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Operational Risk in the Se�lement Process 
of the Mexican Stock Market: A Bayesian approach

J��� F�������� M�������-S������
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Abstract
This paper identifies and quantifies diverse operational-risk (OR) factors in the settlement process 
of  the Mexican stock market through a Bayesian network (BN). The BN model is calibrated with 
data from events that occurred in the settlement process at the Instituto de Depósito de Valores 
(INDEVAL) from 2007 to 2010, and with additional information obtained from experts at the 
Institute. Unlike traditional methods, the BN model calibration uses both objective and subjec-
tive information sources to express the relationship between risk factors (cause and effect), 
strengthening its usefulness as shown in the comparative analysis carried out on BN and traditional 
approaches. It is important to mention that the proposed Bayesian approach is consistent in 
the sense of  Artzner (1998). 
Key words: operational risk, Bayesian analysis, Monte Carlo simulation.
JEL Classification: C11, C15, D81.

I�����������

The Bayesian approach is a feasible alternative for risk analysis in conditions of  
insufficient information. By construction, the Bayesian models incorporate initial 
information by means of  an a priori probability distribution, which includes 
subjective information in decision making, such as expert opinion, analysts’ 
judgments, or specialists’ beliefs. This paper uses a Bayesian network (BN) model 
to examine the interrelation between operational risk1 (OR) within the settlement 
process carried out by the Instituto de Depósito de Valores (INDEVAL) in Mexico. 
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The proposed BN model is calibrated with real data from events that occurred 
in the INDEVAL settlement process and from information obtained from the 
Institute’s own experts2 from 2007 to 2010.

Bayesian models incorporate uncertainty by means of  a parametric probabil-
ity distribution (sample model), and also allow the addition of  initial subjective 
information by means of  an a priori distribution, which can consider expert 
opinion or analysts’ beliefs. The Bayesian approach, together with network 
topology, becomes relevant as an alternative for analyzing the administration 
of  the OR from an economic and financial perspective. 

The OR usually involves a small part of  commercial banks’ total annual losses; 
yet when an severe operational event occurs, sizable losses can accrue. For this 
reason, large-scale changes taking place in the banking industry throughout the 
world strive to improve policies and recommendations regarding operational risk. 

Notably, specialized literature has various statistical techniques to identify and 
quantify the OR, which share a fundamental assumption regarding independence 
among risk events. Examples are Degen, Embrechts, and Lambrigger (2007), 
Moscadelli (2004), and Embrechts, Furrer, and Kaufmann (2003). Yet, as we can 
see in the work of  Aquaro et al. (2009), Supatgiat, Kenyon, and Henssler (2006), 
Marcelo (2004), Neil, Márquez, and Fenton (2004), and Alexander (2002), there 
is a causal relationship among the OR factors.

In spite of  research done by Reimer and Neu (2002; 2003), Kartik and Reimer 
(2007), Leippold (2003), Aquaro et al. (2009), Neil, Márquez, and Fenton (2004), 
and Alexander (2002), that addresses in general terms the application of  BN 
in the administration of  OR, no complete guide exists on how to classify the 
OR events, how to identify or quantify them, or how to calculate the economic 
capital in a consistent way.3 This paper endeavors to close these gaps by, first, 
preparing information structures on OR events in such a way so as to allow 
the identification, quantification, and measurement of  the OR; and, second, by 
changing the assumption of  event independence in order to model the causal 
behavior of  OR events more realistically. To do so, we examine the correlation 

2  When reference is made herein to experts, they are experienced INDEVAL officials who are know-
ledgeable about the operation and administration of  the business lines associated with the settlement 
process. 

3  To measure the maximum anticipated loss (or economic capital) due to OR, the Conditional Value at 
Risk (CVaR) is usually used.
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among risk factors to develop a BN model that identifies and quantifies the OR 
of  the settlement process in the Mexican stock exchange.

This paper is divided into five sections, in addition to this introduction. 
The first covers the typology and methods of  calculating OR in line with Basel 
II (2001a). Then we analyze the theoretical framework that undergirds the de-
velopment of  the paper’s argument, emphasizing the characteristics and advan-
tages of  the BNs. The following section analyzes INDEVAL’s settlement process  
and the problems to be solved, as well as the scope of  the application of  the 
proposed methodology. Then a BN is developed based on an analysis of  the risk 
factors associated with INDEVAL’s security settlements procedure. Two networks 
are obtained, one for frequency, the other for severity. To quantify each net-
work node and obtain the a priori probabilities, probability distributions are 
“adjusted” for those cases where there is historic information (2007-2010); if  
no such information exists, we use experts’ opinion or judgment to obtain the 
corresponding probabilities. Once we have the a priori probabilities of  the two 
networks, we then calculate the a posteriori probabilities by means of  Bayesian 
inference algorithms, specifically using the junction-tree algorithm. In the final 
section we calculate the conditional operational risk of  INDEVAL’s settlement 
process by means of  a Monte Carlo simulation with a posteriori distributions 
calculated for frequency and severity.

T���� �� ����������� ����

The most common definition of  the concept of  operational risk was established 
by the Basel Committee: “the risk of  direct or indirect losses as a result of  sys-
tem failures, inadequate internal processes, human errors, and external events.” 
This definition has an operational focus due to the fact that internal processes 
include both the procedure as such, as well as the internal processes. In sum, 
there are basically four dimensions of  operational risk: human factors, systems, 
procedures, and external events.

Risk identification 

The idea that OR can only occur in operations may be erroneous. This type of  
risk can occur anyplace or any time employees, systems, or procedures play a part 
in the daily work routine or where financial institutions are exposed to risks and 
external attacks. 
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Measuring the operational risk

The nature of  methods used to quantify and measure operational risk varies from 
the simplest to the most complex methods, and among models that use just a 
single indicator to very sophisticated statistical models. 

Methods to measure operational risk 

The following is a brief  description of  the methods found in the literature on 
OR measurement (see, for example, Heinrich, 2006; Basel II, 2001b):

1)  Top-Down single-indicator methods. This method was chosen by the Basel Committee 
as a first approximation in calculating operational risk. A lone indicator, such as the 
institution’s total income or income volatility, or total expenditures, can be considered 
the total liability to be covered given a particular risk.

2)  Bottom-Up methods include the judgment of  an expert. The basis for an expert’s analysis is 
a set of  scenarios. Experts identify the risks and the probability of  their occurrence.

3)  Internal measurement. The Basel Committee proposed a method of  internal measure-
ment as a more advanced procedure to calculate the cost of  regulatory capital.

4)  Traditional statistical approach. Analogously to what occurred with the quantification 
methods for market risk and, more recently, credit risk, research has also made strides 
regarding methods of  calculating operational risk. Yet, as opposed to market risk, it is 
very difficult to find a widely-accepted statistical method. 

5)  Causal models. As an alternative to traditional statistics, causal models have been pro-
posed that assume independence between risk events; in other words, each event repre-
sents a random variable (discreet or continuous) with a conditional distribution function. 
For those events without a historical record or the quality of  which is inadequate, the 
opinion or judgment of  experts is sought in order to determine the conditional prob-
abilities of  the event. The tool for modeling this causality is the BN, grounded in Bayes’ 
theorem and in network topology.

T���������� ���������

In this section we take up the theory underpinning this paper. We begin by dis-
cussing the conditional value at risk (CVaR) as a measure of  “coherent” risk 
in the sense of  Artzner et al. (1998). We then use the Bayesian approach to 
construct a BN, highlighting their advantages over the traditional approach to the 
study of  OR.
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Conditional value at risk (CVaR)

According to Panjer (2006), the CVaR or expected shortfall is an alternative 
measure of  value at risk (VaR) that quantifies losses that can be found in dis-
tribution tails. It is defined as an expected loss for cases where the portfolio 
loss exceeds the value of  the VaR.

If  X denotes a random loss variable, the CVaR of  X is a confidence level 
of  (1 – p) × 100%, expressed as CVaRp(X), which is the expected loss, given 
that total losses exceed the 100p quantile of  the distribution of  X. For arbitrary 
distributions we can write CVaRp(X) as: 
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Thus, the CVaR can be seen as the average of  all VaR values above a confidence 
level p. In addition, CVaR can be written:
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where e(xp) is the average excess of  the loss function.4

4  For a detailed analysis of  the non-coherence of  VaR, see Venegas-Martínez (2006).



98        J��� F�������� M�������-S������ ��� F�������� V������-M�������

The Bayesian paradigm

In statistical analysis there are two philosophical paradigms: frequency and Bayes-
ian. The fundamental difference between the two has to do with a definition of  
probability. Those favoring the frequency paradigm say that the probability 
of  an event is the limit of  its relative frequency in the long run; the Bayesians  
hold that probability is subjective, i.e., a level of  belief  that is updated when new 
information is incorporated; subjective probability (belief) grounded in a know-
ledge base becomes the a priori probability; the a posteriori probability represents 
updated beliefs.

A Bayesian decision maker learns and revises his/her beliefs based on new 
available information. From a Bayesian point of  view, probabilities are inter-
preted as levels of  belief. Therefore, the Bayesian learning process consists of  
revising and updating probabilities. Bayes’ theorem is the formal way to put 
this into practice.5 

Bayes’ theorem

Bayes’ theorem is a rule that can be used to update beliefs based on new infor-
mation (for example, observed data). If  we denote evidence with E and assume 
that an expert believes that it can be associated with a probability P(E), Bayes’ 
theorem says that after observing data (D), the beliefs about E are adjusted 
according to the following expression:

P D E P E
P D

( ) ( )
( )

[3] 

where P(D|E) is the conditional probability of  the data, given that the a priori 
evidence D is certain, and P(D) is the unconditional probability of  the data, 
P(D) > 0. This can also be expressed as:

P(D) = P(D|E)P(E) + P(D|EC)P(EC)

The probability of  E, before receiving data P(E), is called a priori probability; 
once updated, P(E|D) is called the a posteriori probability.

5  To review Bayes’ theorem, see, for example, Zellner (1971).
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We can rewrite the continuous form of  Bayes’ theorem as follows:

P(θ|y) ∞ L(θ|y)π( θ) [4] 

where θ is an unknown parameter to be estimated; y is a vector of  registered 
observations; π(θ) is an a priori distribution that depends on one or more pa-
rameters, called hyper-parameters; L(θ|y) is a likelihood function for θ, and 
P(θ|y) is the a posteriori distribution of  θ (updating the a priori distribution). 
Two questions arise from the above: how to translate the a priori information 
into analytic form, π(θ), and how sensitive is the a posteriori inference to the a 
priori selection. These questions have been a rich topic of  interest in Bayesian 
literature (see Ferguson, 1973).

Bayesian inference

The a posteriori distribution of  the parameter or vector θ, given available infor-
mation y and denoted by P(θ|y), is obtained by applying Bayes’ theorem. It is 
a combination of  data and the a priori distribution, while the a posteriori distribu-
tion has relevant information regarding the unknown parameter.

 
Bayesian networks

A Bayesian network is a graph that represents the domain of  the decision 
variables, their quantitative and qualitative relationships, and their probability 
parameters. Worth noting is the quantitative aspect of  the BNs, since they allow 
subjective elements to be incorporated, such as expert opinion and probabilities 
based on statistical data. Each node in a BN is associated with a set of  prob-
ability tables. The nodes represent the variables of  interest, either discrete or 
continuous. According to Pearl (2000) a causal network is a BN with an additional 
property: “parent” nodes are directed causes.

Theory of Bayesian networks

According to Jensen (1996), the mathematical definition of  a Bayesian network 
consists of:

1) A set of  variables connected by a set of  directed links.
2) Each variable is associated with a finite set of  mutually exclusive states.
3) Variables, together with directed links make an acyclical directed graph (ADG).
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4) For each variable A with parents B1,…,Bn, there is an associated probability defined by 
P(A|B1,…,Bn). Note that if  A does not have parent nodes, the probability of  P(A) is 
unconditional.

Let X = {x1,x2,…,xn} be a random variable with a joint distribution function de-
fined by P(X) = P(x1,x2,…,xn). Bayesian networks give a compact representation 
of  P(X) by factoring a joint distribution in a local conditional distribution for 
each variable, given its parent nodes. Let pa(xi) be the set of  values taken by the 
parent nodes of  variable x; then the total joint distribution would be given by:

P(x1,x2,…,xn) = π[xi|pa(xi)]

Algorithms for calculating inference in Bayesian networks

A Bayesian network is basically used for inference by calculating conditional prob-
abilities, given current available information for each node (beliefs). There are 
two classes of  algorithms for the inference process: the first generates an exact 
solution, and the second produces an approximate solution with high probability. 
Among algorithms with exact inference we have, for example, polytree, clique 
tree, junction tree, algorithms variable elimination and the Pear method.

C����������� �� � B������� ������� ��� ��� ���������� 
������� �� ��� M������ ����� ������

The first step in building a BN is defining the domain of  the problem by specify-
ing its purpose. In what follows we identify the variables or important nodes in 
the domain of  the problem. Then the interrelation between nodes or variables 
is graphed. The resulting model should be validated by experts in the matter. 
Should there be disagreement among them, we return to one of  the previous 
steps until a consensus is reached. The final three steps are: incorporate expert 
opinion (referred to as the quantification of  the network), create feasible sce-
narios with the network (application of  networks), and adjust the estimations 
over time (network maintenance). 

Problems

The main problems faced by a risk administrator using BN are: how to imple-
ment a Bayesian network, how to model its structure, how to quantify it, how 
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to use subjective data (from experts) or objective data (statistics), or both, what 
instruments should be used to obtain the best results, and how to validate 
the model. Answers to these questions will be taken up in the application of  the 
Bayesian model. 

The principal objective of  the application consists of  preparing a guide for 
implementing a BN in order to administer the operational risk in the settlement 
process of  the Mexican stock market. Similarly, we hope to generate a consis-
tent measure of  necessary economic capital to address losses stemming from 
operational-risk events.

Scope of the application

This case study focuses on an analysis of  the match, pre-settlement, compen-
sation, and settlement sub-processes, which are an integral part of  INDEVAL’s 
complete compensation process. Once the risk factors associated with each 
sub-process have been identified, the nodes that will be part of  the Bayesian 
network are defined. These are random variables that can be discrete or con-
tinuous and have associated probability distributions.

Should historical data related to the nodes (random variables) be available, 
they are adjusted with a distribution function; otherwise, expert guidance is 
sought to determine probabilities of  occurrence or the parameter of  some known 
probability function. Known data are daily readings and cover 2007-2010. The 
calculation of  the maximum expected loss will be for a day. It is worthwhile 
mentioning that INDEVAL has other substantive processes, such as custody and 
securities lending. They are not, however, studied here.

The next section will analyze INDEVAL’s settlement process flow (securities 
settlement procedure), which will allow us to identify the risk factors associ-
ated with the operation that, in turn, enables us to define the nodes that will 
be part of  the BN.

Securities se�lement procedure

As previously mentioned, the securities settlement procedure has four sub-
processes: match, pre-settlement, compensation and settlement. A settlement 
operation contains credit or debit orders in securities or cash accounts. These 
orders are known as “actions”. Graph 1 summarizes INDEVAL’s securities settle-
ment procedure.
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G���� 1
Flow of �������’s securities se�lement procedure

ISSUERS Trustees and other
CSDs

Transactions:
customers, brokers, etc. BMV

Warranty 
administration

Securities lending
Repurchase

Income, Accounting
Management information 
system

Custody
Accounts

Se�lement

Payment systemDepositors
Customers

Administration

Guard
Deposit instrument

Pre-se�lement
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Source: �������.

M���� ������������ ��� ��������������

Constructing a network is a two-step process: 1) creating the model’s structure, 
taken up in the following two points of  this section; and 2) quantification of  
the network, covered in the third point in this section.

Risk, process mapping, and node identification

To identify the risk factors, the overall process is divided into three sub-pro-
cesses: match, pre-settlement, and settlement. In each sub-process, we define 
activities, possible associated risks, and factors that make risks occur. For ex-
ample, inputting activities include: transaction request, registration, and trans-
mitting instructions. These activities depend on the front-office’s procedures 
and on the operational personnel. Among the possible risks are: erroneous 
registration, transmission system failure, or error in the previous entry. Risk 
factors would include transaction volume, system availability, and the level of  
training afforded to the inputting personnel. A complete description of  the 
sub-processes, activities, and risks is found in Table 1.



T�
��

� 
1

M
ap

pi
ng

 o
f p

ro
ce

ss
 a

nd
 ri

sk
s

 
M

at
ch

Pr
e-

se
�l

em
en

t
Se

�l
em

en
t

Po
st

-s
e�

lem
en

t

A
ct

iv
iti

es

U
nd

er
ta

ke
 tr

an
sa

ct
io

n
Re

ce
iv

e 
tr

an
sa

ct
io

n 
or

de
r

Pr
ep

ar
e 

tr
an

sf
er

 d
oc

um
en

ts
Fo

re
se

e 
m

ov
em

en
t o

f c
as

h 

Tr
an

sa
ct

io
n 

re
gi

st
ra

tio
n

Va
lid

at
e 

tr
an

sa
ct

io
n

Tr
an

sm
it 

to
 th

e 
ce

nt
ra

l b
an

k 
an

d 
to

 
ar

ea
 in

 c
ha

rg
e 

of
 a

cc
ou

nt
 tr

an
sa

c-
tio

ns

Re
ce

iv
e s

e�
le

m
en

t i
nf

or
m

at
io

n 
fr

om
 

ar
ea

 in
 c

ha
rg

e 
of

 h
an

dl
in

g 
ac

co
un

ts

Tr
an

sm
it 

tr
an

sa
ct

io
n 

in
st

ru
ct

io
n

C
om

pe
ns

at
io

n
 

C
on

ci
lia

te
 a

nd
 c

om
pa

re
 e

xp
ec

te
d 

ca
sh

 m
ov

em
en

ts
 w

it
h 

th
e 

ac
tu

al
 

tr
an

sa
ct

io
n

 
Tr

an
sm

it 
tr

an
sa

ct
io

n
 

 

O
ffi

ce

Fr
on

t-o
ffi

ce
 s

ys
te

m
Ba

ck
-o

ffi
ce

 s
ys

te
m

Pa
ym

en
t s

ys
te

m

H
um

an
 re

so
ur

ce
M

an
ua

l o
pe

ra
tio

n
A

cc
ou

nt
s 

ad
m

in
is

tr
at

io
n 

sy
st

em
 

 
H

um
an

 re
so

ur
ce

H
um

an
 re

so
ur

ce
 

Ri
sk

 fa
ct

or
s

Er
ro

r i
n 

tr
an

sa
ct

io
n 

re
gi

st
ra

tio
n

Va
lid

at
io

n 
er

ro
r

D
el

ay
ed

 p
ay

m
en

ts
Re

co
nc

ili
at

io
n 

er
ro

rs
Tr

an
sm

is
si

on
 s

ys
te

m
 fa

ilu
re

C
on

fir
m

at
io

n 
er

ro
r

D
up

lic
at

e 
pa

ym
en

ts
U

nt
im

el
y 

ac
co

un
tin

g
En

tr
y 

m
ad

e 
ou

ts
id

e 
tr

an
sm

is
si

on
 

tim
e

 
In

co
rr

ec
t s

e�
le

m
en

ts
In

su
ffi

ci
en

t f
un

ds
 o

r o
ve

rd
ra

ft

 
 

U
na

ut
ho

ri
ze

d 
pa

ym
en

ts
 (b

uy
/s

el
l)

 
 

 
La

ck
 o

f p
ay

m
en

t
 

Ri
sk

 fa
ct

or
s

Tr
an

sa
ct

io
n 

vo
lu

m
e

Va
lid

at
io

n 
or

 co
nfi

rm
at

io
n 

m
et

ho
d 

(m
an

ua
l/a

ut
om

at
ic

)
In

co
rr

ec
t i

ns
tr

uc
tio

ns
R

ec
on

ci
lia

tio
n 

m
et

ho
d 

(m
an

ua
l 

or
 

au
to

m
at

ic
)

Sy
st

em
 a

va
ila

bi
lit

y
Sy

st
em

 a
va

ila
bi

lit
y

Va
lid

at
io

n 
er

ro
rs

Sy
st

em
 d

ow
n 

tim
e

 
Ty

pe
 o

f t
ra

ns
ac

tio
n 

C
on

fi
rm

at
io

n 
er

ro
rs

 (
se

tt
le

m
en

t 
be

fo
re

 c
on

fir
m

at
io

n)
Ex

te
rn

al
 e

rr
or

s

 
 

Sy
st

em
 d

ow
n 

tim
e

 

 
 

Sa
m

e 
da

y/
ot

he
r d

ay
 tr

an
sa

ct
io

n
 

 
 

Re
gi

st
ra

tio
n 

af
te

r t
ra

ns
ac

tio
n 

tim
e

 

 
 

G
ro

ss
 o

r n
et

 s
e�

le
m

en
t

 
So

ur
ce

: C
om

pi
le

d 
by

 a
ut

ho
rs

.



104        J��� F�������� M�������-S������ ��� F�������� V������-M�������

The mapping of  processes and risks generates a list of  activities, offices, risks, 
risk factors, and key risk indicators that are all “candidates” to be used as nodes 
in building a Bayesian network.

Structure of the Bayesian network

The selected nodes are connected with directed links (arrows) that make up a 
structure showing the dependency or causal relationship between them.

The network of  the settlement process is divided into two networks: one to 
model frequency and the other for severity, a step that facilitates their analysis. 
Once results have been obtained, these are “added” separately through a Monte 
Carlo simulation in order to obtain the expected loss in the settlement process. 

Frequency

The complete frequency network appears in Graph 2, which is generated 
from the main elements of  the settlement process, as detailed in the chart of  
processes and risks.

G���� 2
Failure frequency network

Transaction volume Se�lement instruction

Back-office-system failure Back-office inactivity

Criticality of failures External factorsConfirm compensationFront-office system

Efficiency in se�lement Se�lement failures

Source: prepared by the authors.
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Severity

The severity network is shown in Graph 3. The network is made up of  four 
nodes, but requires an important amount of  probabilities. The node labeled 
“severity of  loss” is the monetary loss created by a failure in the settlement of  
a position; the other nodes are considered to be information variables.

G���� 3
Failure severity network

Catastrophic events

Human errors

System failures

Loss severity

Source: prepared by the authors.

What follows is a description of  the characteristics of  each node of  the severity 
and frequency nodes, respectively.

T���� 2
Severity network nodes

Node Description States

Systems failure Failures in the ������� se�lement procedure
< 30 000

30 000 to 50 000
> 50 000

Human errors Human errors that result in losses
< 5 000

5 000 to 20 000
> 20 000

Catastrophic events External events such as demonstrations, threats, 
among others

< 50 000
50 000 to 100 000

> 100 000

Severity of losses Expected loss due to operational risk events
< 40 000

40 000 to 100 000
> 100 000

Source: prepared by the authors.
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T���� 3
Frequency network nodes

Node name Description of node States

Transaction volume Transaction volume by period
< 40 000

40 000-100 000
>100 000

Front-office system Availability and proper working of 
front-office system

Working adequately 
(available and working 

correctly)
Working poorly

(system errors or slowness)
Not available

Back-office system down time Includes down time before a currency 
is disconnected

< 5 minutes
5-30 minutes
> 30 minutes

Back-office-system failure The time of the back-office failure
Not critical

Critical

Se�lement instruction Refers to the se�lement instruction
Yes
Not

Confirm compensation

Confirm compensation before se�ling 
transaction. Note that if the se�lement 
instruction is given, compensation is 
automatic; otherwise, it is done manu-
ally with the risk of associated errors

Not confirmed 
(not sent, sent without 

feedback, etc.)
Undertaken incorrectly 
(manually, for example, 

by phone)
Undertaken correctly

Efficiency in se�lement instruc-
tions

Refers to the percentage of correct 
instructions to total instructions in a 
given period

Excellent 100%

Average 98-100%

Poor < 98%

Criticality of failures Refers to the level of criticality of fail-
ures

Low
Medium

High

External factors Number of external events impossible 
to foresee or administer 0,1,2,3,…,17

Se�lement failures

Number of failures in the se�lement 
process in a given time (delays, in-
correct payments, poorly channeled 
payments, non-payments, duplicate 
payments)

0,1,2,3,…,17

Source: prepared by the authors.
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Quantification of the �� for the stock market

To quantify the Bayesian networks mentioned in the previous section, we used 
both objective and subjective data; yet available historical data are scarce or not 
easily codified for use within the network. Thus, we will use mainly subjective 
data in the frequency network. Insofar as the severity network is concerned, it 
is quantified with statistical (objective) data. In what follows we describe the 
tools or techniques used to obtain, codify, and quantify the data.

Statistical analysis of the frequency network

In this section, we analyze each frequency network node; in the case of  nodes 
with available historic information, we adjust6 several distributions until the 
best is found in line with the χ2 statistical test; then we calculate the required 
probabilities. When lacking sufficient data, we turn to experts for information. 
The node labeled “transaction volume” has the following frequency distribution 
and adjusted Weibull density.

G���� 4
Adjusted Weibull

(transaction volume)

�
 Source: prepared by the authors.

6  Adjusting a distribution consists of  finding a mathematical function that correctly represents a statistical 
variable. Steps for the adjustment: 1) hypothesis of  the model; 2) parameter estimates; 3) evaluation of  
quality of  adjustment, and 4) statistical test regarding goodness of  fit. Here we used the R statistical 
language: first we graphed the frequency distribution of  real data so as to propose a distribution model; 
we then undertook various estimations to find the best parameter. We used the χ2 test to determine 
statistically the goodness of  fit. A p-value > 0.05 indicates a good fit.
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We thus calculate a probability table for this frequency-network node, which 
also becomes the a priori probabilities. 

T���� 4
Transaction volume node probabilities

Transaction volume Probability

< 25 000 0.065
25 000 to 35 000 0.913
> 35 000 0.020
Source: prepared by the authors.

With regards to the node labeled “front-office system”, these are data associated 
with risk derived from activities in the first level of  the settlement process, such 
as input by clients, the taking of  a particular position, among others. In Graph 
5, we see the frequency distribution and the adjusted Poisson distribution with 
a λ = 0.4 parameter.7

G���� 5
Adjusted Poisson
(Front-office failure)

�
Source: prepared by the authors.

The preceding graph shows the distribution of  the number of  failures in the 
front-office system; results show small probabilities that there will be more than 

7  The Poisson distribution has two important properties: the first is given by the following theorem: if  
N1,…,Nn is a Poisson variable with parameters λ1,…,λn, then N = N1 +…+ Nn has a Poisson distribution 
with λ1 +…+ λn parameters. The second characteristic is particularly useful in modeling operational risk 
events. It assumes that the number of  losses in a fixed period of  time follows a Poisson distribution; 
further, it also assumes that losses can be classified in m distinct types.
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one failure per day. Nonetheless, what we should calculate are the conditional 
probabilities that this system is indeed working, working poorly, or not working 
at all. Thus, considering previous results and expert knowledge, we calculate a 
table of  conditional probability for this frequency-network node, which con-
stitutes the a priori probabilities.

T���� 5
Conditional probabilities 

of the front-office system node

Transaction volume < 25 000 25 000 to 35 000 > 35 000

Working 0.85 0.7 0.6
Working poorly 0.1 0.2 0.25
Not working 0.05 0.1 0.15
Source: prepared by the authors with information provided by experts.

Given that the transaction volume was less than 25 000 operations, an 85% 
probability exists that the front-office system works, 10% that it works incor-
rectly, and 5% that it does not work at all. The remaining conditional probabilities 
have a similar interpretation.

Regarding the node labeled “back-office-system failure”, the following graph 
show its frequency distribution and adjusted Poisson probabilities.

G���� 6
Adjusted Poisson

(back-office failure)

�
Source: prepared by the authors.

The preceding analysis calculates the probability function of  the number of  
daily failures of  the back-office system, which indicates a small possibility that 
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the system will fail more than once. In line with the frequency network, we are 
interested in estimating the probabilities that the back-office system will fail in 
a critical or non-critical form. So, considering the previous results and expert 
knowledge regarding the criticality of  failures of  the INDEVAL procedure, we 
estimated the following a priori probabilities for the back-office-failure node.

T���� 6
Probabilities of the back-office system 

failure node

Back-office failure Probability

Critical 0.04
Not critical 0.96
Source: prepared by the authors with information provided 
by experts.

With regards to the node labeled “back-office-system inactivity”, the following 
graph shows its frequency distribution and the adjusted exponential density 
function.8 

G���� 7
Adjusted exponential

(back-office-inactivity time)

�
Source: prepared by the authors.

The probabilities associated with the states of  this frequency-network node are 
calculated, which make up the a prioriti probabilities.

8  The exponential function is the only one with a continuous distribution and a constant failure rate, 
h(x) = 1/θ, and an excess conditional expected loss, ed(x) = θ, which is also constant. Thus, the excess 
loss does not depend on the established threshold.
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T���� 7
Probabilities of the 

back-office-inactivity node

Length of transaction Probability

< 25 minutes 0.58
25 to 120 minutes 0.40
> 120 minutes 0.02
Source: prepared by the authors.

For the remaining nodes that make up the frequency network, no informa-
tion registered in a data base exists. Instead, experts’ judgments and beliefs 
allowed us to obtain the probabilities associated with each state in each node. 
The process began by interviewing those responsible for registering opera-
tional risk events. Then a second review was carried out by those involved in 
the settlement process, in order to arrive at a consensus regarding the a priori 
probability distributions. The results of  this process are summarized in the 
following probability tables.

T���� 8
Probabilities of the se�lement 

instruction mode

Se�lement instruction Probability

Yes 0.95
No 0.05
Source: prepared by the authors with information from ex-
perts.

T���� 9
Conditional probabilities 

of the compensation-confirmation node

Se�lement instruction Yes No

Undertaken correctly 0.89 0.85
Undertaken incorrectly 0.01 0.07
Not confirmed 0.10 0.08
Source: prepared by the authors with information provided by 
experts.
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T���� 10
Conditional probabilities of the se�lement-efficiency node

Confirm compensation Correctly undertaken

Front-office system Works Works poorly Does not work

Excellent 100% 0.85 0.82 0.78
Average 98% 0.10 0.13 0.17
Poor < 98% 0.05 0.05 0.05

Undertaken incorrectly

Front-office system Works Works poorly Does not work

Excellent 100% 0.8 0.78 0.75
Average 98% 0.15 0.17 0.25
Poor < 98% 0.05 0.05 0.0

Not confirmed

Front-office system Works Works poorly Does not work

Excellent 100% 0.79 0.78 0.75
Average 98% 0.15 0.16 0.20
Poor < 98% 0.06 0.06 0.05

Source: prepared by the authors with information provided by experts.

A conditional probability exists, given that a compensation confirmation was 
correctly transmitted and the front-office system works properly: there is a 
85% probability that there will be 100% efficiency in the settlement; 10% that 
this will be between 98-99%, and 5% that it will be less than 98%. The other 
conditional probabilities are read in a similar way. The following node measures 
the impact of  potential failures in the settlement process. 

T���� 11
Conditional probabilities of the failure-criticality node

Low inactivity < 25 minutos 25 a 120 minutos > 120 minutos

Back-office-system failure Critical Not critical Critical Not critical Critical Not critical

Low 0.05 0.05 0.06 0.05 0.0 0.05
Medium 0.10 0.25 0.04 0.20 0.05 0.15
High 0.85 0.70 0.90 0.75 0.95 0.80

Source: prepared by the authors with information from experts.
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A conditional probability exists, given that there is back-office inactivity under 
25 minutes and a critical failure of  the system is present. There is a 5% prob-
ability that the criticality will be low, 10% that it will be average, and 85% that 
it will be high. The other probabilities are read in a similar manner.

T���� 12
Probability of the external-factors node

External factors Probability

1 0.489
2 0.39
3 0.05
4 0.04
5 0.02
6 0.01

> 6 0.001
Source: prepared by the authors with information from 
experts.

There is a 49% probability that an external operational-risk event will occur, 
39% that two events will occur, and 12% that more than two such risk events 
will occur.

Finally, the settlement-failures target node works on the assumption of  a 
Poisson probability function with a λ = 0.6 parameter; this assumption is con-
sistent with financial practices and operational risk studies that show that the 
number of  failures usually conforms to a Poisson distribution or a negative 
binomial. Yet the latter is very disperse in processes where expert opinion is 
included for parameter estimation. To estimate the value of  the λ parameter, 
expert opinion was sought and complemented with the results of  the analysis 
of  the front-office-system-failure and the back-office-system-failure nodes, 
which are a fundamental part of  the settlement process. Further, these nodes 
will be used to analyze the system’s sensitivity.

Statistical analysis of the severity network

In this section we analyze every node in the severity network. For nodes with 
available historical information, we adjust the best probability distribution in 
line with the χ2 test and calculate the probabilities as needed. Expert informa-
tion is sought when sufficient data in unavailable.
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The systems-failure node has the following frequency distribution and ad-
justed exponential density for losses caused by systems failures.

G���� 8
Adjusted exponential 

(systems loss)

�
Source: prepared by the authors.

We then calculate a probability table for this node in the severity network, 
showing the a priori probabilities.

T���� 13
Probabilities of the systems-failure node

System failure Probability

< 30000 0.814
30000 to 50000 0.125
> 50000 0.060
Source: prepared by the authors.

From the table we can see that an 82% probability exists that less than $30 000 
will be lost due to systems failures, a 12% chance that between $30 000-50 000 will 
be lost, and a 6% chance that the loss will be above $50 000.

The human-errors node has the following frequency distribution and adjusted 
exponential density for losses due to human errors.

We calculate the probabilities of  this severity network node, which become 
the a priori probabilities.
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G���� 9
Adjusted exponential 

(human-error losses)

Source: prepared by the authors.

T���� 14
Probabilities of the human-errors node

Human errors Probability

< 5000 0.460
5000 to 20000 0.454
> 20000 0.084
Source: prepared by the authors.

From the table we see that a 46% probability exists that less than $5 000 will 
be lost due to human errors, a 45% chance that between $5 000-20 000 pesos 
will be lost, and a 9% chance that the loss will be greater than $20 000.

There is no information recorded in data bases for the catastrophic event 
node, so we obtained experts’ judgments and beliefs for the possibilities as-
sociated for each state.

T���� 15
Probabilities for the catastrophic-events node

Catastrophic events Probability

< 5 000 0.053
5 000 to 100 000 0.253
> 100 000 0.692
Source: prepared by the authors with information from experts.
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According to experts, there is a 5% probability that less than $5 000 will be lost 
due to catastrophic events, a 25% probability that between $5 000 and $10 000 
will be lost, and a 70% chance that the loss will be above $100 000.

Finally, the severity-of-loss goal node represents the sum of  losses associated 
with the system-failure, human-error, and catastrophic-event nodes. To calculate 
the conditional probability table, we used an exponential distribution function 
with a parameter equal to the average of  the previous nodes. The assumption 
of  exponential distribution is consistent with adjusted exponential distributions 
for the system-failure and human-error nodes. In the next section, we generate 
a posteriori probabilities, using Bayesian inference techniques.

A posteriori probabilities

Once each node (continuous or discrete random variables) of  the frequency and 
severity networks has been analyzed and the corresponding probability distribu-
tion functions assigned, we generate the a posteriori probabilities using inference 
techniques for Bayesian networks. The so-called junction tree, one of  several 
exact solution algorithms, is used to undertake the inference, given that it re-
duces the frequency and severity networks to their minimum expression, thus 
avoiding cycles and therefore optimizing processing time. For detailed information 
on algorithms, see Guo and Hsu (2002). The a posteriori probabilities for the 
frequency network nodes with at least one parent9 are shown in Graph 10.

Results from the front-office-system node show that a 71% probability ex-
ists that the operations requested via the securities settlement procedure will 
be recorded and processed without a problem, a 20% probability that some 
minor problem will occur without delaying the process, and a 9% probability 
that the system will not work. These calculated probabilities are conditioned 
by actual transaction volume.

Regarding the confirm-compensation node, there is a 89% probability that 
the settlement order will be correctly confirmed, a 1% probability that it will 
be incorrectly confirmed, and a 10% probability that it will not be confirmed. 
These are conditioned to the existence of  a settlement instruction.

Regarding the criticality of  the failures of  the securities settlement procedure 
as registered by the failure-criticality node, there is a 5% chance that it will be 

9  Nodes without a parent maintain the a priori probabilities.
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a low-level failure, a 22% chance that it will be a mid-level failure, and a 73% 
chance that it will be a high-level failure. These percentages are conditioned to 
the failures or inactivity of  the back-office. The level of  criticality is a key vari-
able in the system, because if  it is high, a systemic risk may occur, i.e., it could 
put the entire national payments procedure at risk.

The settlement-efficiency node has an 83% probability that operations will 
be settled correctly, a 12% probability that they will be acceptable (average), 
and a 5% probability that they will be settled deficiently (poorly); probabilities 
are conditioned to the functioning of  the front-office and to the way that the 
compensation is confirmed.

Finally, the probability distribution of  the settlement-failures node-of-inter-
est show a 55.88% chance that no failure will occur, 32.93% that one failure 
will occur, 9.88% that two failures will occur, 1.98% that three failures will 
occur, and 0.3% that there will be four or more failures. The probabilities are 
conditioned on external risk factors, criticality of  settlement-system failures, 
and on settlement efficiency.

G���� 10
A posteriori probabilities for the frequency network

Transaction volume Se�lement instruction

Back-office-system failure Back-office inactivity

Criticality of failures External factorsConfirm
compensationFront-office system

Eficiency in 
se�lement

Se�lement failures

70.78 Working
19.45 Woorking poorly
  9.78 Not working

Front-office system

88.80 Undertaken correctly
  1.30 Undertaken incorrectly
  9.90 Not confirmed

Confirm compensation

  5.01 Low
22.23 Medium
72.76 High

Criticality of failures

83.15 Excellent 100%
11.77 Average 98 to 99 percent
  5.08 Poor < 98%

Eficiency in se�lement

54.88             0
32.93             1
  9.88             2
  1.98             3
  0.30             4
  0.04             5
  3.56E-3       6
  3.05E-4       7
  2.29E-5       8
  1.52E-6       9
  9.14E-8     10
  4.99E-9     11
  2.49E-10   12
  1.15E-11   13
  4.99E-13   14
  1.97E-14   15
  7.4E-16     16
  2.7E-17     17

Se�lement failures

µ = 0.6, σ2 = 0.6

Source: prepared by the authors.
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To calculate node-of-interest probabilities, we used a Poisson with a λ = 0.6 
parameter; this value was selected considering the results of  the frequency analysis 
of  the front-office-failure and back-office-failure nodes. In addition, it is con-
sistent with empirical evidence that the frequency of  operational-risk events has 
an adequate adjustment under this distribution (see Svetlozar et al., 2008).

We obtain the following a posteriori probabilities for the severity network.

G���� 11
A posteriori probabilities for the severity network

Catastrophic events

Human errors

System failures

Loss severity

46.01           0-5 000
45.49    5 000-20 000
  8.50  20 000-inf

Human errors

µ = 8,538; σ2 = 3.51E7

65.00             0-50 000
25.00    50 000-100 000
10.00  100 000-inf

Catastrophic events

µ = 45,010; σ2 = 7.89E8

81.41           0-30 000
12.53  30 000-50 000
  6.06  50 000-inf

System failures
µ = 20,255.87; σ2 = 1.25E8

65.00              0-20 000
25.00      20 000-40 000
10.00      40 000-60 000

Loss severity

µ = 25,158.39; σ2 = 5.57E8

65.00      60 000-80 000
25.00      80 000-100 000
10.00    100 000-inf

Source: prepared by the authors.

Losses due to human error run 8 538 pesos per day on average. Regarding losses  
due to catastrophic events, including demonstrations, floods, and the like, on 
average they amount to 45 010 pesos per day. The reason for the relatively low 
loss has to do with the security-settlement procedure’s high levels of  security 
and availability, including an alternative headquarters should this type of  
event occur. 

Regarding systems failures, on average there is a daily loss of  $20 255. The 
probability distribution of  the loss-severity node of  interest shows a 59.9% 
chance that the loss will be between 0 and 20 000 pesos; a 21% chance that it 
will be between 20 000 and 40 000; a 9.2% chance of  losses between 40 000 
and 60 000 pesos; a 4.4% chance of  losses between 60 000 and 80 000 pesos; 
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a 2.3% chance that they will be between 80 000 and 100 000 pesos; and a 3% 
chance that losses will surpass $100 000 pesos in a single day.

To calculate the a posteriori node-of-interest probabilities, we used an expo-
nential density with a parameter equal to the average of  the losses due to human 
error, systems failures, and catastrophic events. The exponential distribution 
is consistent with the adjustment of  the probability functions estimated in the 
statistical analysis of  the aforementioned severity network. 

S���������� ��������

In order to measure the model’s sensitivity to changes in a priori probabilities, 
the Poisson distribution functions for the front-office-system and back-office-
system nodes in the Bayesian networks were substituted for the exponential 
distribution functions with λ = 1.5 and λ = 1.2 parameters, respectively. The 
following tables contain the corresponding conditional probabilities. 

T���� 16
Conditional probabilities of the front-office-system node 

with an exponential distribution function

Transaction volume < 25 000 25 000 to 35 000 > 35 000

Working 0.9 0.8 0.7
Working poorly 0.05 0.1 0.20
Not working 0.05 0.1 0.1
Source: prepared by the authors with information provided by experts.

T���� 17
Probabilities of the back-office-system node 

with an exponential distribution function

Back-office failure Probability

Critical 0.02
Not critical 0.98
Source: prepared by the authors with information provided by experts.

Substituting the a priori probabilities for the front-office and back-office sys-
tems and using the same Bayesian inference algorithm, we again calculated the 
a posteriori probabilities and obtained the following results.
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G���� 12
A posteriori probabilities for the frequency network 

with different a priori probabilities

Transaction volume Se�lement instruction

Back-office-system failure Back-office inactivity

Criticality of failures External factors
Confirm

compensationFront-office system

Efficiency in 
se�lement

Se�lement failures

80.45 Working
  9.88 Working poorly
  9.67 Not working

Front-office system

  5.01 Low
22.53 Medium
72.46 High

Criticality of failures

83.42 Excellent 100%
11.50 Average 98 to 99 percent
  5.08 Poor < 98%

Efficiency in se�lement

54.88             0
32.93             1
  9.88             2
  1.98             3
  0.30             4
  0.04             5
  3.56E-3       6
  3.05E-4       7
  2.29E-5       8
  1.52E-6       9
  9.14E-8     10
  4.99E-9     11
  2.49E-10   12
  1.15E-11   13
  4.99E-13   14
  1.97E-14   15
  7.4E-16     16
  2.7E-17     17

Se�lement failures

µ = 0.6, σ2 = 0.6

  2.00 Critical
98.00 Not critical

Back-office-system failure

Source: prepared by the authors.

Comparing the original a posteriori probabilities (see Graph 10) with those cal-
culated in this section (see Graph 12), we can conclude the following:

1) Due to the change in the a priori probability distribution function of  the front-office-
system node, the a posteriori probabilities change in the front-office-system and settle-
ment-efficiency nodes. 

2) The change in the a priori probability function of  the back-office-system node has no 
effect on the a posteriori probabilities of  the failure-criticality node.

3) The changes in the a priori probabilities of  the front-office and back-office systems nodes 
have no effect on the a posteriori probabilities of  the settlement-failure goal node. This 
shows that the Bayesian network constructed after a determined number of  iterations 
converges at the same distribution goal with different a priori distributions, in spite of  
the fact that intermediate nodes can have some change in their probability distribu-
tion. Nonetheless, we cannot conclude that any a priori distribution will have the same 
convergence and results. 
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C���������� ��� ����������� ����� �� ���� ₍O�V�R₎

After undertaking the Bayesian inference to obtain the a posteriori probability 
distribution of  the frequency and loss severity, by means of  a Monte Carlo 
simulation process (10 000 simulations), we integrate both distributions to 
generate a potential loss distribution (using a Poisson with a λ = 0.6 parameter 
for the frequency, and an exponential with a r = 25,158 parameter for severity) 
in the stock market settlement process.10

To calculate the operational value at risk (OpVar), we arranged in descend-
ing order values obtained for expected losses and calculated the corresponding 
percentiles. Table 18 shows results with confidence levels above 98.9 percent.

Thus we obtain a maximum expected loss of  128 047 pesos per day with a 
confidence level of  99%. To calculate the conditional VaR, we obtain an average 
of  losses above a maximum expected loss and add it to the calculated OpVaR. 
Therefore, the CVaR for the operational risk of  the Mexican stock market’s 
settlement process is 280 226 pesos per day. 

Bayesian model validation

To validate results from the Bayesian model, we estimated the probability distri-
bution for frequency and severity through traditional models. Then, through a 
Monte Carlo simulation, we integrated both distributions to obtain a expected 
losses distribution. Lastly, we calculated the operational risk with the estimated 
loss distribution in the traditional way and compared results with those from the 
Bayesian model.

Traditional frequency analysis

We consider the number of  failures that occur daily in INDEVAL’s securities settle-
ment process and adjust it with a Poisson distribution with a λ = 0.6 parameter, 
as seen in the following graph.

10 Readers interested in reviewing the simulation results are asked to contact the authors by email.
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T���� 18
Bayesian model percentiles

Position Loss Percentage Position Loss Percentage Position Loss Percentage

2103 239 313.12 100.00 222 154 194.08 99.60 6924 136 256.33 99.20
8976 213 152.51 99.90 8884 153 787.95 99.60 3426 136 083.84 99.20

27 203 018.88 99.90 3705 153 212.33 99.50 7530 135 607.28 99.20
5901 199 950.08 99.90 311 152 288.94 99.50 1097 135 571.80 99.20
7229 187 705.70 99.90 5326 150 985.23 99.50 6965 134 989.96 99.10
6455 187 524.04 99.90 919 150 384.73 99.50 8068 134 112.84 99.10
6135 185 465.14 99.90 486 149 129.03 99.50 7880 134 013.37 99.10
6546 185 307.37 99.90 7634 149 126.07 99.50 4862 133 833.83 99.10
2237 183 634.97 99.90 993 149 063.51 99.50 4047 133 382.28 99.10
8616 181 100.46 99.90 4381 148 931.94 99.50 4384 132 738.58 99.10
4382 180 380.45 99.80 2154 148 302.14 99.50 2943 132 196.58 99.10
4177 172 486.07 99.80 9082 147 371.88 99.50 91 132 023.54 99.10
6173 171 815.49 99.80 7430 146 304.00 99.40 2361 131 929.16 99.10
6151 171 330.69 99.80 3975 145 729.86 99.40 5424 131 685.31 99.10
3424 170 222.34 99.80 8251 145 186.08 99.40 7030 131 556.15 99.00
7914 169 697.42 99.80 5747 145 178.81 99.40 1555 130 656.72 99.00
8748 169 545.90 99.80 6368 144 770.91 99.40 944 130 431.24 99.00
1318 167 555.95 99.80 7608 144 386.21 99.40 3016 130 163.66 99.00
2521 167 102.30 99.80 1910 144 097.05 99.40 3997 129 729.51 99.00
3124 165 663.06 99.80 6602 143 846.86 99.40 6859 129 009.59 99.00
2749 165 402.39 99.70 6622 143 639.32 99.40 4685 128 960.09 99.00
909 164 877.47 99.70 5967 143 256.44 99.40 170 128 293.91 99.00

3019 163 804.96 99.70 6482 142 320.25 99.30 5396 128 155.89 99.00
7742 162 948.18 99.70 7440 141 924.36 99.30 1452 128 047.20 99.00
4223 162 743.55 99.70 5997 141 827.01 99.30 7015 127 501.12 98.90
9156 161 444.91 99.70 3813 141 695.26 99.30 2905 127 367.27 98.90
8912 160 969.21 99.70 6220 141 480.37 99.30 5296 127 154.49 98.90
3081 159 132.75 99.70 4188 141 034.87 99.30 7309 127 027.85 98.90
6459 158 472.18 99.70 2130 140 567.93 99.30
9335 158 312.15 99.70 473 138 815.48 99.30
2750 158 260.47 99.60 7184 138 582.06 99.30
7056 157 442.74 99.60 9784 138 560.63 99.30

28 156 828.69 99.60 3141 138 145.40 99.20
2897 156 277.99 99.60 159 138 132.77 99.20
1625 156 195.92 99.60 8990 137 726.73 99.20

8 155 410.51 99.60 9558 137 318.94 99.20
733 155 076.53 99.60 211 136 903.18 99.20

4191 154 284.97 99.60 8981 136 337.58 99.20
Source: prepared by the authors.



 S���� M�����: O���������� R��� �� ��� S��������� P������        123

G���� 13
Adjusted Poisson

Source: prepared by the authors.

The χ2 test had the following results: χ2 = 10.86, g – l = 3 and p = 0.0043. The 
χ2 value in tables for a 99% confidence level and 3 degrees of  liberty is 11.34, 
implying acceptance of  the null hypothesis that posits that the sample comes 
from a Poisson with a λ = 0.6 parameter.

Traditional severity analysis

The amount of  daily losses due to operational risk events in the securities settle-
ment process is adjusted with an exponential distribution with an r = 4.930874e-05 
parameter, as shown by the following graph.

G���� 14
Adjusted exponential

Source: prepared by the authors.

We carried out the χ2 text with the following results: χ2 = 4.6377, g – l = 5 y 
p = 0.4617. The p-value is greater than 5% and so we conclude that the sample 
comes from an exponential with a r = 4.930894e-05 parameter.
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Calculating the operational-risk value 
with the traditional model

By means of  a Monte Carlo simulation, we “integrate” the traditional frequency 
and severity distributions so as to generate a potential-loss distribution (using 
a Poisson with a λ = 0.6 parameter for frequency and an exponential with a 
1/r = 20 280 average for severity) in the stock market settlement process.11 For 
the OpVar calculation, the values obtained for expected losses are arranged in 
descending order and the corresponding percentiles calculated. Results with 
confidence levels above 98.9% are shown below.

If  the OpVaR is calculated with a confidence level of  99%, the maximum 
daily expected loss is 100 511 pesos with the traditional model. Thus the OpVaR 
calculation for the operational loss of  the Mexican stock market’s settlement 
process is 223 767 pesos per day. These results show that the OpVaR calculated 
with the Bayesian model is greater than that calculated with the traditional model, 
which can be explained by the causality between the various risk factors, which 
is not taken into account in the traditional model. 

C����������

Currently financial institutions generate large amount of  information arising 
from their interactions with clients, and from within the financial sector itself  
and its internal processes. Yet insufficient attention had been given to the 
dealings of  individuals with the processes and to information systems. This 
concern was expressed by the Bank for International Settlements and addressed 
by Basel II, which asked that relevant institutions establish firm methodologies 
for measuring and administering operational risk.

Within this framework, this paper offers the necessary theoretical grounding 
and a practical guide to identify, measure, quantify, and administer the OR in the 
financial sector by using a Bayesian approach. In the course of  this paper, this 
approach showed that it incorporates elements more closely linked to reality, 
such as: probabilities provided by experts when no historical information ex-
ists; specific probability distributions for each risk factor, be they discrete or 
continuous; updating of  data incorporated into the model, and the interrelation 

11  Readers interested in reviewing the simulation results are asked to contact the authors by email.
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T���� 19
Percentiles for the traditional model

Position Loss Percentage Position Loss Percentage Position Loss Percentage

1217 199 745.04 100.00 5752 128 825.30 99.60 9992 106 439.50 99.20
9678 184 375.55 99.90 5988 127 719.47 99.60 6948 106 283.43 99.20
2654 178 109.30 99.90 9784 127 018.89 99.60 8653 106 225.21 99.20
2433 172 579.05 99.90 2897 126 183.74 99.60 7376 106 100.30 99.20
2398 170 223.61 99.90 9394 124 109.63 99.50 8329 105 865.60 99.20
9923 169 487.34 99.90 1041 123 560.28 99.50 6455 105 135.34 99.20
9474 168 414.57 99.90 4534 123 487.61 99.50 5472 104 787.33 99.20
8964 155 980.20 99.90 8370 121 312.84 99.50 3292 104 413.41 99.20
4032 154 919.70 99.90 5967 120 423.85 99.50 5851 104 136.13 99.10
3975 151 986.89 99.90 5217 120 308.48 99.50 5642 103 735.02 99.10
2613 151 062.46 99.80 7355 119 451.59 99.50 6822 103 686.15 99.10
9666 146 741.97 99.80 9080 119 184.14 99.50 513 103 369.79 99.10
3877 146 052.97 99.80 6175 118 659.98 99.50 7904 103 361.83 99.10
5556 145 415.17 99.80 1500 116 322.99 99.50 7870 103 072.23 99.10
722 145 251.10 99.80 8633 115 948.08 99.40 3068 103 037.19 99.10

4738 143 112.37 99.80 7482 114 098.06 99.40 3763 103 026.49 99.10
6918 140 978.45 99.80 6819 114 073.09 99.40 7933 102 752.43 99.10
3715 139 229.28 99.80 3612 113 114.73 99.40 4359 102 163.58 99.10
1170 137 400.07 99.80 1439 112 991.05 99.40 8954 102 017.97 99.00
8176 135 567.61 99.80 1318 112 838.07 99.40 2246 101 835.59 99.00
5396 135 256.35 99.70 9751 112 750.33 99.40 2058 101 787.87 99.00
9170 135 230.78 99.70 2428 112 547.74 99.40 1632 101 482.69 99.00
3116 135 118.79 99.70 7430 112 048.58 99.40 3282 101 438.75 99.00
1241 135 052.84 99.70 9646 111 800.92 99.40 3203 101 185.93 99.00
4418 134 661.51 99.70 617 111 585.86 99.30 5961 101 083.72 99.00
6165 133 765.73 99.70 5301 110 048.20 99.30 2101 100 940.97 99.00
5955 133 216.33 99.70 9351 109 885.68 99.30 5747 100 911.96 99.00
5177 132 448.04 99.70 8112 109 718.99 99.30 7943 100 511.14 99.00
1218 132 053.30 99.70 859 109 464.93 99.30 724 100 456.09 98.90
6205 131 942.38 99.70 1828 109 163.21 99.30 5316 100 271.60 98.90
7247 130 965.73 99.60 9406 109 100.90 99.30 7754 100 076.60 98.90
3328 130 518.02 99.60 9360 108 234.32 99.30 9208 99 598.29 98.90
3799 130 334.15 99.60 9550 108 128.27 99.30
8472 129 544.93 99.60 4325 107 944.03 99.30
9510 129 210.27 99.60 6201 107 621.53 99.20
8103 129 111.86 99.60 2080 107 401.71 99.20

Source: prepared by the authors.
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(causality) of  the risk factors, by means of  network models. We succeeded in 
demonstrating that Bayesian networks are a viable option for administrating 
operational risk in a climate of  uncertainty and of  scarce information or of  
doubtful quality. Yet the information obtained from experts can generate bias or 
inconsistency, for which reason it is vital to have solid and reliable educational 
tools,12 among them the search conference, an analysis of  business processes, 
and the Delphi technique.

Capital requirements for operational risk, as calculated for INDEVAL, are based 
on the assumption of  an interrelation between risk factors (cause-effect), which 
is consistent with reality. For example, when we analyzed the failure-criticality 
node, we saw that the event is dependent on the back-office-system-failure and 
back-office-system-inactivity nodes. Calculating the operational value at risk by 
means of  the traditional statistical method does not consider the interrelation 
or causality among the diverse risk factors, thus sub-estimating the maximum 
expected loss in terms of  the required capital in the Bayesian model. In a sce-
nario of  extreme losses, the results of  the traditional model would affect the 
operating viability of  the securities settlement procedure.

By construction, a Bayesian network includes market information to calibrate 
the model. In addition, the BN is dynamic and needs to have up-to-date and 
reliable information, thus requiring a knowledge base from which the model 
can draw on systematically. 

The maximum expected loss due to operational risk calculated for INDEVAL’s 
settlement process is a relatively low amount, compare to the daily volume of  
transactions. Yet it reflects the high service and security standards with which the 
securities settlement procedure operates, and is coherent with the systemic tran-
scendence of  one of  the most important settlement procedures in Mexico.

Bayesian networks are based on efficient evidence diffusion algorithms 
that dynamically update the model with real data. For this paper’s purpose, it 
was possible to build a BN and calculate the required capital to administer the 
operational risk, combining statistical data and INDEVAL experts’ opinions or 
judgments.

Within this study, the number of  nodes that make up the networks requires 
few probability calculations and, thus, the junction tree algorithms used herein 

12  By educational techniques we refer to heuristic techniques to obtain quality information from experts 
that will allow us to determine subjective probabilities or beliefs regarding the probability of  some event 
occurring.
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is the most appropriate. To analyze problems of  greater complexity, more pro-
cessing power is required and we would thus recommend approximate-solution 
algorithms, such as the Markov Chain Monte Carlo (MCMC).

The conditional OpVaR calculated with the Bayesian approach is consistent 
in the sense of  Artzner, but it also summarizes the complex causal relation-
ships among the different risk factors that arise from an operational risk event. 
In summary, since reality is much more complex than identically-distributed 
independent events, the Bayesian approach has advantages over the traditional 
manner of  modeling a complex and dynamic reality.
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