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RESUMEN

Para estudiar la cinemática de las gigantes K (clase de luminosidad III) se han
utilizado los movimientos propios de la nueva reducción de van Leeuwen de los datos
del catálogo de Hipparcos. En el estudio final, se consideraron 11,372 estrellas, de
las cuales 880 tienen velocidades radiales conocidas. Mediante una programación
semidefinida se obtuvieron valores para los parámetros cinemáticos (constantes de
Oort) y simultáneamente, para los coeficientes del elipsoide de velocidades. Se
obliga a que se cumpla la condición de que tanto la solución para la vecindad
solar calculada a partir de los parámetros cinemáticos como la obtenida a partir
del elipsoide de velocidades sean iguales. La solución nos da valores de 21.83 ±
0.26 km s−1 para el movimiento solar, y A = 13.08 ± 1.72 km s−1 kpc−1 y B =
−10.21 ± 1.47 km s−1 kpc−1 para las constantes de Oort, lo cual implica una
velocidad local de rotación de 197.94± 44.73 km s−1 si suponemos una distancia al
centro galáctico de 8.2 ± 1.1 kpc. Para las dispersiones de velocidades obtenemos
σx = 50.58 ± 0.99 km s−1, σy = 42.42 ± 1.13 km s−1 y σz = 32.92 ± 0.56 km s−1,
con una desviación del vértice de −7.◦53 ± 3.◦97.

ABSTRACT

To study the kinematics of the K giant stars (luminosity class III) use is
made of proper motions taken from van Leeuwen’s new reduction of the Hipparcos

catalog. 11,372 stars, of which 880 have radial velocities, were used in the final
study. Semi-definite programming solves for the kinematical parameters such as
the Oort constants and simultaneously for the coefficients of the velocity ellipsoid.
The condition that both the solution for the solar velocity calculated from the
kinematical parameters and from the velocity ellipsoid calculation be the same is
enforced. The solution gives: solar velocity of 21.83±0.26 km s−1; Oort’s constant’s,
in units of km s−1 kpc−1, A = 13.08 ± 1.72 and B = −10.21 ± 1.47, implying a
rotational velocity of 197.94± 44.73 km s−1 if we take the distance to the Galactic
center as 8.2±1.1 kpc; velocity dispersions, in units of km s−1, of: σx = 50.58±0.99,
σy = 42.42 ± 1.13, σz = 32.92 ± 0.56 with a vertex deviation of −7.◦53 ± 3.◦97.

Key Words: Galaxy: kinematics and dynamics — methods: numerical

1. INTRODUCTION

This paper continues a series on the kinematics and velocity ellipsoids of the giant stars (luminosity class
III). Previously studied are the O-B5 (Branham 2006), the M (Branham 2008), and the B6-9 and A giants
(Branham 2009). The K giants help fill the lacuna between the A and the M giants. van Leeuwen (2007)
has recently re-reduced the Hipparcos raw data to produce a catalog with lower mean error than the original,
which adds impetus to this study as it did for the B6-9 and A stars. A reader may wonder, however, why one
should proceed one spectrum and luminosity class at a time. Why not do a solution that incorporates all of
the spectrum luminosity classes? The answer entails not an attempt to reduce each study to the “minimum
publishable unit”, but rather to the fact that the calculations for each spectrum luminosity group involve
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216 BRANHAM

considerable labor. The basic mathematical tool used, semi-definite programming (SDP), is computationally
intensive and to study, therefore, one spectrum luminosity group at a time seems reasonable.

The methodology remains similar to that for the previous studies, although with one difference. Because
no evidence exists to suggest that K stars form part of the Gould belt, no plane will be fit to the data to see if
it is inclined to the Galactic plane. There appears to be a clean break between the O-B stars and the A stars
regarding participation in the Gould belt; O-B stars have definite Gould belt members whereas the A stars
have none nor do the M stars. One solves for the kinematics and velocity ellipsoid of the K giants by use of
SDP, which offers the advantage that the solar motion calculated from the velocity ellipsoid must be the same
as that calculated from the kinematical parameters. Nor is it necessary to use the same adjustment criterion
for the two set of calculations: the kinematical parameters may be reduced by use of a least squares criterion
whereas the velocity ellipsoid may be calculated with the robust L1 criterion (minimize the sum of the absolute
values of the residuals), or with the same L1criterion for both.

This study also examines in greater detail the calculation of incompleteness factors. In their classical work
Statistical Astronomy Trumpler & Weaver (1962) refer to two incompleteness factors, K1, which compensates
for the deficiency of proper motions in a parallax catalog compared with a proper motion catalog, and K2,
which corrects for the absence of proper motions nearly in the line of sight and thus not detectable in either a
proper motion or a parallax catalog.

2. THE OBSERVATIONAL DATA

The proper motions and parallaxes used in this study were taken from van Leeuwen’s version of the Hipparcos

Catalog (2007), henceforth called simply the Hipparcos Catalog, the radial velocities from the Wilson (Nagy
1991) and Strasbourg Data Centre (Barbier-Brossat & Figon 2000) catalogs. van Leeuwen’s catalog omits a
few stars contained in the original catalog (ESA 1997). For those few stars the relevant data were taken directly
from the original catalog. The equinox of the Hipparcos Catalog is J2000 and the catalog epoch is J1991.25.
Stars listed as spectral class K, luminosity class III were extracted from the catalog. This resulted in a total of
11,989 stars. Given the number of stars, larger than that of the spectrum luminosity groups used previously,
one might feel that the group could be subdivided into subgroups. This is not desirable, however, because
only 5.6% of the stars are K5 or later, none are K9, and 56.8% are K0 or K1. The K giants, therefore, are
highly skewed towards the earlier stars, and any subdivisions would contain highly disparate numbers of stars,
deleterious to the confidence that can be placed in the solutions for the subgroups.

The star’s HD number determined if either of the two radial velocity catalogs contained an entry for that
particular star. Not all of the data could be accepted. Negative parallaxes were excluded as were parallaxes
smaller than 1 mas because the Ogorodnikov-Milne (OM) model was used for the equations of condition
(Ogorodnikov 1965). This model, valid out to about 1 kpc, should be adequate because the minimum parallax
used in this study, 1 mas, corresponds to a distance of 1 kpc. Parallaxes smaller than 1 mas have such large
mean errors that their inclusion seems unwarranted because of the uncertainty in their distances. Known
multiple stars, flagged in the catalog, contaminate the proper motion by confusing orbital motion with genuine
proper motion and were also excluded. And some of the solutions for the astrometric data in the catalog, also
flagged, are substandard and were likewise be excluded. This left 11,372 K giants.

3. THE SPACE DISTRIBUTION OF THE K GIANTS

Let x, y, z be rectangular coordinates with origin at the Sun: x points towards the Galactic centre, y is
perpendicular to x in the direction if increasing l, and z is positive for positive Galactic latitude. From $, the
star’s parallax, l, its Galactic longitude, and b, its Galactic latitude, we calculate







x

y

z






=

1

$







cos l cos b

sin l cos b

sin b






. (1)

Figure 1 shows the distribution of the stars in space, Figures 2, 3, and 4 show the distributions in the x-y,
x-z, and y-z planes. There is little concentration towards the Galactic plane. Define a moment matrix, referred
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Fig. 1. Space distribution of K giants.

Fig. 2. Distribution in x-y plane.
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Fig. 3. Distribution in x-z plane.

Fig. 4. Distribution in y-z plane.
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to the centroid of the distances, from the x, y, z :







∑

i(xi − x̄)2
∑

i(xi − x̄)(yi − ȳ)
∑

i(xi − x̄)(zi − z̄)
∑

i(yi − ȳ)(xi − x̄)
∑

i(yi − ȳ)2
∑

i(yi − ȳ)(zi − z̄)
∑

i(zi − z̄)(xi − x̄)
∑

i(zi − z̄)(yi − ȳ)
∑

i(zi − z̄)2






.

An eigenvalue-eigenvector decomposition of this matrix confirms this impression: the respective eigenvalues are
131.7, 115.1, and 95.1. The unit normal to the plane, defined as the normalized eigenvector associated with the
z-direction, points to b = 82.◦107. Although deviating somewhat from the North Galactic Pole, bG = 90◦, the
normal shows little evidence for strong Gould belt contamination because the pole of the Gould belt is located
near 72◦. Nor are the data strongly correlated: the correlation between x and y is −2.0%, between x and z is
−3.4%, and between y and z is 6.2%. One may, therefore, consider the data homogeneous.

4. EQUATION OF CONDITION FOR KINEMATICS AND THE VELOCITY ELLIPSOID

Although the equations of condition have been given in my previous publications, they will be repeated
here for the sake of completeness. Proper motion in Galactic longitude, µl, and in Galactic latitude, µb, follow
from their counterparts in right ascension α and declination δ, µα and µδ, by use of the relations

µl cos b = µα cos δ cosφ + µδ sinφ ,

µb = −µα cos δ sinφ + µδ cosφ , (2)

where φ is the Galactic parallactic angle.
Let the proper motion be measured in mas yr−1, let ṙ be the radial velocity in km s−1, and X,Y, Z the

components of the reflex solar motion in km s−1. Define the auxiliary parameters







l1
m1

n1






=







cos l cos b

sin l cos b

sin b






;







l2
m2

n2






=







− sin l

cos l

0






;







l3
m3

n3






=







− cos l sin b

− sin l sin b

cos b






.

The Ogorodnikov-Milne (OM) model was used for the equations of condition. See Ogorodnikov (1965) for a
derivation of these equations. The OM model studies the motion of a group of stars whose centroid is located
at distance R0 from the Galactic center. r is the distance from the centroid (the Sun) to the star, V0 the reflex
solar motion, and V the velocity of the centroid at distance R from the Galactic center. From elementary
calculus we have

V = V0 + D · r , (3)

where D is the displacement tensor of partial derivatives evaluated at R0,

D =







∂Vx/∂x ∂Vx/∂y ∂Vx/∂z

∂Vy/∂x ∂Vy/∂y ∂Vy/∂z

∂Vz/∂x ∂Vz/∂y ∂Vz/∂z







R=R0

=







ux uy uz

vx vy vz

wx wy wz






. (4)

Equation (4) involves a total of twelve unknowns, the three components of the reflex solar motion and the
nine components of the displacement tensor. The equations of condition become (see Ogorodnikov 1965 for
the details):

l2
1
ux+l1m1uy+l1n1uz+l1m1vx+m2

1
vy+m1n1vz+l1n1wx+m1n1wy+n2

1
wz−$l1X−$m1Y −$n1Z = $ṙ , (5)

sec b(−l1m1ux − m2

1
uy − m1n1uz + l2

1
vx + l1m1vy + l1n1vz) + $l2X + $m2Y + $n2Z = κµl , (6)

− sec b[l2
1
n1ux + l1m1n1uy + l1n

2

1
uz + l1m1n1vx + m2

1
n1vy + m1n

2

1
vz + l1(n

2

1
− 1)wx + m1(n

2

1
− 1)wy

−n1(l
2

1
+ m2

1
)wz + $l3X + $m3Y + $ − n3Z = κµb , (7)
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Fig. 5. Error distribution of the parallaxes.

where κ is a conversion constant with value 4.74047 km s−1 yr.
The equations as derived by Ogorodnikov (1965) actually use the distance 1/$ rather than the parallax $

itself, but it is important to recast the equations to remove the parallax error from the denominator and thus
ameliorate any possible Lutz-Kelker bias. Smith & Eichhorn (1996) have derived a procedure to correct the
observed parallaxes, and this procedure was used to transform all of the parallaxes used in this study. Figure 5
shows the error distribution of the transformed parallaxes referred to the median of the parallaxes. Compared
to a normal distribution this error distribution is somewhat skewed, coefficient of skewness of 0.48 versus 0
for the normal, more platykuritc, kurtosis of 1.63 versus 3 for the normal, and lighter tailed, Q factor of 0.27
versus 2.56 for the normal. These deviations, however, occur in the numerator and are thus less deleterious
that would be deviations in the distance. The results presented in § 6 show that a runs test applied to the
final residuals from equations (5–7) indicates complete randomness in the residuals and hence a satisfactory
solution.

To calculate the velocity ellipsoid let ẋ, ẏ, ż be the space velocities of a star. These are found from the
proper motion and radial velocity:







ẋ

ẏ

ż






=







− sin l − cos l sin b cos l cos b

cos l − sin l sin b sin l cos b

0 cos b sin b






·







κµl cos b/$

κµb/$

ṙ






. (8)

The quadric surface to fit to these velocities becomes

aẋ2 + bẏ2 + cż2 + dẋẏ + eẋż + fẏż + gẋ + hẏ + kż + l = 0 , (9)

which can be rewritten as

(

ẋ − X ẏ − Y ż − Y
)

·







A11 A12 A13

A21 A22 A23

A31 A32 A33






·







ẋ − X

ẏ − Y

ż − Z






= q . (10)
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To assure that the equation indeed corresponds to an ellipsoid one must impose the condition that the
matrix be positive-definite and symmetric, A = AT : A11 = a, A12 = A21 = d/2, A13 = A31 = e/2, A22 = b,
A23 = A32 = f/2, and A33 = c. To avoid the trivial solution a = b = · · · = q = 0 another condition must
be imposed. The one I use is that the volume of the ellipsoid must be a maximum. Because the volume
is proportional to the determinant of A, the condition becomes det(A) = max. An eigenvalue-eigenvector
decomposition of the matrix A yields the axes of the velocity ellipsoid and their orientation with respect to the
Galactic coordinate system.

The solar velocity, S0 =
√

X2 + Y 2 + Z2, calculated in equation (10) must be the same as the velocity
found from equations (5–7). This condition can be imposed as part of an SDP formulation of the reduction
problem. See Branham (2006) for details. Suffice to say that SDP minimizes the norm, whether least squares
or L1, of the residuals from equations (5–7), calculates the coefficients of the velocity ellipsoid, and imposes
the conditions that the quadric surface of equation (9) must indeed be an ellipsoid and that the solar velocity
must be the same from both the kinematical and the velocity ellipsoid calculations. For the calculations in this
paper least squares reduced equations (5–7) and L1 equation (10). This seems reasonable because the velocity
ellipsoid in general shows more dispersion than the kinematical data.

5. SOME CORRECTIONS TO THE OBSERVATIONS AND COVARIANCE MATRICES

The total space motions needed in the velocity ellipsoid calculation should be corrected for the effects of
Galactic rotation by modifying the proper motions and radial velocities used in the calculations to remove the
rotation. This was done by the same procedure used in Branham (2006).

In theory one should also apply a correction for the incompleteness of the sample of the K giant stars taken
from the Hipparcos catalogue. Trumpler & Weaver (1962) define a factor of incompleteness K1 as

K1 = N(m,µ)/N$(m,µ) , (11)

where N(m,µ) is the number of stars in the sky for magnitude interval m±∆m/2 and proper motion interval
µ±∆µ/2 and N$(m,µ) is the number of stars in the parallax catalogue for the same intervals. Equation (11)
then transforms itself into a matrix with ∆m rows and ∆µ columns. Trumpler & Weaver (1962) also define a
second incompleteness factor K2 to correct for stars of small proper motion. The evaluation of these factors
becomes complicated, especially if one wishes to include mean errors, not discussed by Trumpler & Weaver
(1962), and to base the evaluation of K2 and its mean error on the ellipsoidal rather than the single star drift
hypothesis.

Equation (11) is difficult to apply if there is insufficient overlap between the proper motion catalog and the
parallax catalog. For the Hipparcos parallaxes a logical proper motion catalog would be the Tycho II catalog
(Høg et al. 2000). Because the Tycho catalog gives no spectral types, one would have to use (B − V ) indices.
The indices for the K giants fall into the range 1.06 to 1.65. Unfortunately, K dwarfs fall into the range 0.84
to 1.39 and the K supergiants into the range 1.42 to 1.94. Disentangling the luminosity groups could only be
accomplished by assuming a certain ratio for supergiants to giants and giants to dwarfs and by also assuming
a uniform distribution between the limits of the (B − V ) indices.

Before going to this trouble one should first query if it is really worth it. Two factors militate against such
an effort: the sparse overlap between the parallax and the proper motion catalog with respect to magnitude,
and the large mean errors for the calculated correction factor. Figure 6 shows contour plots of blue magnitude
versus total proper motion for the Tycho and for the Hipparcos stars. The lack of overlap is manifest. In
forming the table of equation (11), therefore, the correction factors become large because of the small number
of Hipparcos stars in many of the cells.

That this is deleterious becomes evident is we calculate mean errors for the K1 correction factors. Consider
that the error in each N(m,µ) and N$(m,µ) cell is equal to the square root of the number of entries in that
cell. Bok, following Öpik, calls this the “natural uncertainty” for the number (Bok 1937). Call these errors
∆N and ∆N$. Then the error in the correction factor K1 will be

∆K1 =

[

(

∆N ∆N$

)

(

1/N2

$ −N/N3

$

−N/N3

$ N2/N4

$

)(

∆N

∆N$

)]1/2

.
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Fig. 6. Contour plots of blue magnitude versus total proper motion for Tycho and Hipparcos stars.

These errors are substantial. For the K stars, without discrimination as to luminosity class, the average ∆K1

is 10.3 for the cells containing information (many of the cells are empty) and the maximum 569. Do we really
want to multiply the equations of condition by correction factors with such large mean errors? I feel that the
homogeneity of the data is more important. Given that the K giants are homogeneous, we can say that they
represent a random sample and K1 corrections factors are superfluous.

One should, nevertheless, reconcile what has just been written with Trumpler and Weaver’s statement that
“this factor should not become very large”. Seeing as they offer no detailed error analysis, the resolution of the
conundrum would seem to be that they rely more on experience based on contemporary data sets, paltry in
size compared to what is available today. In 1951, when their text was written, the Jenkinss parallax catalog
had about 6,000 entries, and the largest proper motion catalog, Boss’s General Catalog, about 33,000 entries.
Today we deal with catalogs with ten to thirty times the number of entries, and one should accept with caution
recommendations based on far fewer data.

Trumpler & Weaver (1962) also define a second incompleteness factor, K2, to correct for the absence of
proper motions in the parallax catalog nearly along the line of sight and hence undetectable. K2 depends on
the velocity ellipsoid. Trumpler and Weaver’s treatment, while clear, also shows the limitations of numerical
computing in 1951. For example, for the sake of simplicity they base their treatment on the single star drift
hypothesis of stellar motion with respect to the local standard of rest rather than the more complete ellipsoidal
hypothesis. I will base my treatment of the K2 incompleteness factor on the ellipsoidal hypothesis and rather
than divide the sky into finite cells centered on given values for l and b, will integrate over Galactic longitude
and latitude. And rather than divide the parallaxes into subgroups and calculating a K2 for each subgroup, I
will integrate over the parallaxes.

Let tl and tb be the tangential motions in l and b, related to the proper motions by tl = κµl cos b/$ and
tb = κµb/$, and tl0 and tb0 the tangential motions induced by the solar velocity, tl0 = −X sin l + Y cos l,
tb0 = −X cos l sin b− Y sin l sin b + Z sin b. Then the bivariate distribution that represents tangential motion is
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expressed by

Ψlb = 1/2πσlσb

√

1 − ρ2 exp
(

−
[

(tl − tl0)
2/σ2

l − 2ρ(tl − tl0)(tb − tb0)/σlσb + (tb − tb0)
2/σ2

b

]

/2(1 − ρ2)
)

.
(12)

In equation (12) σl refers to the velocity dispersion in Galactic longitude, σb the dispersion in latitude, and
ρ the correlation between the two. These quantities have to be calculated as ancillary parameters from the
velocity ellipsoid calculations. I will present the relevant transformations given that the treatment in Trumpler
& Weaver (1962) is only summary.

The eigenvalue-eigenvector decomposition of the matrix A of equation (10) results in the diagonal matrix
of the axes of the velocity ellipsoid,

Λ =







σ2

1
0 0

0 σ2

2
0

0 0 σ2

3






,

and the orthogonal matrix of the eigenvectors

V =
(

V1 V2 V3

)

=







v11 v12 v13

v21 v22 v23

v31 v32 v33






.

Let s1 = (X Y Z) be the vector of the components of the solar velocity, s2 = (− sin l cos l 0), and
s3 = (− cos l sin b − sin l sin b cos b). Define a vector d1 = s2 − V3. Then γ1 = d1/

√
d1 · d1. Likewise

d2 = s2 − V2 and γ2 = d2/
√

d2 · d2. Finally,

σ2

l =
3
∑

i=1

γ2

1iΛ
2

ii ,

σ2

b =

3
∑

i=1

γ2

2iΛ
2

ii ,

ρ =

3
∑

i=1

γ1iγ2iΛ
2

ii/σlσb .

The integral for the K2 incompleteness factor can now be expressed as the quintuple integral

K2 =

∫

2π

0

∫ π/2

−π/2

∫ $max

$min

∫ tl,c

0

∫ tb,c

0

Ψlbdtbdtld$dbdl/

∫

2π

0

∫ π/2

−π/2

∫ $max

$min

∫ tl max

0

∫ tb max

0

Ψlbdtbdtld$dbdl. (13)

In the upper integral tl,c and tb,c are cutoff values below which the tangential velocity cannot be detected. These

values depend on µ0, the minimum detectable total proper motion: µ0 =
√

µl cos b2 + µ2

b . Of the many ways
to evaluate the integral, I opted for recursive 10th order Gaussian quadrature. The results of the evaluation
will be given in the next section after the coefficients of the velocity ellipsoid have been calculated.

The covariance matrix is given in equation (25) of Branham (2006), and equation (26) of that publication
shows how to calculate mean errors for quantities, such as the Oort constants, derived from the displacement
tensor.

6. RESULTS

After the equations of condition for the kinematical parameters had been formed, I applied two checks for
the adequacy of the reduction model. The first check simply calculates the singular values of the matrix of
the equations of condition. An inadequate reduction model, for example one in which some unknowns are
strongly correlated, results in a high condition number for the matrix because of small singular values. The
condition number of the matrix of the equations of condition for the K giants, however, is low, 33.7. The second
check calculates Eichhorn’s efficiency (Eichhorn 1990), a parameter that varies from 0 to 1 with 0 indicating
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TABLE 1

SOLUTION FOR KINEMATIC PARAMETERS FOR THE K III STARS

Quantity Value Mean Error

σ(1) (mean error of unit weight in mas km s−1) 103.64 · · ·
ux (in mas km s−1) 10.68 4.25

uy (in mas km s−1) 21.84 2.15

uz (in mas km s−1) −10.23 2.48

vx (in mas km s−1) 1.41 2.41

vy (in mas km s−1) −1.29 4.27

vz (in mas km s−1) 8.47 2.57

wx (in mas km s−1) −1.25 2.16

wy (in mas km s−1) −4.39 1.98

wz (in mas km s−1) 10.01 3.99

S0 (solar velocity in km s−1) 21.83 0.26

A (Oort constant in km s−1 kpc−1) 13.08 1.72

B (Oort constant in km s−1 kpc−1) −10.21 1.47

V 0 (Circular velocity in km s−1) 197.94 40.24

l1 (vertex deviation) −7.◦53 3.◦97

K (K term in km s−1) 4.69 3.87

TABLE 2

VELOCITY DISPERSION AND VERTEX DEVIATION OF THE K III STARS

Quantity Value Mean Error

Mean absolute deviation of residuals in mas 8.875 · · ·
S0 (solar velocity in km s−1) 21.83 1.36

σ1 (velocity dispersion in x in km s−1) 50.58 0.99

σ2 (velocity dispersion in y in km s−1) 42.43 1.13

σ3 (velocity dispersion in z in km s−1) 32.92 0.56

l1 (longitude of σ1) 7.◦34 7.◦14

b1 (latitude of σ1) 6.◦14 1.◦45

l2 (longitude of σ2) 97.◦29 5.◦61

b2 (latitude of σ2) −0.◦37 2.◦06

l3 (longitude of σ3) 190.◦79 4.◦64

b3 (latitude of σ3) 83.◦85 1.◦20

redundancy in the parameters and 1 that all parameters are necessary. The efficiency of 0.86 strongly indicates
that all of the variables in the model are necessary and with little correlation among themselves.

The first solution for the K giants was calculated from all of the equations of condition in proper motion
and 880 equations of condition in radial velocity. This solution calculated residuals needed to find discordant
data. To eliminate the discordant data and perform a second solution I used a filter justified by previous
experience: exclude a residual that exceeded five times the mean absolute deviation (MAD) of the residuals.
This eliminated 432 equations of condition, a modest 1.83% trim.

Table 1 shows the solution for the kinematical unknowns, Table 2 for the coefficients and orientation of the
velocity ellipsoid. Notice that both tables show the same solar velocity, although the mean errors are different,
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Fig. 7. Velocity ellipsoid for K giants; ’*’=rectangular velocity of star.

as they should be because different residuals go into their calculation. For convenience the components for
the displacement tensor are converted to the more familiar form of the solar motion, Oort constants, vertex
deviation, and K term. Also shown is the circular velocity V0, found from the relation V0 = (A−B)R0, where
R0 is the distance to the centre of the Galaxy. Kerr & Lynden-Bell (1986) determine a value of 8.5 ± 1.1
kpc for R0. Perryman (2008), however, after a survey of recent determinations feels that 8.2 kpc is a better
determination, although he emphasizes its uncertainty: “...estimates for R0 still lie in the broad range 7.5–8.5
kpc”. The mean error for V0 comes from the procedure given in Branham (2008) and uses 8.2 kpc for R0 with
the same mean error as given by Kerr and Lynden-Bell (1986).

The orientation of the velocity ellipsoid in space and in the x-y, x-z, and y-z planes is shown in Figures 7–10.

7. DISCUSSION

The distribution of the residuals from the kinematical solution, after eliminating discordant residuals, as seen
in the histogram of Figure 11 is somewhat skewed, coefficient of skewness 0.097, more platykurtic, kurtosis of
1.27, than the normal distribution, kurtosis of 3, and more lighter tailed, Hogg’s Q factor of 0.35, than a normal
distribution, Q=2.58. A runs test, however, reveals 11,606 runs out of an expected 11,596. The residuals,
therefore, come from a random distribution.. This confirms, along with the singular values and Eichhorn’s
efficiency, that the reduction model suffers no serious defects and that inclusion of the K1 incompleteness
factor seems unnecessary.

For the residuals from the velocity ellipsoid the situation becomes different, as Figure 12 shows. The
residuals are skewed, coefficient of skewness 2.35, highly leptokurtic, kurtosis 15.03, and light tailed, Q factor
of 0.39. Nor are they even approximately random. The residuals for the K giants show 383 runs out of an
expected 440. There is less than 0.02% probability that these residuals come from a normal distribution. This,
however, hardly comes as a surprise. The ellipsoidal distribution of stellar velocities still remains only a crude
approximation to the actual velocity distribution, even when the stars are divided into spectrum luminosity
classes.

Having a solution for the coefficients of the velocity ellipsoid, one can discuss the significance of the K2

incompleteness factor. The total proper motions for the K giants vary from a minimum of 0.149 mas to a
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Fig. 8. Ellipsoid in x-y plane.

Fig. 9. Ellipsoid in x-z plane.
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Fig. 10. Ellipsoid in y-z plane.

Fig. 11. Histogram of residuals from kinematical solution.
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Fig. 12. Residuals in velocity for K giants.

maximum of 890 mas with a mean of 35.1 mas. Statistical outlier tests would consider most of the high total
proper motions discordant although they are in fact most likely high velocity stars. These high total proper
motions, nevertheless, must be eliminated from the lower integral in equation (13) to avoid artificially inflating
the value of the integral. I chose a cutoff of 226 mas, based on Pierce’s criterion (Branham 1990). The parallax
limits were taken as 1 mas and 1000 mas. The evaluation of equation (13) showed that each integral, upper
and lower, required 1,048,576 evaluations of Eq. (12) and that the value of equation (13) is less than 10−6.
The number of evaluations shows why this type of quintuple numerical quadrature would have been impossible
in 1951, when even a single numerical quadrature required considerable effort with a mechanical calculating
machine. It also shows that the K2 incompleteness factor becomes insignificant for the Hipparcos stars. The
Hipparcos proper motion system is so sensitive that even proper motions nearly parallel to the line of sight can
be detected.

In general one can say that the results given in Tables 1 and 2 follow the general tendencies shown by
numerous previous studies: the solar velocity for the late stars is higher than that for the early stars; the
dispersion of the velocity ellipsoid is higher for the later stars. For a survey of recent determinations of the
kinematical parameters see Perryman (2008). The dispersions of the velocity ellipsoid are higher than those
generally found, but this is a consequence of use of the SDP method; see Branham (2004). That the dispersions
are higher for the later stars, however, is seen in Delhaye (1965), an old but still useful reference. The orientation
of the velocity ellipsoid, Figures 6-9 shows no surprises.

The only quantity that shows a possibly discrepant value is the K term, putatively significant only for the
early stars and with determinations falling near 5 km s−1. The value in Table 1 seems high, but considering
the size of the mean error one may question its relevance. My study of the B6-9 and A giants (Branham 2009),
moreover, shows that the K term is sensitive to errors in the data and more difficult to determine than the
A and B constants. One should, therefore, place little significance in the value calculated for the K term in
Table 1.
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8. CONCLUSIONS

Semi-definite programming proves itself once again a useful tool for problems of Galactic kinematics by
allowing one to combine a solution for the kinematical parameters such as the Oort constants with one for the
coefficients of the velocity ellipsoid. When applied to the K III stars the calculated solutions appear concordant
with what others have found.
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