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The Constant Entropy Path  
for a Chemical Reaction
Jose Iñiguez1

ABSTRACT
The internal energy minimum as a criterion for equilibrium is here discussed in reference to a 
chemical reaction. That a non-isolated system at constant entropy and volume heads for a state 
of minimum internal energy is here shown via a thermodynamic analysis of the para-ortho 
isomerization reaction of hydrogen. The analysis brings forward the equations for the heat flow 
rate and temperature decreasing regime the reaction system has to comply with if a constant 
entropy path is to be accessed.
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RESUMEN (La trayectoria a entropía constante 
para una reacción química)
El mínimo de energía interna como criterio de equilibrio es 
aquí discutido con relación a una reacción química. El que un 
sistema no aislado, a entropía y volumen constantes, tienda a 
un estado de energía interna mínima se muestra aquí a través 
de un análisis termodinámico de la reacción de isomerización 
orto-para del hidrógeno. El análisis permite identificar las 
ecuaciones para los regímenes de flujo de calor y descenso de 
temperatura a los que debe someterse el sistema de reacción 
a efecto de acceder a una trayectoria evolutiva a entropía 
constante.

PALABRAS CLAVE: hidrógeno, isomerización orto-para, 
termodinámica, entropía constante, principio de energía in-
terna mínima

1. Introduction

1.1 Motivation
Classroom discussions on spontaneity and equilibrium com-
monly revolve around conditions of constant temperature 
and pressure, and constant temperature and volume, with 
little attention, if any, devoted to conditions involving a con-
stant entropy restriction. That our students of thermodynam-
ics deserve a complete as possible exposure to its fundamen-
tal concepts is beyond discussion. The accomplishment of 
this objective demands, however, an increased availability in 
the published literature of pertinent discussions that might 

be used to that end. Even if an excellent discussion could be 
found illustrating the constant entropy path for gas expan-
sions (Velasco and Fernandez, 2002), apparently none is 
available applying this criterion to a chemical reaction, a most 
important subject indeed for chemistry students. It is with 
these considerations as a basis that we offer here a discussion 
on the thermodynamic conditions to be satisfied for the con-
stant entropy evolution of the chemical reaction shown be-
low. Now, even if as Emanuel (1987, p. 66) correctly points 
out, the statement ‘constant entropy’ can be associated to any 
process with identical entropy values for its initial and final 
conditions, here however, that statement is taken to mean 
constant entropy all along the path connecting those condi-
tions

para ortho- = -H H
2 2

	 (1)

1.2 Thermodynamic background
The equilibrium state accessed by reaction (1) at tempera-
ture T is characterized by the thermodynamic equilibrium 
constant (K), defined as the ratio of the equilibrium activities 
(a) of ortho-hydrogen and para-hydrogen, K = aortho/apara. 
These activities, in essence non-ideality corrected equilibrium 
partial pressures or concentrations (Maron and Prutton, 1965, 
p. 203), make of K a true equilibrium constant, dependent 
only on temperature (Maron and Prutton, 1965, p. 231). In 
the case of gas-phase reactions taking place at moderate pres-
sures and temperatures — where the assumption of ideal gas 
behavior is reasonable — no significant error is introduced in 
replacing activities by partial pressures (p) (Maron and Prut-
ton, 1965, p. 205; Bevan Ott and Boerio-Goates, 2000, p. 438). 
Since, as will be seen below, this is the case for reaction (1), 
we can then write K in the following form: K = portho/ppara. 
A simple application of the ideal gas law can be used to re-
express this last equation as the ratio of equilibrium weight 
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percentages (w) of the indicated species, i.e. K = wortho/wpara. 
Under the assumption of ideal gas behavior for the reacting 
species, the three different expressions for K, previously writ-
ten, are equivalent.

K can also be defined in terms of reaction’s (1) associated 
standard Gibbs free energy change (DG 0 ) at the same tem-
perature, DG RT K0 =- ln  (Bevan Ott and Boerio-Goates, 
2000, p. 437). This equation can be rewritten in terms of the 
standard enthalpy and entropy changes via the defining equa-
tion for the Gibbs free energy, G H TS= - , as follows: 
D D DG H T S RT K0 0 0= - =- ln .

Under the assumption of ideality, allowing the identifica-
tion of K with the equilibrium weight percentage ratio, the 
following is true: D DH T S RT w w

ortho para
0 0- =- é

ëê
ù
ûúln / .

The effect of temperature on K can be obtained by dif-
ferentiating equation DG RT K0 =- ln  with respect to tem-
perature. Performance of this operation, combined with the 
fact that d G T dT H T( / ) / /D D0 0 2=- , leads to the follow-
ing expression for the temperature variation of the equilibri-
um constant: d K dT H RTln / /= D 0 2 (Bevan Ott and Boe-
rio-Goates, 2000, p. 446).

Reaction (1) was chosen for this study because of its equi-
librium constant having practically the same magnitude in 
the temperature interval 300 K–600 K. This temperature in-
dependence of the equilibrium constant allows us to con-
clude, in light of that expressed in the above written equation 
for the temperature variation of K, that in this temperature 
interval DH 0 0= . Introduction of this fact in the previously 
written equation relating DH 0, DS 0, and K, leads, in turn, to 
the following equation: T S RT w w

ortho para
D 0 = é

ëê
ù
ûúln / , valid for 

reaction (1) under the assumptions of ideality and tempera-
ture independence of K previously discussed. That this is in-
deed the case is shown in section 2.3.

1.3 Internal energy minimum  
as equilibrium criterion
The entropy maximum principle as a criterion of equilibrium 
has been re-expressed through a number of thermodynamic 
functions which even if less fundamental and less general 
than the entropy law, are of more practical convenience in 
the study of some concrete problems (Lewis and Randall, 
1961, p. 138). The Gibbs (G), and Helmholtz (A) free energy 
functions are among these alternative functions. The criterion 
of equilibrium for systems evolving at constant temperature 
and pressure is that G has reached its minimum possible val-
ue (Denbigh, 1968, p. 83). For those evolving at constant 
temperature and volume the criterion of equilibrium is that 
A has reached its minimum possible value (Denbigh, 1968, 
p. 82). Next to these, we find the minimum possible value of 
the internal energy (E) acting as criterion for the equilibrium 
state of systems evolving at constant entropy and volume. 
This lesser known criterion (Denbigh, 1968, p. 83; Richet, 
2001, p. 35) is to be here discussed in reference to reaction 
(1). The essence of this discussion centers on the fact that if 

the reaction system is to be able to evolve at constant entropy, 
a way has to be found to transfer outside the reaction system 
the entropy increase associated with the reaction process. As 
will be seen below, this is here accomplished by coupling the 
reaction system with a cold reservoir whose function is to 
extract heat from the reaction system — and thus diminish its 
entropy — at precisely the same rate that entropy is created 
by the reaction. It is through the coupling of these two pro-
cesses that the constant entropy path for reaction (1) will be 
accessed, a path leading the system to a state of equilibrium 
characterized by a minimum of its internal energy.

Still another equilibrium criterion can be found in the lite-
rature next to those already mentioned. This one associates a 
minimum value of the enthalpy function (H) with the state 
of equilibrium of systems evolving at constant entropy and 
pressure. Chemistry oriented exemplifications of this princi-
ple suitable for classroom presentations are also scarce or 
non-existent.

2. The isomerization of hydrogen

2.1 The key assumption
The work of Woolley et al. (1948, pp. 379-475) shows that in 
the interval 300 K–600 K, the equilibrium constant (K) 
for the para-ortho isomerization of hydrogen is, for all practi-
cal purposes, independent of temperature (the equilibrium 
composition up to 500 K can be read directly from Table 12 
on p. 395. The equilibrium constant at 600 K can be calcu-
lated from the data in Table 4, p. 387). When expressed as the 
ratio of the percentages of ortho-hydrogen to para-hydrogen, 
the equilibrium constant changes from a value of 2.988 at 
298.16 K to a value of 3.000 at 600 K. The percentage varia-
tion referred to the high temperature value amounts to 0.4 %. 
In what follows, a number of considerations will be derived 
from what will be assumed to be a perfect temperature inde-
pendence of K in the indicated temperature interval.

2.1(a). The fact that K f T¹ ( ) leads to d K dTln / = 0, 
and this, in turn, through equation d K dT H RTln / /= D 0 2, 
to the realization that DH 0 0=  in this temperature interval. 
This fact, combined with the assumption of ideal gas behav-
ior for ortho-hydrogen and para-hydrogen — a reasonable as-
sumption at the specified temperature interval and pressures 
near atmospheric — as well as with the fact that this reaction 
takes place with no change in total number of moles (Dn = 0), 
leads, through equation D D DH E PV= + ( ), properly modi-
fied for the case at hand as D D DH E RT n0 0= + , to the re-
sult D DH E0 0= . The already proven fact that in the case at 
hand we have that DH 0 0=  allows us to conclude that the 
following also holds: DE 0 0= .

2.1(b). From the data of Woolley et al. (1948, p. 387) we 
also learn that in the indicated temperature interval, the con-
stant pressure heat capacities for ortho-hydrogen and para-
hydrogen are not only practically identical, but also constant. 
From the ideal gas assumption introduced above it follows 
that their heat capacities at constant volume, assuming a rela-
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tionship of the form C C R
v p
= - , will also be identical to one 

another and constant in the given temperature interval.
2.1(c). If as discussed in section 2.1(a): DH 0 0= , then 

the thermodynamic expression connecting the equilibrium 
constant with the standard enthalpy and entropy changes, 
namely, ln / /K H RT S R= -éëê

ù
ûú +

é
ëê

ù
ûúD D0 0 , will reduce to: 

ln /K S R= D 0 . Inspection of this expression makes it obvi-
ous that the constancy of K assures the constancy of DS 0 in 
the indicated temperature interval. As will be numerically 
corroborated below, this last expression also shows that in the 
indicated temperature interval, this reaction is solely driven 
by the entropy change of the reaction itself.

2.2 The chemical reaction
With the previous considerations in mind, let us take a look 
at the situation depicted in Figure 1. In it use is made of the 
variable x the degree of advancement — through which the 
extent of the chemical reaction will be quantified. This pa-
rameter, with limit values of zero at the beginning of the reac-
tion, and one at complete conversion ( 0 1£ £x ), can for the 
case at hand be defined either as x =-Dn

para
/1 or as 

x = Dn
ortho

/ 1. In both instances Dn  represents the mole 
number change of the indicated species. In the former ex-
pression the one in the denominator represents the initial 
number of moles of para-hydrogen in the reaction vessel, 
while in the latter the number of moles of ortho-hydrogen at 
complete conversion.

There, processes I and II depict, in a stepwise fashion, the 
advance of reaction (1) from an initial condition represented 
by 1 mole of pure para-hydrogen at 600 K and 1 atmosphere 
total pressure ( x = 0 ), to a condition represented by the mix-
ture of 1- x  moles of pure para-hydrogen and x  moles of 
ortho-hydrogen, also at 600 K and 1 atmosphere total pres-
sure. The 1 atmosphere condition is carried on from the stan-
dard state definition used by Woolley et al. (1948, p. 387). 

The reason behind the choice of 600 K as the initial tempera-
ture for reaction (1) will be explained below.

It has to be understood that the concatenation of processes 
shown in Figure 1 has been constructed to serve as an ana-
lytical tool in the development some of the thermodynamic 
arguments to be presented, and in no way implies that the 
reaction and cooling processes — to be described below — 
take place sequentially as shown. Quite the contrary, the 
chemical reaction described by the combination of processes 
I and II, and the cooling process, shown there as process III, 
are to take place simultaneously if the constant entropy evo-
lution of the reaction system is to be possible. The description 
of steps I and II shown in Figure 1 is done in what follows.

Process I. This process corresponds to the reaction taking 
the system from pure para-H2 at 1 atmosphere and 600 K, to 
the indicated amounts of pure ortho-H2 and para-H2, each at 
1 atmosphere and 600 K. This reaction is actually the x  frac-
tion of the standard reaction converting 1 mole of pure para-
H2 into 1 mole of pure ortho-H2, both at 1 atmosphere and 
600 K, and as such conveys an entropy change of:

D DS S
process I

= x 0
	 (2)

According to that discussed in section 2.1(a), the enthalpy 
and internal energy changes associated to this process will be 
written as follows

D DH H o
process I

= =x 0 	 (3)

D DE E
process I

= =x 0 0 	 (4)

Process II. Here the pure isomers in the amount and con-
ditions shown as the final state of process I are brought to-
gether to produce what would be the actual reaction mixture 
at the given degree of advancement. The entropy change as-
sociated to this process corresponds to the entropy of mixing 
of the indicated amounts of para-H2 and ortho-H2, and as 
such, given by the following expression (Castellan, 1974, 
p. 231)

DS R
process II

=- + -( ) -( )é
ëê

ù
ûúx x x xln ln1 1 	 (5)

Due to the fact that the mixture here being formed is an 
ideal mixture, the enthalpy change for this step amounts to 
zero (Castellan, 1974, p. 231). A parallel argument to that 
advanced in section 2.1(a) allows us to conclude that here the 
internal energy of mixing is also zero. Therefore

D DH E
process II process II

= = 0 	 (6)

By virtue of that expressed by equations (3), (4), and (6) it 
can be concluded that the reaction under consideration takes 
place without any thermal interaction with its surroundings, 
i.e. that no heat is at all exchanged between them as conse-
quence of the occurrence of the chemical reaction, and con-
sequently — as already mentioned — that this reaction is 

Figure 1. The para-ortho isomerization of hydrogen is shown here 

evolving from x = 0  to an arbitrary x , through the concatena-

tion of processes I and II. Process I corresponds to the x  fraction 

of a standard reaction, and process II to a mixing process. Process 

III represents, on the other hand, the cooling of the reaction mix-

ture through which the constant entropy path is to be accessed. 

T* and P* represent, respectively, the temperature and pressure of 

the cold reaction mixture at x . Even if shown here taking place 

sequentially, the reaction and cooling processes are to take place 

simultaneously.
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driven solely by entropic effects intrinsic to it. But if this is so 
then the universe of this reaction — the universe of steps I 
and II in Figure 1 — is the reaction system itself. That this is 
so is the matter of the following argument, through which 
the assumption introduced in section 2.1(a) is to be tested.

2.3 Feasibility of the key assumption
From the data of Woolley et al. (1984, p. 387) for the para-H2 
= ortho-H2 conversion, the value of DS 0 2 2= .  cal/degree-
mole, corresponding to 600 K, can be taken as representative 
for the previously indicated temperature interval. Being this 
so, the following expressions — produced via combination of 
equations (2) and (5) — can be written for the entropy 
change (DS

I II+
) of the indicated universe. The value for the 

ideal gas constant R has been taken as 1.99 cal/degree-mole, 
with x , as previously stated, representing the number of 
moles of ortho-H2.

D D DS S S
I+II process I process II

= + =

x x x x xDS R0 1 1- + -( ) -( )é
ëê

ù
ûúln ln 	 (7)

DS
I+II

= - + -( ) -( )é
ëê

ù
ûú2 2 1 99 1 1. . ln lnx x x x x 	 (8)

A simple application of L’Hopital’s rule to equation (8) 
produces, as should be expected, a value of DS

I+II
= 0  for 

the limit x ® 0 . The behavior of DS
I+II

 for larger values of 
x  can be ascertained by taking the first derivative of equation 
(8) as follows

¶ ¶ = - -( )é
ëê

ù
ûúDS

I+II
/ . . ln /x x x2 2 1 99 1 	 (9)

When this equation is put equal to zero, and the resulting 
expression solved for x , we identify an extremum for the 
entropy change of reaction (1) at x = 0 75. . A simple applica-
tion of the second derivative rule will confirm that this is a 
maximum, an entropy maximum, and as such it identifies the 
equilibrium condition for the reaction being considered. The 
equilibrium constant associated to the just determined equi-
librium conversion for ortho-H2 can be obtained dividing it by 
the corresponding equilibrium conversion for para-H2, as fol-
lows: K = - =0 75 1 0 75 3 0. / ( . ) . . The value obtained is simi-
lar to that already quoted of Woolley et al.

Further confirmation of the feasibility of our key assump-
tion can be obtained calculating K via the equation introduced 
in section 2(c) and the previously quoted values for R, and 
DS 0, as follows: K S R= = =exp ( / ) exp ( . / . ) .D 0 2 2 1 99 3 0 . 
Again, the value produced this way is also similar to that also 
already quoted of Woolley et al. A similar analysis, leading to 
similar results, can be performed by the interested reader for 
the ortho para- ® -H H

2 2
 reaction.

The previous analysis allows us to realize that the entropy 
change sustained by the universe for reaction (1), as given by 
equation (8) and represented by the concatenation of pro-
cesses I and II of Figure 1, starts with a value of zero at x = 0  
and increases monotonically until it reaches a maximum at an 

ortho-H2 conversion equal to x = 0 75. . Being this so, it can 
only follow that any attempt to conduct this reaction through 
a constant entropy path will require a way to produce in the 
reaction system an entropy change of the same magnitude, 
but opposite sign, to the one quantified by equation (8). This 
effect will be brought about by coupling the unfolding of 
the chemical reaction — steps I and II — with the cooling 
of the reaction mixture, represented as process III in Figure 1. 
This cooling process will require the reaction mixture to be 
put in contact with a heat bath of low enough temperature to 
produce the desired effect. The particulars of this coupling 
are the matter of the following discussion.

3. The constant entropy path
In what follows, the concatenation of processes I, II and III, as 
graphically represented in Figure 1, will be designated as ‘the 
coupling’. Let us then start by agreeing that the indicated 
isomerization reaction is to take place at constant volume, 
and let us further define the reaction mixture as the system of 
interest (a ). In thermal contact with the system we find a 
constant temperature bath ( b ). System and bath, combined, 
define the universe of the coupling. Let us further assume 
that the temperature of the bath is lower than that of the 
system. If this is so, a cooling process will take place alongside 
the chemical reaction. From the perspective of the system, 
this cooling process is an entropy reducing process. Thus, 
while the unfolding of the reaction increases the entropy of 
the system, the unfolding of the cooling process decreases it. 
These considerations allow us to realize that if we could cou-
ple the reaction and cooling processes in a way such that at 
every moment along their evolution every entropy increase 
produced by the reaction is met with an entropy decrease of 
the same magnitude produced by the cooling process, then 
our system of interest will be evolving along a constant en-
tropy path. It has to be here recognized that even if a de-
creased rate of reaction is expected as a consequence of the 
cooling process, given the thermodynamic characteristics of 
the reaction system — discussed in sections 2(a) through 2(c) 
— as long as the cooling process is restricted to the tempera-
ture interval 300 K – 600 K, no effect whatsoever will be pro-
duced in its thermodynamics, as measured by its equilibrium 
conversion. An evolution under the considerations just ad-
vanced can be represented as follows:

d S d S d Sa = + =
I+II III

0	 (10)

In the previous equation, d Sa , d S
I+II

 and d S
III , respec-

tively represent the net entropy change of the system, the 
entropy change associated to the unfolding of the chemical 
reaction, and that experienced by the reaction system due to 
the cooling process. These entropy changes, along that of the 
heat bath (d Sb

) allows us to write the following expression 
for the entropy change of the universe of the coupling (dS

u
), 

i.e. the universe of processes I, II, and III, as follows

d S d S d S
u
= +a b 	 (11)
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Upon substitution of equation (10) in (11) we learn that 
in the situation being considered, the entropy of the heat 
bath assumes the role of the entropy of the universe

d S d S
u
= b 	 (12)

It was stated above that from the perspective of the system 
the cooling process was an entropy reducing process. From the 
perspective of the heat bath, however, this is an entropy in-
creasing process. The reason is simple. The bath is the one 
receiving the heat lost by the system. It is precisely upon the 
absorption of this heat by the heat bath that compliance with 
the dictate of the second law is produced, as in this situation 
equation (12) becomes:

d S d S
u
= >b 0 	 (13)

Let us point out here that both, the system as well as the 
bath, are constant volume bodies incapable of any energy ex-
change in the form of work (we are assuming here that the 
only work interaction originally possible was of the PV kind). 
This consideration allows us, in turn, to write the following 
first law based expressions for the system and heat bath:

dE dQa a= 	 (14)

dE dQb b= 	 (15)

The fact that any heat lost by the system is necessarily heat 
gained by the bath can be represented as follows:

- =dQ dQa b 	 (16)

Combination of equations (14), (15), and (16) leads us to:

- = =dE dQ dEa b b 	 (17)

The fact shown in equation (15) stating that any heat ex-
changed by the heat bath is equal to the change of a function 
of state, allows us to write the following expression for the 
entropy change of the heat bath in terms of the internal en-
ergy decrease of the system

d S
d E

T
k dEb

a

b
a=

-
= -( )> 0 	 (18)

A comparison between equations (13) and (18) leads to 
the realization that at the conditions at hand the statement 
‘an increase in the entropy of the universe’ becomes synony-
mous with the statement ‘a decrease in the internal energy of 
the system’. Actually the former is proportional to the latter. 
The proportionality constant being the inverse of the tem-
perature of the bath. It is on reason of this proportionality 
that the spontaneity condition for a system evolving at con-
stant entropy and volume can, alongside that expressed by 
equation (13), also be expressed as:

d E
S Va( ) <
,

0 	 (19)

The message conveyed by equation (19) can be extended 
by saying that the equilibrium condition will correspond with 
a minimum in the internal energy of the system.

4. The thermodynamic analysis
As previously stated, access to a constant entropy path for 
reaction (1) will be attempted by coupling processes I and II 
previously discussed, with a cooling of the reaction mixture, 
represented as process III in Figure 1. The role to be played by 
this process is described in what follows.

Process III. At any x  in its advancement, the chemical re-
action has an associated entropy increase quantified by equa-
tion (7). If a constant entropy path is to be accessed by this 
reaction, then at x the temperature of the reaction mixture 
has to have fallen to a value T* such that the entropy reduc-
tion produced by this cooling, precisely cancels the entropy 
increase associated to the reaction itself. The fact that no 
thermal interaction between the system and the bath is asso-
ciated to processes I and II allows us to realize that the only 
heat to be removed from the system in process III is sensible 
heat, and due to this the entropy change sustained by the re-
action mixture upon its cooling can be written as follows

DS C T T
vIII

= é
ëê

ù
ûúln * ( ) /x 	 (20)

Here Cv stands for the constant volume heat capacity of 
the reaction mixture, T for the initial reaction temperature, 
and T * ( )x  — written like this to explicit its dependence on the 
degree of advancement — for the temperature the reaction 
mixture has to attain at every x  in order to assure that DS

III  
will be equal in magnitude, but opposite in sign to that as-
sociated to processes I and II, as given by equation (7), i.e.

D DS S
III I+II

=- 	 (21)

Fulfillment of this condition will produce — as shown in 
equation (10) — a combined value of zero for these two en-
tropy changes, i.e.

D D DS S S
Ia = + =

I+II II  
 
x x x x x xDS R C T T

v
0 1 1 0- + -( ) -( )é

ëê
ù
ûú
+ é

ëê
ù
ûú =ln ln ln * ( ) /  

	 (22)

It was through equation (22) that via a trial and error pro-
cedure, a temperature of 600 K was selected as the initial 
temperature for reaction (1). The selection criterion used was 
that of assuring the chemical reaction taking place within the 
600 K – 300 K chosen for this study. The equations previously 
developed will be used in what follows to unveil the reaction 
mixture temperature and heat flow rate regimes required in 
order for equation (21) to be satisfied.

4.1 The temperature decreasing regime
The substitution of equations (7) and (20) in (21) leads to

C T T R S
v
ln * / ln lnx x x x x x( )é

ëê
ù
ûú = + -( ) -( )é

ëê
ù
ûú -1 1 0D 	(23)

Solving equation (23) for T * ( )x  produces the tempera-
ture decreasing regime the reaction mixture has to comply 
with in order for equation (21) to be satisfied and, conse-
quently, in order to access a constant entropy path
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T T S C
v

* ( ) exp /x = -( ) =D
I+II

T R S Co
v

exp ln ln /x x x x x+ -( ) -( )é
ëê

ù
ûú -{ }1 1 D

	 (24)

The expression contained in the first equality of equation 
(24) comes from a combination of equations (20) and (21)

4.2 The heat transfer regime
Being T is the initial reaction temperature, and T * ( )x  the 
temperature of the reaction mixture at x , then the amount 
of heat lost by the system in its transit from x = 0  to x  can 
be quantified as follows

Q E C T T
va a x= = -é
ëê

ù
ûúD ( ) * ( )1 	 (25)

In the previous equation the factor (1) has been intro-
duced for unit consistency. It represents the constant total 
number of moles of reaction mixture. Related expressions 
will be subsequently written without this factor.

Substitution of equation (24) in (25) produces the expres-
sion quantifying the amount of heat to be removed from the 
reaction system as a function of x

	Q C T R S C
v va x x x x x= + -( ) -( )é

ëê
ù
ûú -{ }é

ë
ê

ù
û
ú -

æ
è
ççç

ö
ø

exp ln ln /1 1 10D ÷÷÷÷
 

	 (26)

4.3 The heat flow rate
The heat flow rate that the reaction mixture has to experi-
ence in order to follow a constant entropy path comes via the 
first derivative of equation (26) with respect to x

dQ d T S C R S
v

o
a x x x/ exp( / ) ln ln= -é

ëê
ù
ûú - -( )é

ëê
ù
ûú -{ }D D

I+II
1  

	 (27)

If heat is removed of the reaction system at the rate man-
dated by equation (27), then the temperature decreasing re-
gime embodied by equation (24) will follow, and the reaction 
system will be proceeding along a constant entropy path. In 
an experimental situation, equation (24) would provide a 
baseline against which the actual evolution of the system can 
be compared.

In what follows we will graphically display in Figure 2 the 
results of calculations carried on with some of the equations 
previously developed. In it DSb  was calculated as follows:

D DS E Tb a b=- / 	 (28)

5. A numerical example
The source of all the numerical data was the paper of Woolley 
et al. (1948, pp. 379-475). The system of units used in the 
said paper has been followed through. For the purpose of 
these calculations the magnitude of the equilibrium constant 
K

eq eq
= -( )é

ëê
ù
ûú

x x/ 1  was taken to be 3.0 in the 300 K – 600 K 
temperature interval. Accordingly, the equilibrium conver-
sion of ortho-H2 amounts to xeq

= 0 75. . The value of DS 0  = 

2.2 cal/degree-mole, corresponding to 600 K, was taken as 
representative for the indicated temperature interval. Like-
wise, an average value of C

v
= 5 0.  cal/degree-mol was se-

lected. As previously stated, the ideal gas constant was taken 
as R = 1.99 cal/degree-mole.

Substitution of the appropriate values in equation (24) 
allowed us to calculate the final — and lowest — temperatu-
re of the reaction system along the cooling process. The value 
obtained was T * ( )x

equilibrium
K= 345 . This temperature, it 

should be realized, corresponds to the highest possible tem-
perature for the heat bath, as then the system and heat bath 
would reach thermal equilibrium the moment the reaction 
reaches the condition of chemical equilibrium. For purposes 
of������������������������������������������������������������� this illustration, this temperature was taken to be the con-
stant temperature of the heat bath. As noted previously in the 
text, the initial temperature selected was T = 600 K.

For a given value of x , DS
I+II

 is calculated through equa-
tion (8). The substitution of this value alongside those of T 
and Cv in the expression formed in the first equality of equa-
tion (24), produces the T* corresponding to the given x . Sub-
stitution of this T * ( )x  in equation (20) produces DS

III . The 
addition of DS

I+II and DS
III leads to DSa  which, within the 

calculations uncertainty, should be equal to zero for all x . 
Finally, the values corresponding to DEa and DSb  at the 
given degree of advancement are calculated through equa-
tions (25) and (28).

It is evident from the figure that under the restrictions of 
constant entropy and volume imposed to the evolution of the 
reaction system, the equilibrium condition corresponds with 
a maximum in the entropy of the universe — here under the 
guise of the entropy of the heat bath, as well as with a mini-
mum in the internal energy of the system.

Figure 2. Graphical representation of equations (8), (20), (22), (24), 

(25), and (28) depicting the thermodynamic evolution of the iso-

merization reaction between para-H2 and ortho-H2, according to 

the data given in the text.
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6. Final comment
The stated goal of this exercise was that of bringing to light 
the thermodynamic requirements associated to the constant 
entropy evolution of reaction (1). No attempt has been 
made to dwell into the practical aspects associated to actu-
ally carrying an experiment in this direction, nor into the 
thermodynamic conditions associated to the constant entropy 
evolution of the typical chemical reaction for which K is tem-
perature dependent. It is true that in this regard reaction (1) 
is exceptional. However, in concurrence with C. E. Hecht 
(1967), we will have to recognize that more often than not, 
unusual, special, and even paradoxical situations serve well in 
illustrating the general concept.

Hopefully, this paper will prompt future discussions in 
these areas.
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