this strategy in the classroom.

KEYWORDS: graduate education, interdisciplinary, computer-based learning, statistics, chemo-
metrics

Resumen (Un estudio interdisciplinario sobre el benceno monosustituido empleando 
cómputo, estadística y química)
El cómputo y la estadística han dado una gran contribución a la investigación y la educación quími-
cas, porque ambas han hecho posible el manejo de diversos tipos de información sobre átomos y 
moléculas. Este trabajo describe el empleo del cómputo y la estadística para estudiar 20 grupos dife-
rentes de bencenos monosustituidos. Primeramente, se optimizó la geometría de los compuestos y 
se calcularon sus descriptores moleculares. Luego se emplearon dos métodos exploratorios —análi-
sis de la componente principal y análisis jerárquico de cúmulos— para clasificar esos grupos de 
acuerdo con su efecto activante o desactivante sobre la reacción de sustitución electrofílica aromáti-
ca. El objetivo pedagógico es mostrar un aplicación interdisciplinaria de la química orgánica y moti-
var a estudiantes y profesores para emplear esta estrategia en el aula.
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Introduction
Advances in computation gave new horizons to chemistry 
research and education. The increase in general availability 
of computing power represents the fastest and longest sus-
tained technological advance in human history (Bedolla, 
Bermúdez, 2009). Molecular modeling as pedagogical tool 
in chemistry courses has increased in the last years because 

of the importance of computation to help teachers develop 
cognitive abilities with their students (Boiani et al., 2004).

Nowadays it is much easier to deal with spreadsheets, 
graphs and, mainly, calculations (Hibbert, 2006) than in some 
decades ago when it would be difficult or even impossible to 
perform some tasks due to limitations related to data pro-
cessing. As a consequence our ability to statistically analyze 
data has grown significantly with the maturing of computer 
hardware and software (Schlotter, 2013). This “revolution” 
in chemistry allowed the computation and interpretation of 
a great number of atomic/molecular properties, helping 
chemists investigate simple and complex systems (Ferreira 
et al., 2009).

In fact improvements in computation helped the devel-
opment of a very important area to chemists: chemometrics, 
the art of extracting chemically relevant information from 
data produced in chemical experiments (Wold, 1995). 
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Chemometric methods enjoy an ever-increasing popularity 
and there is a need to introduce more graduate students to 
these research tools (Öberg, 2006). Certainly, when you have 
a large set of data, it will not be an easy task to analyze so 
many variables and extract useful information from them. 
Besides it seems that this process will require infinite pa-
tience (Ferreira et al., 2012). Then, in these situations, che-
mometrics is the best option. 

However authors agree with Hibbert (2006) when he 
states that teaching the statistics of data analysis to under-
graduate students can be considered quite straightforward. 
What students struggle with, in his opinion, is simply why 
they need to do data analysis, and what information is really 
been gleaned. But we must keep in mind that statistics 
has been a valuable tool to chemists, helping them interpret 
information, create mathematical models and make compari-
sons. So this paper describes the application of computation 
and statistics to study monosubstituted benzene according 
to activating and deactivating effects on rate of electrophilic 
aromatic substitution reactions. The pedagogical objective 
is to show an interdisciplinary application in organic chem-
istry and motivate students and teachers to apply this strat-
egy in the classroom. Authors believe that it is important to 
learn statistics with applications involving chemical prob-
lems. This activity is intended to advanced college students 
and the subjects and topics to be studied are listed in Table 1.

Methodology
The strategy adopted in this work can be easily reproduced 
with any software that draws molecular structures, performs 
geometry optimization, computes molecular descriptors 
and runs basic multivariate statistics methods. The tech-
niques discussed here can be found included in a number of 
free software packages whose references will be given as 
they are cited. Detailed explanations involving mathematics 
are avoided, but references bring a list of specialized litera-
ture. Figure 1 summarizes the logical sequence adopted to 
development this activity.

Compounds
Groups attached to monosubstituted benzene can either 

speed up or slow down the rate of electrophilic aromatic sub-
stitution reactions as compared to benzene. Activating 
groups speed up the rate because they donate electrons to 
the benzene ring whereas deactivating groups withdraw 
electrons away from the benzene ring, this way they decrease 
the velocity of these reactions. Activation of the ring tends to 
be associated with ortho- and para-directing groups, whereas 
deactivation is usually associated with meta-directing 
groups. Halo-substituents are the odd ones out because they 
are deactivating but ortho- and para-directing groups (Solo-
mons and Fryhle, 2008; Morrison and Boyd, 2005). In this 
study 20 monosubstituted benzene presenting either acti-
vating or deactivating effects (Table 2) are investigated. 

Geometry optimization
The starting point in the molecular modeling step was the 
construction of the structures of the molecules with the aid 
of Avogadro software, an advanced molecule editor and 
visualizer. Then compounds had their geometry optimized, 
that is, conformations with the lowest energies were achieved 
since they are assumed to represent as similar as possible the 
real molecules. In this step it was necessary to use a quan-
tum chemistry method and a basis set. It was used MP2 
(Moller-Plesset 2nd-order) correlated ab initio method based 
on perturbation theory and 6-31+G* basis set, incorporated 
in Gamess software. 6-31G is a very popular basis set avail-
able of H through Ar that gives good results for organic mol-
ecules. The single plus sign indicates that diffuse functions 
have been added to atoms other than hydrogen while the 
single asterisk means that a set of d primitives has been add-
ed to atoms other than hydrogen as polarization functions 
(Young, 2001; Jensen, 2007).

Descriptors
After geometry optimization, molecular properties (descrip-
tors) were computed to represent electronic features of the 
compounds. They were dipole moments, the highest occu-
pied molecular orbital (HOMO) energies, the lowest occu-
pied molecular orbital (LUMO) energies and atomic charges 
on carbon atoms of the benzene ring, the atomic charge on 
the atom attached directly to the benzene ring and the sum 

Figure 1. Representation of the logical sequence used to classify mono-
substituted benzene.

Table 1. Subjects and topics involved in this study

Subject Topics

Organic chemistry Monosubstituted benzene
Activating/deactivating effects
Molecular properties

Computational chemistry Basis sets
Quantum mechanical methods
Molecular drawing
Geometry optimization

Statistics Visualization of Data
Basic Statistics
Principal Component Analysis (PCA)
Hierarchical Cluster Analysis (HCA)
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of every carbon charge in the benzene ring. This task was 
performed employing Molekel software, a molecular visual-
ization program. Then a matrix with 20 lines (molecules) 
and 12 columns (molecular properties) was built to be used 
in the chemometric study.

Chemometrics
The theory of chemometrics comprises a variety of statistical 
techniques used to extract important information about a 
chemical system under investigation. Two of these methods 
are highlighted in this work: Principal Component Analysis 
(PCA) and Hierarchical Cluster Analysis (HCA). They are pat-
tern recognition methods that can help find key features 
present in various chemical structures. One of the first and 
most published successes in chemometrics is pattern recog-
nition. Much chemistry involves using data to determine 
patterns (Brereton, 2003). These two methods of explorato-
ry analysis of data set generate graphics that are powerful 

visualization tools. Exploratory data analysis such as PCA is 
used primarily to find general relationships between data 
whereas HCA is more suitable for classifying samples into 
categories (Brereton, 2003). Authors employed Past soft-
ware (Hammer, Harper and Ryan, 2001), which has com-
mon statistical, plotting and modeling functions available.

Preprocessing
Initially the data matrix with molecular descriptors was auto 
scaled as preprocessing before running PCA and HCA. Auto 
scaling a value is just subtracting mean followed by division 
by standard deviation. The results are scaled variables with 
zero mean and unit variance. This is required in order that 
the values have the same importance regarding the scale. 
Pearson correlation coefficient (r) was calculated to evaluate 
the linear correlation involving the descriptors. Then if any 
two descriptors had a high absolute value for r (in this work, 
r > 0.9), one of the two was excluded from the matrix at ran-
dom, since theoretically they describe the same property to 
be modeled (Ferreira, 2002), in this case the activating/deac-
tivating effects on monosubstituted benzene.

PCA
This multivariate statistical technique is probably the most 
widespread used in chemometrics, and because of the im-
portance of multivariate measurements in chemistry, it is 
regarded by many as the technique that most significantly 
changed the chemist’s view of data analysis (Brereton, 
2007). The objective of PCA is to find principal components 
PC1, PC2, … and PCn that are linear combinations of the n 
original variables describing each sample. The principal 
components are at right-angles to each other (orthogonal) 
and are selected so that the first principal component (PC1) 
explains most of the variation in the data set, the second 
(PC2) explains the next largest variation and so on. 

PCA generates two main plots that graph PC1 versus 
PC2. Other components can also be plotted but in general 
the first two components are sufficient. The scores plot gives 
general relationships about samples (similarities and differ-
ences). This plot may also reveal clusters, outliers and 
trends. When examining the scores plot, the user must look 
for categories distinguished in PC1 or PC2. The other plot 
displays the loadings of each descriptor, which inform how 
the descriptors are connected to each other and the descrip-
tors that are better (more important) to describe the variance 
in the original data. 

In the process of variable selection employing PCA sev-
eral attempts are made to try to find any pattern for the com-
pounds. At each attempt, one or more variables (molecular 
descriptors) are removed from the original matrix, PCA is 
run and the scores and loadings plots are analyzed. The final 
purpose is that only a combination of some of the descriptors 
is selected. Finding a combination of descriptors that reveals 
interesting patterns (like distinct classes for activating and 
deactivating groups) is quite an art, but chemical intuition 
may help a lot. 

Table 2. Values for molecular descriptors for monosubstituted benzene.

X Dipole 
moment¹

HOMO 
Energy²

Sum of 
Charge³

Activating

CH3 0.3353 –0.3242 –1.1279

CH2CH3 0.3875 –0.3223 –0.5414

CH(CH3)2 0.2236 –0.3234 –0.4047

NH2 1.6536 –0.2940 –1.5054

NHCH3 1.5184 –0.2868 –1.2688

N(CH3)2 1.0816 –0.2915 –0.9778

OH 1.5648 –0.3164 –1.1520

OCH3 1.4707 –0.3120 –0.8577

Deactivating

F 2.1045 –0.3429 –0.7656

Cl 2.1810 –0.3395 –0.5570

CF3 3.2805 –0.3589 –0.0664

CCl3 2.9247 –0.3527 –0.6892

CHO 3.8720 –0.3528 –0.1841

COOH 5.6548 –0.3622 0.1270

COCH3 3.5768 –0.3474 –0.1755

COOCH3 5.4426 –0.3565 0.2333

COCl 4.5331 –0.3636 0.0762

CN 4.9779 –0.3591 –0.1996

NO2 5.5078 –0.3719 0.1583

SO3H 5.0869 –0.3680 0.4573
1 Debye.
2 Atomic unit.
3 Sum of every carbon charge in the benzene ring in atomic unit.
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HCA
After PCA is applied to explore data, HCA is performed using 
the same descriptors used in PCA. If HCA results are similar 
to PCA results, that is, the same pattern is achieved, then it 
suggests that these selected descriptors used to run PCA and 
HCA are adequate to classify the molecules under study. 
However if no pattern is found, then this set of descriptors is 
not adequate and a new set of descriptors must be selected 
and PCA and HCA is run again. This process is repeated until 
a pattern is achieved. This methodology is a guide for the 
students of how to select a descriptor set.

The primary objective of HCA is also to present the com-
pounds distributed in natural groupings and the results con-
firm the PCA results, however the former gives more precise 
results than the latter. The visualization of HCA is through a 
dendrogram, which facilitates the recognition of categories. 
The dendrogram presents the disposition of the samples 
(compounds) with respect to their similarities/dissimilari-
ties (again based on the descriptors employed). The branches 
on the bottom of the dendrogram represent single samples. 
The vertical scale gives the distance between clusters at the 
point when they were combined. So the length (distance) of 
the branches linking two clusters is related to their similarity 
so that long branches suggest low similarity while short 
branches mean high similarity. The distances between 
merged clusters increase as we proceed from singleton clus-
ters to one all-inclusive cluster. HCA offers many approach-
es to produce a dendrogram. The approach chosen in this 
work employs the Euclidean distance and Ward's link. Eu-
clidean distance is a common numerical measure of similar-
ity used in multivariate analysis that is calculated through 
the equation 1:

= + + +d x y x y x y( ) ( ) ( )
n n1 1

2
2 2

2 2
1/2  	 (1)

where d is the distance between two points (compounds) in n 
dimensional space with coordinates (x1, x2, …, xn) and (y1, y2, 
…, yn). The smaller the distance, the more similar are the 
samples (compounds). Ward's method algorithm establish-
es links between samples/cluster using the agglomerative 
clustering criterion based on the minimization of the 
squared Euclidean distances of individuals from the centre 
of gravity of the cluster to which they have been assigned. 
The method employs the within (squared) distances and the 
between-cluster (squared) distances (Rencher, 2003). By 
this strategy each sample is first defined as its own cluster, 
then other samples are grouped together to form new clus-
ters until all of them are part of a single cluster. The dendro-
gram illustrates the stages of the linkage.

Results
When a multivariate analysis is performed in order to find 
patterns, it may be expected as results a variety of patterns, 
depending on the descriptors chosen to perform the analy-
sis. The main objective of this work is to find o set of descrip-
tors that can be used to distinguish between activating and 

deactivating groups of the benzene ring. But which descrip-
tors we should choose? Certainly a combination at random 
of some molecular properties tends to give no interesting 
information about a chemical system. Considering the origi-
nal matrix has many descriptors, it is desirable to choose 
only a small set of descriptors (in this case, three, four or 
five) that differentiate substituents on benzene into activa-
tors (electron donors) and deactivators (electron acceptors). 
Descriptors that take into account electronic properties must 
be important to study the mechanisms of electrophilic aro-
matic substitution reactions. So it is reasonable to expect 
that, for example, molecular polarity, orbital energy and the 
sum of every carbon charge in the benzene ring can be in-
volved in these mechanisms. For this reason, these three de-
scriptors were selected to perform the analysis (Table 2, for 
convenience, the other descriptors are not exhibited because 
they were not used to generate this classification). 

The presence of activating and deactivating substituents 
must certainly change some molecular properties such as 
those three mentioned before. For example, electron dona-
tion or withdrawal, to or from the benzene ring, creates a 
separation in charge in the molecule, which can be mea-
sured by the dipole moment. The charge distribution in the 
benzene ring increases with the presence of electron donors 
while the contrary is valid for electron acceptors. So when 
the electronic population increase or decrease the conse-
quence is the ring activation or deactivation, respectively. 
Another aspect to take into account is that the facility in 
transferring electrons to another molecule is also influenced 
by HOMO energies. Consequently, less negative values of 
energy for this kind of molecular orbital are associated to 
molecules with stronger tendency to release electrons in an 
electrophilic substitution reaction. Figure 2 shows differ-
ence in HOMO energy, dipole moment orientation and the 
change in electronic population in the benzene ring based 
on the presence of acceptors or donors of electrons.

PCA results showed that when we use these three de-
scriptors a distinct classification is achieved for the 20 com-
pounds studied. Such parameters are associated to very 
important electronic properties of organic compounds: sep-
aration of charge on a molecule, frontier molecular orbital 
energies and atomic charges. 

In Figure 2 we see the scores plot of PC1-PC2 (the two 
most important PCs). We conclude that the most evident 
possibility of classifying the substituents according to 
PC1 or PC2 values is for PC1, that is, substituents on the left 
(PC1 < –0.6) are those that exhibit activating effects while 
substituents on the right (PC1 > –0.6) are those that exhibit 
deactivating effects. 

According to Table 3, the principal components PC1, 
PC2 and PC3 explained 88.8, 7.2 and 4.0%, respectively, of 
the total variance in Table 2. The largest percentage of ex-
plained variance, as expected, is associated to PC1, the PC 
used as reference for the classification. Interpretation of load-
ings plot for PC1 (Figure 4) reveals the contribution of each 
descriptor to the classification of the groups. Equation  2 
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shows the loadings (coefficients) used to calculate the scores 
for PC1 (values from Table 2 must be auto scaled before in-
serting in the equation). The loadings for the three descrip-
tors have the same magnitude in absolute value (Dipole Mo-
ment: 0.57; HOMO Energy: –0.58 and Sum of Charge: 0.58), 
indicating that they all give the same contribution to PC1. 
The activating groups present the general tendency to be as-
sociated to smaller values for Dipole Moment, less negative 
values for HOMO Energy and more negative values for Sum of 
Charge on the carbon atoms of the benzene ring. The con-
trary is valid for compounds that present deactivating ef-
fects.

PC1 = 0.57 Dipole Moment – 0.58 HOMO Energy +  
        0.58 Sum of Charge 	

(2)

HCA results are similar to those for PCA. The dendro-
gram (Figure 5) shows two main distinct classes: one, on the 

left, deactivating groups, and other, on the right, activating 
groups. The separation (distance) between clusters for both 
classes is considerable (close to 7.2), indicating difference in 
behavior. HCA grouped some substituents (compounds) 
with high similarities. For deactivating compounds the pairs 
are Cl and F, COCH3 and CHO, SO3H and NO2, COOCH3 and 
COOH, CN and COCl, whereas for activating groups the pairs 
are OCH3 and OH, CH(CH3)2 and CH2CH3, NHCH3 and NH2. 
The shortest distance (close to 2.4) within class is found for 
activating groups. Consequently, in general, the activating 
substituents are better grouped in clusters than deactivating 
ones.

A comparison between activating and deactivating 
groups is also made using the maximum, minimum, mean 
and standard deviation of each descriptor (Table 4). Both 
groups differ considerably in relation to the mean values for 
Dipole Moment (activating: 1.0294, deactivating: 4.0952), 
HOMO Energy: (activating: –0.3088, deactivating: –0.3562) 
and Sum of Charge: (activating: –0.9794, deactivating: 
–0.1321). Besides descriptors show strong linear correla-
tion: –0.81 between Dipole Moment and HOMO Energy, 0.80 
between Dipole Moment and Sum of Charge and –0.88 involv-
ing HOMO Energy and Sum of Charge. 

Figure 4. Loadings plot of the first two PCs. Dipole moment and sum of 
charge have positive coefficients while HOMO energy has negative coeffi-
cient on PC1.

Figure 2. HOMO energy, dipole moment orientation and electronic popula-
tion for monosubstituted benzene.

Figure 3. Scores plot of the first two PCs. There is a separation in PC1 as 
follow: activating groups are on the left side (PC1 < –0.6, red triangle) 
while deactivating groups are on the right side (PC1 > –0.6, blue triangle). 

Table 3. Loadings, eigenvalues and explained variance for the three 
principal components.

Descriptors
Loadings

PC1 PC2 PC3

Dipole Moment   0.57   0.82 0.04

HOMO Energy –0.58   0.37 0.72

Sum of Charge   0.58 –0.43 0.69

Eigenvalue   2.70   0.20 0.10

Explained Variance (%) 88.80   7.20 4.00
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Conclusion
Chemometrics can be used to classify groups on monosub-
stituted benzene according to their activating/deactivating 
effects based on their dipole moment, HOMO energy and 
sum of every carbon charge in the benzene ring. The results 
from PCA and HCA revealed these two distinct categories. 
The activating groups present the general tendency to be as-
sociated to smaller values for Dipole Moment, less negative 
values for HOMO Energy and more negative values for Sum of 
Charge on the carbon atoms of the benzene ring. Regarding 
deactivating groups, the contrary is observed. Moreover 
some compounds demonstrate high similarity with respect 
to these three electronic properties. However we must re-
member that the behavior of the substituents analyzed 
through PCA and HCA may vary significantly if other de-
scriptors are considered, such as lumo energy, mass, vol-
ume, superficial area, bond length or any other. The strategy 
presented by authors is an example of application of pattern 
recognition methods in organic chemistry, but the use of 
these methods can be extended to any other field of chemis-
try like inorganic, analytical and physical chemistry. In fact 
there are numerous possibilities of using chemometrics. In 
this example data were generated through computation 
even though they could be gathered from books, handbooks, 
articles or even software able to compute molecular descrip-
tors. By the way some programs are able to compute hun-
dreds of molecular descriptors.

Finally authors want with this proposal to motivate 
teachers and students to apply chemometrics in problems of 
chemical interest that involve multivariate data. Certainly 
valuable information about atoms or molecules and their 
properties can be extracted. The intention is to stimulate the 
investigative spirit and make easier data analysis, which are 
fundamental in the world of chemistry.
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