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Using the Origin of Chemical Ideas to Enhance 
an Understanding of the Chemistry of Air:  
Issues and Challenges for including mathematics  
in the teaching and learning of chemistry
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Abstract
This paper describes some of the mathematical components of a narrative constructed for first-
year tertiary chemistry students to celebrate the International Year of Chemistry in 2011. The 
narrative is entitled, “Making Good Use of the Air Around Us”, and deals with the origin of our 
understanding of the physical and chemical properties of air largely through the work of Robert 
Boyle and Antoine Lavoisier. The paper argues for the importance of mathematics not only as a 
skill but as a language for the teaching and learning of chemistry and indicates that our efforts to 
have mathematicians and chemists work together on curriculum issues need to be re-energized 
if we are to enhance our understanding of such a progressive discipline as chemistry.
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áreas emergentes de la educación química  
[naturaleza de la química: 
historia y filosofía de la química]

Resumen (Uso del origen de las ideas químicas 
para mejorar la comprensión de la química del 
aire: Asuntos y desafíos para la inclusión de las 
matemáticas en la enseñanza y el aprendizaje de 
la química)
Este artículo describe algunos de los componentes matemáti-
cos de una narración construida para el primer año de estu-
diantes universitarios, para celebrar el Año Internacional de la 
Química en 2011. El título de la narración es: “Haciendo buen 
uso del aire alrededor de nosotros”, y tiene que ver con el 
origen de nuestro entendimiento de las propiedades físicas y 
químicas del aire, a través del trabajo de Robert Boyle y ���An-
toine Lavoisier. El trabajo argumenta sobre la importancia de 
las matemáticas no sólo como una habilidad, sino como un 
lenguaje para la enseñanza y el aprendizaje de la química, y nos 
indica que nuestros esfuerzos de poner a matemáticos y quími-
cos a trabajar juntos en aspectos del currículo necesita ser vigo-
rizado en el futuro si es que deseamos mejorar nuestra com-
prensión de una disciplina progresiva como lo es la química.

Palabras clave: Boyle, Lavoisier, aire, matematización, pro-
porción, experimento

Introduction
It will be nearly twenty years since the very first volume of 
the journal, Science & Education, dedicated to promoting the 
use of the history and philosophy of science in science teach-
ing, was published. I have been perusing the first editorial 

written by the editor, Michael Matthews, and pondering what 
our successes have been and what our failures have been over 
this period. In 1992, one of the major aims of the journal was 
expressed in the editorial as follows (Matthews, 1992, p. 2).

One major division that Science & Education seeks to over-
come is that between researchers in mathematics educa-
tion and researchers in science education. Seldom, particu-
larly in the Anglo world, do these two groups meet or read 
each others’ work… The history and philosophy of science 
and mathematics are interwoven disciplines, they are a 
natural vehicle for bringing the two communities together. 
Many problems in science education have their origin in 
the quantitative side of science, and many problems 
in  mathematics education have their origin in the sup-
posed irrelevance of mathematical formalism… The math-
ematizing of science is one of the central features of modern 
science, as is the making practical of modern mathematics.

The extent to which the journal has been successful in brin-
ging the science and mathematics communities together can 
be gleaned from the wording of the subtitle of the journal. In 
1992, the subtitle read, “Contributions from History, Philoso-
phy and Sociology of Science and Mathematics”, which en-
compassed very much the aims of the editorial staff at the 
time. In 2011, the subtitle has changed to read, “Contribu-
tions from History, Philosophy and Sociology of Science and 
Education”. Does the change in subtitle mean that the battle 
for integrating science and mathematics in science teaching 
has been lost? While the journal still attracts articles from 
mathematicians and mathematics educators, there is a real 
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sense that much work is still required in taking seriously the 
role of mathematics in science teaching and learning and this 
includes chemistry education. Given this state of affairs one 
must ask the question as to why there appears to have been a 
lack of engagement between the two communities. I think 
there are possibly three contributing reasons for this.

Firstly, statements defining the Nature of Science often do 
not refer to mathematics. This is the case, for example, for the 
fourteen consensus statements on the Nature of Science com-
piled by McComas, Almazroa and Clough (1998). There may 
be a number of reasons as to why this is the case but among 
them is most certainly the view that mathematics is a skill or 
a tool for probing nature rather than a language that is en-
demic to nature itself, albeit in an idealized form. Curriculum 
documents such as the Cambridge International O-level 
(University of Cambridge, 2011a) and A-level Chemistry syl-
labi (University of Cambridge, 2011b) specify a list of math-
ematical skills required for completing chemistry at this level 
but do not suggest any deeper meaning for the mathematics 
used. Rohrlich (1987, p. 13) reminds us that, “The mathemat-
ical formulation of a theory introduces mathematics as a kind 
of ‘language’. Concepts are characterized by mathematical 
symbols and are manipulated as such… A purely verbal ac-
count of reality would suffer badly under the ambiguity of 
everyday language, the variation in denotative as well as the 
connotative meanings of words causing considerable difficul-
ties”. The challenge for chemistry educators is to continue to 
seek ways of making such mathematical formulations acces-
sible to students because any attempt at understanding nature 
demands it. This is reflected in the preface to the ninth edi-
tion of Atkins’ Physical Chemistry: “The concern expressed in 
previous editions about the level of mathematical ability has 
not evaporated, of course, and we have developed further our 
strategies for showing the absolute centrality of mathematics 
to physical chemistry and to make it accessible… We have 
kept in mind the struggling student, and have tried to provide 
help at every turn” (Atkins & De Paula, 2010, pp. vii-viii).

Secondly, mathematics is often associated with algorith-
mic problem solving as opposed to what is considered to be 
the more appropriate conceptual problem solving. What of-
ten characterises algorithmic problem solving is, “the empha-
sis on remembering and using facts and mathematical formu-
las, without trying to embed these in a rich framework of 
qualitative knowledge” (Reif, 1983, p. 952); “a recipe book 
acquaintance with a number of mathematical techniques…
often used on an ad-hoc basis” (Stenhouse, 1985, p. 21); and 
a “sea of meaninglessness… where formulae and equations 
are recited but few people know what they mean” (Matthews, 
1992, pp. 11-12). The challenge is how to nurture the math-
ematical content of science in a way that enhances concepts 
and speaks to the grand narrative of nature. In this paper I 
attempt to show how an historical approach to the chemistry 
of air uses mathematics in a way that is foundational to modern 
applications of the properties of air and draws a balance be-
tween mathematics as a tool or algorithm and as a language.

Thirdly, mathematics is often seen as beyond the reach of 
many students leading them to detest science. Sichau (2000, 
p. 389) observes that, “Thermodynamics is unpopular among 
the majority of students. Many students have an abhorrence 
of it, especially of the mathematics involved”. This has led to 
attempts by textbook authors and curriculum developers to 
construct chemistry and physics courses with minimal math-
ematics involved giving the impression that mathematics af-
ter all is not central to science anyway. As it turns out, the 
function of mathematics in science is a rather complex one. 
Some associate mathematics only with the theoretical side of 
science, or what Hottecke (2000) calls intellectual work, and 
experiment with the practical side of science. Such a sugges-
tion implies that experimental work is non-mathematical and 
non-intellectual and I would suggest that this is an extreme 
view to take as far as chemistry education is concerned. There 
is also a view that mathematics cleansed chemistry from “the 
very messy business of actually doing experiments” (Sichau, 
2000, p. 390) by making it “more elegant, abstract, and con-
cise” (Callen, 1960, p.viii). The opposing view is that mathe-
matics destroyed chemistry because, “by its even greater ab-
stract treatment of phenomena [it] led to the vanishing of 
substances” (Gingras, 2001, p. 385). Henry Armstrong felt 
compelled to attack physical chemistry as a discipline because 
of its preoccupation with numerical data and mathematics. 
He believed “we have to recover this [chemical feeling] or 
chemistry will be imperilled” (Armstrong, 1928, p. 51). In 
this paper I illustrate one approach to the chemistry of air that 
is cognisant of the importance of mathematics to chemistry 
and which embeds mathematics into an analysis of a set of 
historical experimental results that emphasizes mathematics 
as a language and a tool.

Recently I have written two narratives under the general 
title, “Making Good Use of the Air Around Us” for first-year 
undergraduate chemistry students. Part A deals with the 
physical properties of air and Part B deals with the chemical 
properties of air. Part A focuses on the work of Robert Boyle 
and Part B on the work of Antoine Lavoisier. The narratives 
try to deal with mathematics in a creative way and deal 
with two key historical experiments which are foundational 
to two current applications of the chemistry; hot-air balloons 
and car air bags. The motivation for writing the narratives was 
partly to celebrate the International Year of Chemistry and to 
search for new ways of making mathematics in chemistry 
more attractive for students. What follows here are some ex-
amples of the mathematical tasks presented in the narratives 
for the physical and chemical properties of air.

The Physical Properties of Air 
Students are presented with the results of Boyle’s “J” tube 
experiment of 1662 as shown in Table 1.

These results were obtained with a piece of glass apparatus 
in the shape of the letter “J” with a short and long arm as 
shown in Figure 1. Boyle kept adding mercury to the open 
side or long arm of the J tube until he had the enclosed air in 
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the short arm supporting a much greater height of mercury 
than 29 inches, the characteristic height supported by one 
atmosphere of pressure. He made careful measurements of 
the pressure of the enclosed air and the volume of the en-
closed air space and published his results in 1662. Boyle knew 
from previous work done by British scientists Power and 
Towneley that the pressure (spring) and volume (space oc-
cupied) of enclosed air could be inversely proportional to 
each other (de Berg, 1995a). Notice how he used his results 
to check this hypothesis in Table 1. In column E, Boyle calcu-
lated what the pressure of enclosed air should be if pressure 
and volume were in reciprocal (inverse) proportion to each 
other and this was compared with the experimental results in 
column D. Both columns labelled A are measures of volume 
but in different units.

We know from studies conducted as far back as the 1970’s 
that students have difficulty with proportional reasoning 
(Karplus & Karplus, 1972) and will often attempt to solve a 
problem using a form of mathematical reasoning other than 
proportional reasoning (de Berg, 1995b). We also know that 
complete reliance on mathematical equations as algorithms 

in science teaching does not enhance understanding (de Berg, 
1995b). Consequently, with these facts in mind, I have at-
tempted to help students understand the data in Table 1 by 
asking them to do tasks such as the following after having 
reminded them that one way of thinking about inverse or 
reciprocal proportion is that if you double one of the vari-
ables then the other variable should halve in value.

Task 1: Illustrate this doubling-halving principle by select-
ing two sets of data from Table 1 (use the first column A 
for volume and column D for pressure). Is inverse propor-
tion consistent with this data? Clearly show your calcula-
tions.

Students are reminded that inverse proportion also means 
that if you triple one of the variables then the other variable 
should be reduced to one third of its original value.

Task 2: Illustrate this (tripling-one third) principle by select-
ing two sets of data from Table 1 (use the first column A for 
volume and column D for pressure). Is inverse proportion 
consistent with this data? Clearly show your calculations.

While Boyle expressed the inverse proportion relationship in 
words in 1662 (pressures and expansions are in reciprocal 
proportions), Wilhelm Ostwald (1902) expressed the rela-
tionship algebraically at the beginning of the twentieth cen-
tury in the form, p1v1 = p2v2. Now, is there any advantage in 
representing a law using the symbols of mathematics, that is, 
using algebraic mathematical expressions?

Task 3: One advantage is that the laws of mathematics can 
be used to rearrange a mathematical expression to gener-
ate a new expression. Rearrange the expression, p1v1 = p2v2, 
to get an expression for v2.

Task 4: See if you can determine how Boyle calculated the 
value 99 in column E. For this purpose use the first col-
umn of A values and the first row of values as a reference. 
Clearly show your calculations.

In 1902 Ostwald also represented the pressure-volume law 
graphically. Is there any advantage in representing a law gra-
phically?

Task 5: Place the values in column A (first column)(vol-
ume) and column D (pressure) from Table 1 in an Excel 
spreadsheet and ask Excel to plot pressure against volume. 
Express column D values in decimal notation to the first 
decimal place. Place V values on the left-hand side of the 
P values, highlight V and P values, tick the chart wizard, 
choose scatter plot, give a title, label x and y axes, tick fin-
ish, highlight the graph, print the graph and attach here. 
Name one advantage of expressing this pressure-volume 
law graphically.Figure 1. J-tube apparatus.

Table 1. Boyle’s 1662 results for the compression of air showing 

the volume of trapped air (A columns-different units) and its as-

sociated pressure (D) obtained with the J tube (Boyle, 1662).
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Task 6: On the Excel spreadsheet create a column of re-
ciprocal volume values (1/V ) and plot pressure against 
reciprocal volume (1/V ). Place (1/V ) values on the left-
hand side of the P values and follow the guidance given 
above in Task 5. Print off your graph and attach here. What 
do you notice about the graph and what does this mean 
about the relationship between P and (1/V )?

Students typically say that there is a straight line relationship 
between P and 1/V but have difficulty saying that P is directly 
proportional to 1/V. The significance of the line passing 
through the origin is not always appreciated either as an in-
gredient of direct proportionality.

Task 7: What does the slope of the graph in Task 6 repre-
sent? [Hint: Right click on one of the points on the graph 
and ask for a trendline, format the trendline to get an equa-
tion of y against x. In Excel create a column of (P×V) val-
ues. What do you observe?]

To complete Task 7 students often need to be reminded of 
the form of the equation for a straight line so they can iden-
tify the slope with the value of (P×V).

Students are then introduced to the ideal gas equation 
where the product (P×V) equals (nRT) where R is the gas 
constant, T is the absolute temperature, and n is the amount 
of gas expressed in moles. Whilst students are given examples 
which resemble algorithmic substitution, they are also en-
couraged to use semi-quantitative reasoning with the ideal 
gas equation. This is done in the following task which is a 
preparation for understanding the operation of a hot air bal-
loon. Consider two containers, A and B, of the same volume 
open to the atmosphere as shown in Figure 2. Hot air is blown 
into one and cold air into the other.

Task 8: How would the amount of air (nA) contained in 
the volume of A and the amount of air (nB) contained 
in the volume of B in Figure 2 compare if the air pressure 
is the same in both volumes and equal to the external air 
pressure? Explain how you arrive at your answer by mak-
ing use of the ideal gas equation, PV = nRT.

Students are not used to engaging in this type of reasoning 
with mathematical equations and yet it is one strategy that 
can dilute the impact of algorithmic substitution. The process 
can continue with Tasks 9 and 10 as an approach towards 
understanding how a hot air balloon works.

Task 9: Use your knowledge of chemistry, particularly the 
formula for the number of moles in terms of mass, to com-
pare the mass of air (mA) contained in the volume of A to 
the mass of air (mB) contained in the volume of B.

Task 10: Now show how you can compare the density of 
air in A to the density of air in B, given that density is de-
fined as mass per unit volume (d = m/v).

After completing Task 10 students are asked to use the in-
ternet to determine the major components of a hot air ba-
lloon and are asked to describe how such a balloon works. 
Three tasks lead up to a task which involves substitution of 
values into the ideal gas equation but the exercise is not just 
a blind, non-thinking substitution. It is designed to check a 
value for the density of air pertinent to a hot air balloon gi-
ven on the website. The four tasks related to the website 
now follow.

Task 11: Who was the first to fly a hot air balloon and in 
what year ?

Task 12: What is the volume of air contained inside a hot 
air balloon to enable it to lift?

Task 13: What is the density of air inside a hot air balloon 
at 20ºC and at 120ºC? (obtained from the website)

Task 14: Are the values listed in Task 13 consistent with 
the ideal gas equation given the average molar mass of air 
as 28.97 g mol–1 and an atmospheric pressure of 101,300 
pascals? [Use P = (d/M )RT as the appropriate form of the 
gas equation and use R = 8.314 J K–1 mol–1]. 
 

Task 14 involves the accurate processing of units for the 
quantities in the ideal gas equation and students initially stru-
ggle with this process. However, thinking about units dilutes 
the mechanical nature of mathematical problem solving and 
enhances the understanding necessary to interpret the quan-
tities in an equation. We will now look at some numerical and 
mathematical ideas related to the chemical properties of air. 
The emphasis here will be on the importance of units of mea-
surement.

The Chemical Properties of Air
The focus of this narrative is to seek an answer to the ques-
tion, “How did we learn that air consists largely of two ele-
ments, oxygen and nitrogen?” Now this is not a trivial problem. 
In 1789 the French chemist Lavoisier did an ingenious ex-

Figure 2. Cold air and hot air exercise.
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periment (Lavoisier, 1789, pp. 16-18). A diagram of his ap-
paratus is shown in Figure 3 and what follows is the narrative 
as presented to students.

The diagram shows a glass retort (curved shaped vessel) 
with one end containing mercury and sitting on the top of a 
furnace and the other end submerged in mercury and sticking 
up out of the mercury inside a bell jar containing a fixed 
amount of air. Lavoisier gently heated 4 ounces of mercury in 
the retort over 12 days at which time he noticed a red scale 
form on the mercury and the volume of air decrease from 
50 cubic inches to 42 cubic inches. He would have noticed 
the mercury inside the bell jar rise as the air pressure inside 
dropped due to reaction with the retort mercury. Now the 
gas left in the bell jar was shown not to support combustion 
because a flame was quickly extinguished when placed in 
this gas. The gas did not support life as animals placed in it 
died in a very short time. The gas had the same properties as 
the gas that was left after Joseph Priestley burned charcoal in a 
fixed volume of air and removed the fixed air (carbon diox-
ide) formed in the process with alkali solution. Priestley had 
called this gas, phlogisticated air; Carl Scheele, a Swedish 
chemist, had called it foul air; and Lavoisier called it azote (no 
life). The name, nitrogen, was given to the gas in 1790 by 
Chaptal. Now it took a little while for chemists to realise that 
this gas was an element but as it never seemed to lose weight 
in its chemical reactions it was increasingly believed to be an 
element.

Now when the red-speckled mercury or red calx (which 
was actually red mercuric oxide) was placed in a smaller re-
tort and heated very strongly over a furnace Lavoisier ob-
served a gas coming off which he collected over water. He 
obtained 8 cubic inches of gas which matched the difference 
in his earlier experiment between the volume of initial air 
(50 cubic inches) and air left (42 cubic inches). He inferred 
that the air used up in his experiment was the same as the air 
produced on heating the red calx. This enabled him to per-
form further tests on the air that was used up and the air that 
was left behind. He found that the air that was used up sup-
ported combustion, that is, a candle burned very brightly in 
this air. The air that was left behind did not support combus-

tion, that is, a burning candle was extinguished in this air. 
Tests like this supported the belief that air consisted predom-
inantly of two parts, one that supported combustion and one 
that did not support combustion. The gas produced by heat-
ing the red calx was the same gas that Priestley and Scheele 
had earlier discovered because it was shown to support com-
bustion in that things burnt more brightly in this gas than in 
common air and it supported life. Priestley had found that a 
mouse had lived twice as long in this gas as in common air. 
Priestley called the gas dephlogisticated air; Scheele called it 
fire air; and Lavoisier eventually called it oxygen (acid pro-
ducer). When Lavoisier added this gas to the azote (nitrogen) 
left in the bell-jar from the first part of the experiment nei-
ther heat nor light was used or evolved so Lavoisier thought 
that this was good evidence that air was a mixture of these 
two gases, nitrogen and oxygen.

Lavoisier later tells us in his description of the experiment 
that 45 grains of the red calx (mercuric oxide) were obtained 
after 12 days. Now in your science studies you are going to 
have to learn to appreciate how important units of measure-
ment are in science. These 45 grains represented a French 
unit of measurement for mass in the 18th century. Lavoisier 
was responsible for developing the balance for measuring 
masses in chemistry. But how many grams would 45 grains 
represent? To answer this question we need to consult conver-
sion tables. It turns out that 1 grain is equivalent to 53.11 mg 
and 1 cubic inch (French) is equivalent to 19.836 cm3. 

Task 15: What was the mass in grams of mercuric oxide 
(HgO) (red calx) produced in Lavoisier’s experiment?

Task 16: Write down a balanced chemical equation for the 
reaction between mercury and oxygen to produce mercu-
ric oxide. Use subscripts (s, l, g) to indicate state.

Now looking back on Lavoisier’s experiment from the 21st 
century point of view we can calculate how many cubic in-
ches of oxygen would have been required to produce 45 gra-
ins of red calx theoretically and compare this volume with 
the volume he maintains he got experimentally (8 cubic in-
ches). From your answer in Task 15 you can calculate the 
number of moles of calx (HgO) and from your answer in Task 
16, the number of moles of oxygen required. Once you have 
this you can use the ideal gas law [PV = nRT] to determine 
the number of cubic metres of oxygen required and then by 
using the conversion work out the number of French cubic 
inches required. To do this calculation you will have to assu-
me a temperature say of 25ºC and an atmospheric pressure of 
say 101,300 pascals. Do your calculation with a gas constant 
R value of 8.314 J K–1 mol–1.

Task 17: Use the guidance above to determine how many 
cubic inches (French) of oxygen would theoretically have 
been required to produce 45 grains of red calx (mercuric 
oxide).

Figure 3. Lavoisier’s apparatus for studying the role of air in 

chemical reactions.
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Task 18: Deviations from the experimental volume could 
be due to our assumptions of temperature and atmospher-
ic pressure. The deviation could also be due to an inaccu-
rate measurement of the mass of calx (HgO) produced. 
Considering these three variables separately what changes 
to temperature, atmospheric pressure, and amount of calx 
would bring the theoretical volume closer to the experi-
mental volume [8 cu.in]?

Task 18 can prove rather demanding for students but it does 
show how important mathematical equations are in addres-
sing such semi-quantitative questions. The narrative moves 
on to compare Lavoisier’s values for the composition of air 
with the currently accepted ones; the discovery of argon; the 
function of an electron ionization mass spectrometer; the 
phlogiston model of combustion; and finally a discussion of 
how the air bag works in a motor vehicle, including a calcula-
tion of the mass of sodium azide required to produce 67 L of 
nitrogen at 1 atm pressure and 200ºC, the volume sufficient 
to fill an air bag.

Conclusion
This paper has attempted to show how history of chemistry 
and mathematics can combine to potentially enhance a stu-
dent’s understanding of how chemical ideas developed and 
how they are pertinent in understanding the technological 
devices used in our current world, a theme of importance 
during the International Year of Chemistry. Describing chem-
istry and its associated mathematics in the form of a narrative 
has great potential for engaging our students with the subject 
of chemistry. Peter Watson’s (2009, p. 463) review of twenti-
eth century intellectual development includes this challeng-
ing statement:

Neil Postman drew my attention to the fact that at the be-
ginning of our century William James said that any subject, 
treated historically, can become a humanity. You can give 
humanistic value to almost anything by treating it histori-
cally. Geology, economics and mechanics are humanities 
when taught with reference to the successive achieve-
ments of the geniuses to which these sciences owe their 
being. Not taught thus, literature remains grammar, art a 
catalogue, history a list of dates, and natural science a sheet 
of formulas and weights and measures… The story is so 
overwhelming that I believe it can provide, or begin to 
provide, an antidote to some of the problems that have 
plagued our educational institutions in recent years.

While a narrative does not necessarily involve history, in a 
subject like chemistry narrative, history, and epistemology are 
intimately linked with mathematics acting like a thread hol-
ding the pieces together. In this paper I have shown how ma-
thematics acts as a language, albeit an ideal language spoken 
by air in the form of the gas law. Mathematics is also a skill 
that enables us to find new information using the laws of al-

gebra. It is my contention that we portray a disintegrated che-
mistry if we exclude mathematics from its teaching and lear-
ning.
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