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RESUMEN

Se investiga la influencia de las fluctuaciones en amplitud sobre la calidad de
la reconstrución de fases en la medición de la curvatura. Se comparan los dos es-
quemas: el que emplea dos imágenes simétricas fuera de foco (esquema de Roddier)
y el que emplea una sola (esquema de Hickson). Se demuestra que la precisión de
la reconstrucción de fases con el esquema de Hickson se ve fuertemente afectada
por fluctuaciones en amplitud incluso leves, mientras que el esquema de Roddier
funciona bien incluso con grandes fluctuaciones en amplitud.

ABSTRACT

The influence of amplitude fluctuations on the quality of phase reconstruc-
tion in curvature sensing is investigated. Two curvature schemes are compared: one
with two symmetrically-defocused images (Roddier scheme) and one with a single
defocused image (Hickson scheme). It is shown that the accuracy of phase recon-
struction with the Hickson scheme is strongly affected even by low-level amplitude
fluctuations, while the Roddier scheme works well under quite strong amplitude
fluctuations.

Key Words: instrumentation: adaptive optics — techniques: high angular resolu-
tion

1. INTRODUCTION

Curvature sensing is a method for phase measurements suggested by F. Roddier (Roddier 1987). The
method allows for phase reconstruction using two symmetrically-defocused images, and its experimental setup
is shown schematically in Figure 1.

The distorted input wavefield passes the lens L1 with focal length f . The curvature signal η (~r) is composed
of the intensity distributions I1 and I2 of two symmetrically-defocused images. The focal length of the lens L2

is equal to f/2. The phase S (~ρ) of the input wavefield can be retrieved from the curvature signal solving the
following equation

η (~r) = −
f (f − l)

kl

[

4S (~ρ) − δ (~ρ − R)
∂S (~ρ)

∂~ρ

]

,

η (~r) =
I2 (~r) − I1 (−~r)

I2 (~r) + I1 (−~r)
, (1)

where R is the aperture radius, k is the wavenumber, δ denotes the delta-function, and the right-side functions
are evaluated for ~ρ = f~r/l.

Equation 1 has been derived applying the geometric optics approximation to the Fresnel integral (Roddier
1987) and it is valid when:

λ(f − l)

r0
�

r0l

f
, (1a)
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Fig. 1. Experimental setup of curvature sensing.

where r0 is the correlation length of the wavefront fluctuations (Fried’s parameter), f is the focal length, and
λ is the wavelength (Roddier 1988).

A modification of the Roddier scheme has been proposed by Hickson (Hickson 1994) who suggested the
use of a single defocused image (either intrafocal or extrafocal) instead of two symmetrically-defocused ones.
In this case, the input phase is retrieved from the same equation 1, but the curvature signal η (~r) is obtained
as [I1 (~r) − I0] /I0, where I0 is a long-exposure intensity at the image plane. From the technical point of view
the Hickson scheme is more attractive because, compared to the Roddier scheme, it assumes a significantly
simplified setup.

Equation 1, which allows the reconstruction of the phase from the curvature signal, is derived for the
case of uniform illumination. However, in real experiments we never have such perfect conditions, so it is
important to know how strongly amplitude fluctuations affect the quality of phase retrieval. In this paper we
use computer simulations to compare the ability of phase retrieval for both schemes in the case of non-uniform
pupil illumination.

2. SIMULATION METHOD

To treat the problem of interest by means of simulations we have to calculate numerically a curvature
signal for a given wavefield at the lens aperture. According to the Fresnel approximation, the field U (~r) at the
out-of-focus image plane of a lens can be described as (Born & Wolf 1987)

U (~r) =
k exp (ikz)

2πiz

∫

GR

d2ρA (~ρ) exp [iS (~ρ)] exp

[

i
k

2z
|~ρ−~r|

2

]

exp

[

−i
k

2f
ρ2

]

, (2)

where U (~r) is the field at the image plane, A (~ρ) and S (~ρ) are the amplitude and the phase at the lens aperture,
z is the distance from the aperture to the image plane, k is the wavenumber, f is the focal length of the lens.
GR means that the integration is performed over the aperture plane, and ~ρ and ~r denote the two-dimensional
position vectors at the aperture and image plane, respectively.

In what follows we use the Zernike polynomial expansion for the initial phase

S (~ρ) = k

L
∑

l=2

alZl

(

~ρ

R

)

, (3)

where Zl denotes the l-th two-dimensional Zernike polynomial (Noll 1976), and R stands for the aperture
radius.

Substituting (3) into (2), we get

U (~r) =
k exp (ikz)

2πiz

∫

GR

d2ρA (~ρ) exp [ikf(~ρ)] ,

f(~ρ) =

[

|~ρ−~r|
2

2z
−

ρ2

2f
+

L
∑

l=2

alZl

(

~ρ

R

)

]

. (4)
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Fig. 2. Effect of amplitude fluctuations for the Roddier scheme (two symmetrically-defocused images).

The integral (4) can be evaluated using its asymptotic expansion (Wong 1989) as

U (~r) =
exp (ikz)

z

N
∑

n=1

σn
√

|αnβn − γ2
n|

A (~ρn) exp [ikf(~ρn)] , (5)

where N is the number of critical points, and ~ρn = {xn, yn} are the Cartesian coordinates of the vector ~ρn.
The coordinates ~ρn of the n-th critical point are determined from the equation

∂f(~ρn)

∂x
=

∂f(~ρn)

∂y
= 0 , (6)

while the quantities σn, αn, βn, and γn are given by

αn =
∂2f(~ρn)

∂x2
, βn =

∂2f(~ρn)

∂y2
, γn =

∂2f(~ρn)

∂x∂y
, (7)

σn =











1, αnβn − γ2
n > 0 , αn > 0,

−1, αnβn − γ2
n > 0 , αn < 0,

−i, αnβn − γ2
n < 0 .

(8)
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Fig. 3. Effect of amplitude fluctuations for the Hickson scheme (a single defocused image).

The approach of asymptotic expansion is often used for numerical evaluations of quickly-oscillating integrals,
as it allows to avoid time-consuming calculations on big grids. In particular, this method is suitable for the
evaluation of Fresnel integral (4) (Born & Wolf 1987). Equation 5 presents only the first terms of the expansion
that correspond to the case of geometric optics. For our considerations this restriction is important because it
has the same range of validity as the curvature sensing equation 1.

Taking into account the above considerations, the simulation procedure is as follows. First, we simulate
some amplitude A and phase S distortions at the aperture. Then, using equations 5–8, we evaluate numerically
the out-of-focus intensity distributions for a given input field. As soon as the needed intensities are obtained
we compose the curvature signal corresponding to the chosen scheme. Finally we retrieve the phase Sr solving
equation 1, and we compare the retrieved phase Sr to the initial one S.

To solve equation 1 we use the following method. As one can see from equation 1, the curvature signal
consists of two terms: the first one is the phase Laplacian 4S (the curvature part of the signal), while the

second one δ (~ρ − R) ∂S(~ρ)
∂~ρ

describes the singular boundary signal. In reality the boundary signal magnitude
is finite and it is located inside a thin but finite edge zone, while the singularity appears because equation 1
has been derived in the geometric optics approximation. However, such a singularity does not allow us to
define properly the influence of amplitude fluctuations on the boundary signal, so we restrict our attention to
the curvature part of the signal. Under this condition, and taking into account equation 3, we can rewrite
equation 1 as

η (~r) = −
f (f − l)

l

L
∑

l=2

al∆Zl

(

~ρ

R

)

. (9)
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Fig. 4. Residual error of phase reconstruction for V-band. The scintillation-less case is plotted by squares.

Representing the phase S as a linear superposition of Zernike polynomials we can solve equation 9 by the
method of least-squares:

∫

GR

d2ρ

[

η (~r) +
f (f − l)

l

L
∑

l=2

al∆Zl

(

~ρ

R

)

]2

= min . (10)

Equation 10 reduces the problem to the numerical solution of the system of linear algebraic equations that
give the values of coefficients al. As a result, we get the retrieved phase as a linear superposition of Zernike.
polynomials

3. SIMULATION RESULTS

Using the approach described in the previous section, we have made some simulations which show how
amplitude fluctuations affect the quality of phase retrieval for the two schemes. The simulations are performed
for the following parameters: the aperture diameter is 1m, the focal length is 15m, the out-of-focus distance is
0.1m, and the wavelength is 0.55 µm.

The phase distortions are simulated as a linear superposition of Zernike polynomials with randomly chosen
coefficients, while the amplitude fluctuations are simulated as a random Gaussian noise. The main aim of these
simulations is just to compare the effect of interest in the two schemes, rather than a detailed quantitative
analysis. For this reason we present some typical results in two figures below.

Figure 2 illustrates the effect of amplitude fluctuations in the Roddier scheme.
The first column of images presents the case of uniform illumination (the initial amplitude is constant, as

shown in the first image). The second image shows the initial phase while the third one demonstrates the
restored phase. As one can see, the residual error of reconstruction defined as the normalized r.m.s. difference
between the initial and restored phase is quite small (0.14%). This error is due to the numerical calculations
and its very small value demonstrates the validity of the simulation procedure.
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Fig. 5. Residual error of phase reconstruction for J-band.

The second column in Figure 2 shows a case of non-uniform illumination. One can see that despite a very
high level of amplitude fluctuations (25%) the phase reconstruction error is not large (7.5%). This result is
not a surprise, because the differential character of the scheme effectively suppresses the effect of amplitude
fluctuations on the curvature signal.

Figure 3 illustrates the effect of amplitude fluctuations in the Hickson scheme.
As in the case of Roddier scheme, the first column presents the results for uniform illumination. One can see

that the phase is restored well (the error is equal to 0.32%). However, even in the case of quite small amplitude
fluctuations, the phase reconstruction becomes practically impossible. This is illustrated in the second column
of Figure 3. One can see that a 0.3% level of amplitude fluctuations results in a 70.8% level of reconstruction
error.

Now, let us consider the effect of turbulence-induced amplitude fluctuations (scintillations). Because the
influence of scintillations on the Roddier scheme has already been studied in (Voitsekhovich & Sánchez 2003),
we restrict here our attention to the case of the Hickson scheme.

Compared to the situation considered above, the case of distortions induced by atmospheric turbulence is
quite different, because amplitude and phase fluctuations are cross-correlated and obey certain statistics. A
method that allows one to simulate cross-correlated amplitude and phase fluctuations produced by atmospheric
turbulence is described in Kouznetsov, Voitsekhovich, & Ortega-Mart́ınez (1997). Using this method we simu-
late the phase and amplitude samples at the aperture and restore the phase for the case of the Hickson scheme.
The simulation parameters are as follows: the aperture diameter is 1m, the focal length is 15m. The simula-
tions are performed in two wavelengths (V -band, 0.55 µm, and J-band, 1.25 µ) for different Fried parameters

r0 (varying from 0.1m to 0.25m). The out-of-focus distance l is chosen from the equation l = 10 λf2

λf+r2

0

that

comes from equation 1a. This choice of l guarantees that the simulations are performed inside the working
range of the conventional (geometric-optics based) curvature sensing. Other choices of l are not investigated.
Also, because in this paper we study the method of the curvature sensing itself rather than its applications for
adaptive optics, the study of the Hickson scheme under closed-loop conditions is not performed.
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Fig. 6. Samples of turbulence-degraded intrafocal images. The Fried parameter r0 = 0.15 m, the wavelength lambda =
0.55 µm, the out-of-focus distance l = 0.12 m. Note: because the simulations are performed in the geometric optics
approximation, diffraction-related effects (like fuzzy edges of the pupil, etc.) do not appear.

The simulation results are shown in Figures 4 and 5. Every point in the graphs is obtained by averaging
over 100 samples. First, in order to check the validity of the simulation and the reconstruction procedure, we
perform the simulations for the scintillation-less case (the amplitude fluctuations in the pupil plane are set
to zero). The results are plotted in Figure 4 by squares, and show that turbulence-induced phase distortions
are retrieved with a suitable error (about 15%–20%). However, in the presence of scintillations the results
are quite different (they are plotted Figures 4 and 5 by points, while some samples of intrafocal turbulence-
degraded images are shown in Figure 6). Analyzing Figures 4 and 5 one can arrive at the same conclusion
as in the case of non-correlated distortions shown in Figure 3: the Hickson scheme cannot provide a proper
phase reconstruction in the presence of turbulence-induced amplitude fluctuations. Note that under closed-loop
conditions the results may be different, but this study is beyond the scope of this paper.

4. CONCLUSIONS

We have compared the quality of phase retrieval in the case of non-uniform illumination for two curvature
schemes: with two symmetrically-defocused images (Roddier scheme) and with a single defocused image (Hick-
son scheme). The results obtained have shown that the Roddier scheme allows a good phase reconstruction
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even under a quite strong level of amplitude fluctuations. This property of the Roddier scheme is due to the
differential character of the scheme, which effectively suppresses the influence of amplitude fluctuations in the
curvature signal. In contrast to the Roddier scheme, the scheme with a single defocused image is very sensitive
to amplitude fluctuations: even a quite low level of them makes the phase reconstruction practically impossible.

This work was supported by Dirección General de Asuntos del Personal Académico (Universidad Nacional
Autónoma de México) under projects IN107906-2 and IN113308 (PAPIIT).
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