Acerca de la estereoquímica del fullereno gigante I_h-C₅₀₀: Un modelo tridimensional y cálculo de las líneas de su espectro de RMN¹³C

Aarón Pérez-Benítez^{*} y Fernando Santiesteban Llaguno

Abstract

NMR¹³C spectra of the icosahedral fullerenes of formulae C_{20n^2} (where n = natural number) can be determined in a very easy way by the analysis of one of their triangular sections. The chemical equivalence of the Carbon atoms in those sections can be established by symmetry and/or by the connectivity between the vertices.

The procedure for the calculation of the number of lines in the spectra is exemplified for the I_h -C₅₀₀ fullerene (n = 5). Moreover, in order to illustrate the stereochemistry of this fullerene, a template for the construction of a 3D model is provided.

Key words. Icosahedral fullerenes, three-dimensional model, C_{500} -fullerene, NMR $^{13}\mathrm{C}$ spectrum calculation.

Resumen

Los espectros de RMN¹³C de los fullerenos icosaédricos de fórmula general C_{20n^2} se pueden predecir de manera simple y rápida mediante la inspección de una de sus secciones triangulares, ya sea determinando la equivalencia entre sus átomos mediante operaciones de simetría y/o por la conectividad entre los mismos. En este artículo se presenta como ejemplo, la forma de calcular el número de líneas y su relación de intensidades en el espectro de RMN¹³C del I_h-C₅₀₀. Asimismo, se proporciona una plantilla para la construcción de un modelo tridimensional mediante el cual se puede observar objetivamente la estereoquímica de este fullereno gigante.

Geometría del fullereno gigante I_h-C₅₀₀.

El fullereno gigante I_h - C_{500} (figura 1) es el quinto miembro de la familia de los fullerenos icosaédricos

Recibido: 19 de marzo 1999; Aceptado: 20 de junio 1999.

de fórmula general C_{20n^2} ,¹ los cuales existen potencialmente en forma de estructuras concéntricas como las capas de una cebolla.² Sus propiedades geométricas se pueden determinar de manera sencilla y rápida inscribiéndolo en un icosaedro y tomando una de sus caras triangulares.³ En la figura 1a se han resaltado tres de los pentágonos más cercanos para identificar una de las secciones triangulares del C_{500} , que en el poliedro inscrito tendría el aspecto mostrado en la figura 2a.

Recuérdese que un icosaedro está formado por 12 vértices, 20 caras triangulares y 30 aristas, y correlaciónese esta información con la de la figura 2a para determinar que en el I_h - C_{500} :

- a) el número de caras pentagonales es igual a 12 (una por cada vértice del icosaedro);
- b) el número de caras hexagonales es igual a 240 (6 por cada cara y 4 por cada arista del icosaedro);
- c) el número de aristas 5:6 es igual a 60 (5 por cada vértice del icosaedro);
- d) el número de aristas 6:6 es igual a 690 (3 por cada arista + 20 por cada cara del icosaedro);
- e) el número de vértices es igual a 500 (25 en cada sección triangular).⁴

^{*} Centro de Investigación de la Facultad de Ciencias Químicas. Benemérita Universidad Autónoma de Puebla. Av. 14 Sur y Av. San Claudio. Col. San Manuel. C. P. 72570. Puebla, Pue. **E-mail:** aaronperez@xoommail.com

¹ Anteriormente presentamos un modelo del miembro más pequeño de esta serie, el fullereno I_h-C₂₀ (Pérez-Benítez, 1997). ² Existen dos series de fullerenos icosaédricos C_{20n}² y C_{60n}² (n=1, 2, 3,...). Excepto el I_h-C₆₀, hasta ahora los fullerenos icosaédricos no se han encontrado individualmente, sino en forma de estructuras concéntricas como las capas de una cebolla.

³ En la literatura se han presentado cálculos de orbitales moleculares de los fullerenos icosaédricos analizando su geometría con la mitad de una sección triangular (Tang, 1995). Para nuestros fines consideramos más claro y práctico el uso de la sección triangular completa.

⁴ Para efectos de contabilización, obsérvese que en las aristas de la sección triangular no hay vértices. Ésta es una de las diferencias entre los fullerenos icosaédricos de la familia C_{60n}^2 y C_{20n}^2 .

Pero, *icuántos tipos de vértices distintos tiene el* C_{500} ? Debido a que las operaciones de simetría del icosaedro intercambian las secciones triangulares, el problema se puede replantear de forma más sencilla: *iCuántos tipos de vértices distintos hay por sección triangular*?

Para responder a esta pregunta debemos establecer la equivalencia entre los vértices de esta sección triangular (figura 2a) ya sea por conectividad y/o por simetría de la siguiente manera:

- los vértices "a" son vértices de caras pentagonales, por tanto son distintos de los restantes que son de caras hexagonales;
- a cada vértice "a" se encuentran conectados otros dos vértices "a" de secciones vecinas y un vértice "b";
- a dos y tres enlaces de distancia de "a" se encuentran los vértices "c" y "d", respectivamente;
- el vértice "g" se encuentra en el centro del triángulo;
- conectados a "d" se encuentran "e" y "f", los cuales se distinguen claramente porque los "e" se encuentran próximos a la parte media de la arista de la sección triangular, en tanto que los "f" están en la parte media y conectados al vértice central "g". En la tabla 1 se resume la conectividad entre los vértices.

Para determinar la equivalencia entre los vértices de la sección triangular por simetría, se requiere utilizar solamente un eje propio de rotación triple, C_3 , y/o los tres planos de reflexión, σ , (figura 2b) los cuales son elementos de simetría tanto de un simple triángulo como del icosaedro y del C₅₀₀ mismo. En la figura 2a se puede distinguir claramente que los vértices "a", "b", "f", "g" y "e" están contenidos en los planos de simetría y que fuera de dichos planos, por pares y equidistantes (obviamente), se encuentran los vértices "c" y "d". Ésta es una magnífica ocasión para ilustrar el efecto que provoca la aplicación de un plano de simetría: iobsérvese que en la parte próxima a las aristas, la secuencia a-b-cd-e-d-c-b-a es un ordenamiento capicúa! (Gutiérrez, 1991).

Se puede verificar que la asignación de los vértices es la correcta aplicando el otro elemento de simetría que hemos mencionado, el C_3 . El vértice "g" se encuentra en el centro del triángulo y permanece invariante bajo las operaciones σ y C_3 que se han mencionado; en cambio se permutan los vértices "f" y las cadenas a-b-c-d-e-d-c-b-a mediante giros

 $C_{3}(S_{6}, 3\sigma)$

Figura 1. Vistas del fullereno icosaédrico gigante I_h-C₅₀₀ *a*) Vista a lo largo de uno de sus ejes C₃ (y S₆); *b*) Vista a lo largo de uno de sus ejes C₂; *c*) Vista a lo largo de uno de sus ejes C₅ (y S₁₀).

Figura 2. *a*) Sección triangular del I_h-C₅₀₀ mostrando los siete tipos de carbonos distintos que contiene; *b*) elementos de simetría que pasan por esa sección.

de 60°. Por tanto, podemos concluir que hay siete tipos de vértices distintos en relación 1:3:3:3:3:6:6 (3a:3b:6c:6d:3e:3f:1g). Dado que los vértices de ese poliedro simbolizan átomos de Carbono, entonces el espectro de RMN¹³C del fullereno I_h -C₅₀₀ consistirá de siete líneas con relación de intensidades 1:3:3:3:3:6:6.

Resumiendo, el fullereno I_h - C_{500} está constituido por:

- 500 vértices que se dividen en siete tipos: un tipo de vértices pertenece a caras pentagonales (60 a) y los seis restantes son de caras hexagonales en relación 60b:120c:120d:60e:60f:20g;
- 252 caras: 240 hexagonales, $(240)^6$, y 12 caras pentagonales, $(5)^{12}$;
- 750 aristas: 60 aristas pentágono-hexágono, (5:6)⁶⁰, y 690 aristas hexágono-hexágono, (6:6)⁶⁹⁰.

Tabla 1. Conectividad er	itre los vértices del fuller	eno
I _h -C ₅₀₀ .		

Tipo de vértice	Vértices a los que está conectado		
а	a*	a*	b
b	а	с	с
с	b	С*	đ
d	с	e	f
e	d	d	e*
f	d	d	g
g	f	f	f

* Indica la conectividad con un átomo del mismo tipo pero en una sección vecina.

Construcción de un modelo tridimensional del fullereno I_h-C₅₀₀.

1. Haga una fotocopia ampliada (tamaño doble carta) de la plantilla de la figura 3 y recórtela.

2. Elimine cuidadosamente las puntas de los triángulos siguiendo las líneas más gruesas. En caso de que prefiera presentar el fullereno inscrito en el icosaedro omita este paso.

3. Finalmente doble y pegue las pestañas.

El modelo terminado correspondiente a los pasos 1-3 se presenta en la figura 4.

Ejercicios para casa

- 1. Efectúe el análisis correspondiente y prediga el espectro de RMN¹³C del fullereno I_h-C₃₂₀.
- 2. ¿Cuántos elementos de simetría puede distinguir en la figura 5?
- 3. ¿Podría predecir y esquematizar la sección triangular del tercer fullereno de la serie I_h - C_{20n^2} , $(n = 3, I_h$ - C_{180})?
- 4. Excepto para n = 1, el número de caras hexagonales de los fullerenos de la serie C_{20n^2} también puede calcularse mediante la expresión

$$C_{20n^2} = 30 + 10\sum_{n=1}^{n-1} (2n+3)$$

(donde n = número de serie del fullereno). ¿Se cumple esta expresión para los fullerenos C_{320} y C_{500} que se presentan en las figuras 2a y 5?

Agradecimientos

Agradecemos al doctor José Antonio Guevara García por su apoyo en la preparación del material fotográfico que aparece en el presente artículo.

PROFESORES AL DÍA

Figura 3. Plantilla para la construcción de un modelo tridimensional del I_h-C₅₀₀.

PROFESORES AL DÍA

Figura 4. Modelo tridimensional del In-C₅₀₀ (a la izquierda) y de otros dos fullerenos de la misma serie (a la derecha). Consulte la sección de problemas para la identificación de éstos.

Figura 5. Estructura del fullereno Ih-C₃₂₀.

Literatura citada

- Gutiérrez, R.; Pérez-Benítez, A. "1991 y la simetría bilateral". *Educ. quím.*, **1991**, 2, 126. En este artículo se citan algunos palíndromos ingeniosos y divertidos.
- $\begin{array}{l} P\text{\'erez-Benítez}, A.; Guevara-García, J. A. ``Un mode-lo tridimensional para la enseñanza de la sime-tría del fullereno I_h-C_{20}``. Educ. quím., 1997, 2, 94. \end{array}$
- Tang, A. C.; Huang, F. Q. Chem. Phys. Lett. 1995, 245, 561.