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ABSTRACT

The present paper describes a biobehavioral approach to an aspect of social
behavior, namely, learning to respond to the ongoing behavior of another individ-
ual. The approach was implemented through computer simulations that involved
a combination of a neurocomputational model, a network model, a neurodevelop-
mental model, and a genetic algorithm. In Phase 1 of the core simulation, ten
50-generation lineages evolved under a Pavlovian procedure with one conditional
stimulus (cs1). Each lineage had its own random founder population of 100 .
genotypes. In Phase 2, ten genotypes were randomly chosen from the last
generation of each lineage, to form the founder population for a new lineage. In
each generation of this lineage, individuals were randomly selected with a small
probability to function as ‘senders’. Senders were first trained under the same
arrangement as their ancestors. Then, they were given 100 maintenance trials
under the same arrangement, during which their output activations in the pres-
ence of the cs1 served as a cs2 for the rest of the population, which functioned
as ‘receivers’. All individuals were selected for high conditional responding to their
respective CcS. Results showed that selection for responding to the behavior of
another network reduced population genetic and phenetic variation and increased
mean population fitness across generations.
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RESUMEN

El presente articulo describe una aproximacion bioconductual a un aspecto de la
conducta social, a saber, aprender a responder a la conducta de otro individuo.
La aproximacion fue implementada mediante simulaciones por computadora que
envolvieron una combinacion de un modelo neurocomputacional, un modelo de
redes, un algoritmo de desarrollo, y un algoritmo genético. En la Fase 1 de la
simulacion principal, 10 linajes de 50 generaciones cada uno evolucionaron bajo
un procedimiento pavloviano con un estimulo condicionado (Ec1). Cada linaje
tuvo su propia poblacién inicial de 100 genotipos. En la Fase 2, 10 genotipos
fueron seleccionados aleatoriamente de la ultima generacién de cada linaje, para
formar la poblacién inicial de un nuevo linaje. En cada generacion de este linaje,
individuos fueron seleccionados con una probabilidad de .05 para funcionar como
‘emisores’. Los emisores fueron primero entrenados bajo el mismo arreglo que
sus ancestros. Luego, se les entregaron 100 ensayos de mantenimiento bajo el
mismo arreglo, durante los cuales sus activaciones de salida en presencia de cs1
sirvieron de EC2 al resto los miembros de la poblacion, los cuales funcionaron
como ‘receptores’. Todos los individuos fueron seleccionados por mostrar altas
respuestas ante sus respectivos ECs. Los resultados mostraron que aprender a
responder a la conducta de otro individuo redujo la variacion genética y fenética,
e incremento el éxito reproductivo individual a lo largo de las generaciones.

Palabras clave: conducta social, aproximacion bioconductual, simulaciones
por computadora, condicionamiento pavloviano, evolucion, redes neurales artifi-
ciales, algoritmos genéticos.

Many discussions about social behavior revolve around two interrelated issues.
First, there is the issue of reduction, that is, of whether or not the social can be
reduced to the individual-psychological, or even the genetic-biological. This issue
largely arises from the fact that different approaches to social behavior involve
different levels of analysis and organization. Second, there is the issue of exactly
what qualifies as ‘social behavior'. This issue raises questions such as whether
or not nonhuman organisms are capable of behaving socially. The vast majority
of biologists, especially after Darwin (1859), but definitely after sociobiology
(Wilson, 1965), would answer this question emphatically on the affirmative. Psy-
chologists tend to be more adamant in this respect. Some, (e.g., Ribes, this
volume), admit the possibility of a kind of ‘protosocial’ behavior in certain insect
species, such as bees, ants, and termites, but impose a qualitative distinction
between human behavior and nonhuman behavior, to the point of reserving the
term ‘social’ for human behavior. Others, (e.g., Galef and Schuster, this volume),
have no problem in qualifying as ‘social’ the kind of behavior they study in animals
in the laboratory, and would likely join the biologists in this regard.




A BIOBEHAVIORAL APPROACH 309

Conceptual differences notwithstanding, it is clear that an aspect of social
behavior that underlies virtually any use of the term, has to do with responding to
the ongoing behavior of another individual. Of course, | do not deny the possibility
of a single organism responding to its own behavior and, to that extent, of ‘social’
behavior in reference to a single individual. Nor do | deny the possibility of talking
about social behavior in reference to responding to the behavioral by-products of
another individual (e.g., when a human behaves in relation to something written
by another human). However, these possibilities, legitimate and intriguing as they
may be, will not be considered here. Rather, | shall focus on responding (specifi-
cally, in learning to respond) to the ongoing behavior of another individual, and
consider it an aspect that is relatively immune to different definitions of the
concept of social behavior, that is present in most instances of what most
psychologists and biologists would call ‘social behavior’.

My emphasis on such a general aspect of social behavior, however, comes
with a methodological twist, which has to do with the use of computer simulations
as a research tool. According to a widely-held justification, the primary function of
computer simulations is to validate their underlying models, through prediction
and postdiction. Under this justification, computer simulations are supposed to be
realistic, to mirror reality, if their underlying models are to be accepted as
empirically true theories. This, however, is not the only possible reason for using
computer simulations in empirical science. At least three more reasons can be
offered.

First, computer simulations comprise a potentially useful kind of ‘thought’ or
‘imaginary’ experiment. Thought experiments constitute a frequent recourse en
empirical science. Brown (1991) has referred to them collectively as “the labora-
tory of the mind” (p. 1), citing as examples Galileo’s imaginary experiment on
falling bodies (p. 1), Einstein’s chasing of a light beam (p. 15), Schrédinger’s cat,
among other. On the value of thought experiments in biology, Dawkins (1982) has
argued that

...to understand the actual, we must contemplate the possible... (p. 2).

Playing with an imaginary world, in order to increase our understanding of the actual
world, is the technique of ‘thought experiment’... At times, thought experiments are
purely imaginative and wildly improbable, but this doesn’t matter given the purpose for
which they are made. At other times they are informed, to a greater or lesser extent, by
facts from the real world (p. 3).

...scientists are sometimes annoyed by the lack of realism in such forms of reasoning.
Thought experiments are not supposed to be realistic. They are supposed to clarify our
thinking about reality (p. 4).
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Under this kind of justification, computer simulations (and their underlying
models) are acceptable even if they are unrealistic, insofar as they are useful for
clarifying our concepts, explanations, and theories about the phenomenon of
interest, as well as our ways of studying it. In fact, an unrealistic simulation (and
model) may well be more illuminating in clarifying our thinking about reality than
a realistic one. A key argument underlying this reason, in the context of biology,
is that the set of actual biological forms is largely due to accident and historical
contingency. Hence, many of the lawful regularities at work in the determination
of that set can be found only by exploring the much larger set of possible biological
forms (e.g., Dennett, 1995; Gould, 1989; Emmeche, 1994), which can be done
only through simulations.

Under a second reason, computer simulations constitute our best option
whenever the subject matter of interest (and/or its causes) is empirically inacces-
sible to us, because it (and/or its causes) occurs at spatiotemporal scales that are
too small too short or too large too long for us. The evolution of a galaxy is a
notable example. If we are interested in the studying the evolution of a galaxy, we
cannot do it directly. In this sense, the evolution of a galaxy, in and by itself, does
not qualify as a phenomenon, in the philosophically technical sense of the term,
for it is something that is not manifest in our experience. Our only option thus is
to simulate it and our best option is to run computer simulations, based on some
mathematical model, and this is, in fact, the way cosmologists proceed. In this
manner, computer simulations provide us with surrogate phenomena, so to speak,
which become indispensable if we want to study the subject matter of interest at
all. They may also be our best option if such a matter is experimentally inacces-
sible, in spite of it being empirically accessible. In this case, experimental inac-
cessibility is typically due to the fact that the phenomenon of interest results from
complex interactions at different levels of organization, making experimental
analyses extremely difficult, and, in many cases, ethically questionable.

A third reason for doing computer simulations, related to the previous one, is
that they provide us with an ideal tool for exploring the dynamics of systems of
models that have resulted from independent experimental analyses, across disci-
plines or specialties within the same discipline. Experimental science is primarily
analytic, which leads to a fragmentary study of reality. More often than not,
scientists from different disciplines (and from different specialties within the same
discipline) concentrate on particular aspects of what otherwise constitutes a
unitary phenomenon. Models thus are usually proposed to account for (or sum-
marize) specific experimental results that refer to different aspects of the phe-
nomenon of interest. The net outcome of this strategy is a set of models whose
logical and conceptual relationships need to be explored, if we are to make any
attempt at synthesis (i.e., at reconstructing the phenomenon in question from the
conceptual and theoretical pieces that have resulted from the more analytic
endeavors). Computer simulations are very helpful for exploring such relation-
ships in a systematic, rigorous manner.
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The basic premise of the present paper is that social behavior is behavior.
Unless the two occurrences of the term ‘behavior’ have different meanings, this
premise is tautological, but it is precisely this what makes it an ideal premise, for
its truth is indisputable. As such, social behavior can, at least in principle, be
studied through the methods and concepts from any discipline or specialty whose
subject matter is the behavior of organisms. However, behavior has aiso been
studied in a piecemeal manner. So, no discipline can honestly claim to have
behavior in general as its subject matter. Rather, behavior is a realm of study that
is shared by several disciplines, especially biology and psychology. Behavior,
then, is a subject matter of biology as much as of psychology. In all fairness,
practitioners of these disciplines can only claim to have a certain aspect of
behavior as its subject matter. Particularly, biologists have typically focused on
the underlying biological structures and processes of behavior, as well as on its
adaptive value in ancestral environments, while psychologists have concentrated
their efforts more on the causes of behavior in present environments. Some
practitioners of both disciplines have found common grounds in a discipline called
‘behavioral neuroscience’, which has produced a journal of the same name.
Behavior (and, hence, social behavior) is, mutatis mutandis, like the proverbial
elephant of the oft-mentioned Indian fable, while biologists, psychologists (and, to
some extent, sociologists and economists) are like the blind men.

Social behavior is a kind of behavior that seems (as many other kinds of
behavior) suitable for study through computer simulations. First, there is consid-
erable conceptual confusion about it and its determinants. Second, it results from
complex interactions at different levels of organization, which makes it a particu-
larly difficult phenomenon to be studied experimentally. When viewed from the
standpoint of the theory of evolution by selection, some of its causes (as much as
some of the causes of any other kind of behavior) are empirically inaccessible to
us, insofar as they are ancestral. Third, it is a phenomenon whose study has been
divided into different aspects, some of which have been studied by biology, while
others have been studied by psychology. On this basis, computer simulations may
help us clarify our thinking about social behavior, by providing us with surrogate
phenomena that emerge from the dynamics of a system of models that synthe-
sizes analytic efforts from biology and psychology.

In view of the above considerations, the conceptual, theoretical, and methodo-
logical intersections among biological and psychological approaches to social
behavior pose a formidable unification challenge. Given the complexity of the
topic, my purpose in the present paper is very modest. Specifically, the synthetic
strategy | shall adopt is to use computer simulations to explore the dynamics of a
system of biological and psychological models, in reiation to that aspect of social
behavior | shall concentrate throughout the present paper (viz., learning to re-
spond to the ongoing behavior of another).

The present approach adopts a simplifying characterization of individual
organisms as artificial neural networks whose structure is largely heritable (in the
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population-genetic sense of the term), and whose behavior can confer an adaptive
advantage, in the sense of being selectable for and, hence, evolvable, at least in
principle. The empirical part of the paper is a set of simulations in which artificial
neural networks are selected for learning to respond to the behavior of other
artificial neural networks. in the first section, | describe the system of models that
underlies the simulations. The simulations are described in the second section. In
the third section, | conclude with some implications for social behavior in general.

Like any approach to complex phenomena, the present one is preliminary,
tentative, and most incomplete. | just want to provide a starting point for what
could be called, for lack of a better term, ‘computational sociobiology’, the study
of the biological bases (phylogenetic as well as ontogenetic) of social behavior in
artificial systems. The term ‘sociobiology’ has acquired a rather unfortunate fame,
partly due to misrepresentation, partly due to the way some sociobiologists have
developed their field, especially when it comes to applications to certain kinds of
human social behavior. None of such misrepresentations or applications, of
course, are intended here, so | do not pretend to derive any direct implications for
human social behavior. However, as Sober (1993) has pointed out,

...there is no ‘magic bullet’ that shows that sociobiology is and must remain bankrupt,
nor any that shows it must succeed. Any discussion of the adequacy of sociobiological
models inevitably must take the models one by one and deal with the details. (p. 185).

A SYSTEM OF MODELS

A fundamental guiding idea in the present approach is that an adequate under-
standing of behavior in general and, hence, of social behavior in particular,
requires a synthetic, unifying, integrating effort that should aim at a system of
biological and behavioral models. The key notion of a system of models refers to
a set of interrelated mathematical models, related in such a way that the outputs
of (numeric solutions to) some models serve as (numeric) inputs to others. Such
a notion arises from considering behavior as a unitary phenomenon that has been
experimentally studied and theoretically accounted for in a piecemeal, analytic
manner. In this sense, models of different aspects of behavior (and, hence, social
behavior) constitute different pieces, so to speak, to the puzzle of behavior as a
unitary phenomenon.

My intention here, of course, is not to assemble the entire puzzle, but only a
small fraction of it, by selecting and shaping certain pieces so that they fit together
in a logically sound and empirically fruitful (via computer simulations) manner.
Each piece inevitably involves a great deal of simplification, for, after all, the whole
idea of a model is to simplify. So, the models do not attempt to capture all (not
even a substantial fraction) of the richness of their motivating phenomena. Hence,
the resulting fraction of the puzzle will present a rather rough, abstract figure. The
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models presented here have been described in more detail somewhere else
(Burgos, 1995, 1997; Burgos & Donahoe, in press; Donahoe, Burgos, & Palmer,
1993; Donahoe at al, 1982; Donahoe & Palmer, 1994; Donahoe, Palmer, &
Burgos, 1997a, 1997b). Here | only give a very brief, informal description.

The basic prescription underlying the system of models | present here is quite
simple. In order to understand behavior (social behavior included) as a unitary
phenomenon, we must take into account the structure and functioning of nervous
systems, the structure and functioning of how the environment controis the
behavior of organisms, how genotypes become nervous systems, and how behav-
ior in such environments affects reproductive success. If one believes in the
possibility and necessity of unifying biology and psychology (and | must certainly
do), then the need to take all of these aspects of behavior into account can hardly
be denied. Of course, this is not a new idea. The necessity of synthesis has been
expressed by several authors (e.g., Hollis, 1984, 1990; Kamil, 1994; Kandel &
Schwartz, 1982; Teitelbaum, 1977). However, the particular forms that these
attempts acquire vary widely from one author to the other. To be sure, my own
attempt is different from the ones usually found in the biological and psychologicat
literature. As a computational synthesis, my proposal is more readily identified
with those found in the very young (but rapidly growing) discipline known as
‘Artificial-Life’, or ‘A-Life’ (e.g., Adami, Belew, Kitano, & Taylor, 1998; Brooks &
Maes, 1994; Langton, 1992, 1994, Langton & Shimohara, 1997).

Even the most convinced biopsychologists or biobehaviorists, as we could call
those who believe in the necessity of said unification, might be somewhat skepti-
cal with respect to the possibility of achieving it. In effect, each one of those fields
involves a lifetime of research, so any attempt to unifying them is in high risk of
becoming a never-ending endeavor. Anyone can certainly spend a lifetime study-
ing only the relationships between environment and behavior, even studying a
fraction of these relationships. Therefore, any attempt to unify this field with
developmental neuroscience, neuroanatomy, and cellular neurobiology (each one
as extensive as the other), and then trying to unify all of these fields would
certainly seem impossible to achieve, no matter how strongly we believe they
should be unified. And the unification enterprise becomes even more daunting
when we take the phylogenetic, evolutionary aspect into account.

Again, the idea is not to attempt a full unification, one that takes into account
every single known concept, phenomenon, theory, and phenomenon found in all
of these research fields. On the contrary, a synthetic endeavor must be highly
selective and simplifying, if it is to accomplish anything at all. Nonselective,
all-encompassing unification efforts are doomed to wander hopelessly and aim-
lessly in the vast ocean of scientific knowledge. | certainly do not pretend to
achieve a final complete unification, but only a tentative partial one. As | use the
term here, ‘unification’ does not imply ‘completeness’. Rather, it refers to relating
certain notions that typically remain unrelated. Also, there is, once again, the
issue of reduction. My use of the term ‘unification’ here does not intend to denote
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(nor connote) ‘reduction’. Consequently, criticisms to the present synthesis at-
tempt that are based on a rejection to reductionism, simply do not apply. In fact,
I will argue that reduction (understood in a certain way) of the behavioral (or
psychological) to the neural is not possible in the kind of artificial system pre-
sented here.

Another clarification, before | describe the models, is that an emphasis on
synthesis does not entail a rejection of analysis, be it experimental, conceptual,
or theoretical. On the contrary, synthesis absolutely and inevitably arises from all
these forms of analysis. | am a true believer in analysis as the best way of
achieving some understanding about almost anything. However, analysis is not
the end of the road. | see analysis in science only as a means that will be relevant
to the extent that it leads to synthesis. After all, the starting point of science was
nature as such. The analytic character of science necessarily involves a detour
that, more often than not, takes us far away from nature. However, science must
always attempt to find its way back to its original motivation, nature as such, and
the only way is through synthesis. To this extent, synthetic science will be as
legitimate as analytic science. Synthetic science, however, must be carried out
wisely, very carefully, systematically, and very patiently. Otherwise, it could well
end up farther away from reality than analytic science.

The neurocomputational model

The neurocomputational model describes the structure and functioning of the
neural processing element (NPE), a sort of abstract neuron that receives input
signals from its local environment, processes such signals, and returns an output
signal. Fundamentally, then, the NPE is an input-processing-output device inspired
by the basic structure and functioning of neurons.

The neurocomputational model consists of two components, namely, the
activation rule and the learning rule (see the Appendix in Donahoe, Burgos, &
Palmer, 1993, for a mathematical description). The activation rule determines the
NPE’s state (represented as a real number between 0 and 1) at a moment in time
(the model is a discrete-time one), as a function of its input signals at that moment
and the strengths at which the carriers of such signals are connected to the NPE.
Such strengths are measured as connection weights (also represented as real
numbers between 0 and 1). In the jargon of cellular neurobiology, the NPE is
analogous to a neuron’s dendrites plus soma, the carriers of its input signals are
analogous to presynaptic processes, and a connection weight is analogous to the
synaptic efficacy of one of such processes. Input signals to an NPE are partitioned
into excitatory and inhibitory. These signals are processed separately by the NPE
up to a point, after which they are combined to determine the NPE’s activation
state. A similar strategy is used in the activation rule of the model known as the
‘cognitron’ (Fukushima, 1975).
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The learning rule determines how connection weights change from moment
to moment, as a function of changes in the NPE’s activation state and that of its
presynaptic inputs. Changes in connection weights also depend on a magnitude
we refer to as a diffuse reinforcement signal, which intends to simulate the kind
of dopaminergic signals that have been found to be critical for the biological effect
of primary reinforcers (food, water, etc.). This kind of signal is diffuse in that it is
exactly the same signal for all connections at any given moment in time, although
it may differ from one moment to the next. The learning rule has two mutually
exclusive modalities, namely, incremental, which is enabled when the discrep-
ancy signal is positive, and decremental, which is enabled whenever the reinforce-
ment signal is zero or negative. Finally, the functioning of the activation and
learning rules is modulated by certain free parameters, which, from the model's
perspective, are considered as properties of the individual NPE.

The network model

A neural network is a set of interconnected NPEs. The network model consists in
a taxonomy of NPEs plus a number of general prescriptions on how they are to be
interconnected. The taxonomy in question arises largely from the position that
different NPEs occupy in a network, and it is based on the traditional connectionist
distinction between input, hidden, and output layers of elements. Strictly speak-
ing, input elements are not NPEs, for their activation states are not computed using
the activation rule, nor do they receive signals from other NPEs. Rather, the input
elements represent the sensors or receptors of a neural network, for which their
activation represents the occurrence of an environmental sensory stimulus (e.g.,
a light or a tone). For the present purposes, input elements were subdivided into
s1and s2, which represented different sensory channels or modalities (e.g., vision
versus audition). Only hidden and output elements, then, qualify as NPEs.

Hidden elements are divided into cortical and subcortical. Hidden cortical
NPEs are subdivided into sensory-association (sa) and motor-association (ma)
NPES, which are roughly analogous to neurons that constitute the cortical areas of
the same name. Hidden subcortical NPEs are subdivided into ca? (which are
named after the hippocampal area of the same name, and receive plastic connec-
tions from sa NPEs) and vta (which are named after the dopaminergic nucleus
known as ventral-tegmental area, and receive plastic connections from the ma
NPEs). The activation of these NPEs across successive moments in time provides
the source of the diffuse reinforcement signals. In addition to receiving plastic
connections from the ma input elements, vta NPEs receive a nonplastic, initially
strong connection from a us input element, whose activation represents the
occurrence of a primary reinforcer.

Functionally, the distinction between sa and ma NPEs is based on the source
of the diffuse reinforcement signal that modulates changes in the weights of their
respective presynaptic connections. in the case of sa NPEs, the signal source is
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the activation of the ca? NPEs across successive moments in time. The ca1? signal
is amplified by the via one. This latter signal also modulates changes in the
weights of the presynaptic connections to ma NPEs. Changes in the weights of the
presynaptic connections to ca1 subcortical NPEs (projecting from the sa NPEs) are
modulated by the ca? signal (amplified by the vta signal). Changes in the weights
of the presynaptic connections to vta NPEs (projecting from the ma NPEs) are
modulated by the vita reinforcement signal.

As a restriction, only sa and ma NPEs could be excitatory or inhibitory. Also,
only inhibitory connections among NPEs within the same layer were allowed, which
implemented a sort of lateral inhibition. The typical configuration of lateral inhibi-
tion involved at least three NPEs within the same layer, two excitatory and one
inhibitory. An excitatory NPE connected to an inhibitory NPE could inhibit another
excitatory NPE if the first excited the second and the second was connected to the
third NPE.

Finally, output NPEs are subdivided into R NPEs, whose activation represents
the occurrence of an operant response, and CR/UR NPES, whose activation repre-
sented the occurrence of a either a conditional response (CR) or an unconditional
response (UR). The distinction between CR and UR depended on whether the
activation of a cR/UR output NPE was caused by the activation of the s7 and/or s2
input elements, or by the activation of the us input element, respectively. The only
difference between R and CR/UR NPEs was that the latter received nonplastic,
strong connections from the vta NPEs, which, in turn, received a direct, nonplastic,
strong connection from the us input element. The activation of the us-vta-cR/UR
path, then, simulated the occurrence of an unconditional reflex.

A typical neural network is organized into layers through which input activa-
tions are propagated in a feedforward manner from inputs, to hidden, to output
NPES. A network may have only one layer of input elements, one or more layers
of sa NPEs (each with its own layer of target subcortical cal NPEsS), one or more
layers of ma NPEs (each with its own layer of target subcortical via NPEs), and only
one layer of output NPES. Input elements project (i.e., are connected) to the NPEs
that constitute the first sa layer. If a network has more than one sa layer, then sa
NPES in one layer project to the sa NPEs that constitute the immediately succeeding
layer. The NPEs that constitute the last sa layer project to those constituting the
first ma layer. Here is where the sensory-motor link takes place. If a network has
more than one ma layer, then NPEs constituting one layer project to the NPEs
constituting the immediately succeeding layer of ma NPEs. Finally, NPEs constitut-
ing the last ma layer project to the NPEs constituting the output layer. Sensory-as-
sociation NPEs also project to ca? NPEs, while ma NPEs project to vta NPEs. The
magnitude of the diffuse reinforcement signals thus depends not only on the
occurrence of a primary reinforcer (as given by the activation of the us input
element), but also on the occurrence of sensory, neutral stimuli (as given by the
activation of s7 and s2 input elements). In this manner, the model implements a
sort of internal mechanism for secondary reinforcement. After some learning has
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occurred (i.e., after certain environmental conditions have caused changes in the
appropriate connection weights), the mechanism in question allows sensory input
elements to activate (through the sa and ma NPEs) the ca? and vta NPEs, thus
producing the diffuse reinforcement signals in the absence of a primary reinforce-
ment.

In the present approach, a neural network represents an individual’s structural
or relatively fixed phenotype, analogous to the structure of the nervous system of
a natural organism. The functioning of this phenotype, as given by the activation
patterns of its constituting elements, represents the individual’s behavior (or
performance or functional or variable phenotype). An individual’s behavior at a
moment in time thus is formally defined by the vector of activations of all of its
constituting NPEs at that moment. However, when this definition is applied to
actual biological forms, it amounts to defining an organism’s behavior at a moment
in time as the state of its entire nervous system at that moment. Taken literally,
such a definition imposes a rather massive (and largely unattainable) observation
requirement. When an organism’s behavior is observed across time, even in a
simplified environment, it is impossible to keep track of the state of its entire
nervous system. Even in a small artificial neural network, which is much simpler
than the simplest nervous system known to date, such an observation task
becomes cumbersome. So, in the context of behavioral studies, the behavior of
an organism is typically defined in terms of the primary motor output of the
organism’s nervous system. And this is the strategy | will follow here. More
precisely, the behavior or performance of a neural network at a moment in time is
defined as the state of its output activation vector at that moment. Also, learning
can be conceptualized as a change (either incremental or decremental) in one or
more connection weights, as a function of changes in the network’s environment
and as given by the learning rule. Thus we obtain a connectionist interpretation of
the learning-performance distinction.

The environment model

In the present approach, the environment is conceptualized basically in the same
manner as it is conceptualized in animal-conditioning experimental research. The
environment is thus divided into stimuli, whose occurrence is represented by the
activation of a network’s input elements. Two general types of stimuli are identi-
fied, namely sensory stimuli and primary reinforcers. This distinction is analogous
to the one made between css and uUSs in Pavlovian conditioning research, and
between discriminative stimuli and primary reinforcers in operant conditioning
research. Sensory stimuli are subdivided into modalities, which are roughly analo-
gous to the ones identified in conditioning research (e.g., visual, auditory, etc.).
Formally, a stimulus is defined as a vector of sensory-input activations. A re-
sponse is defined in terms of the activation level of a kind of output element.
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The environment is also defined in terms of the statistical and temporal
relationships that the different kinds of events (stimuli and responses) can main-
tain. In this manner, we can define a Pavlovian procedure as an arrangement in
which the us-input activation is temporally and statistically dependent on the
activation of the sensory input elements. An operant procedure can be defined as
an arrangement in which the us-input activation is temporally and statistically
dependent on the activation of the sensory-input elements and on the level of
activation of the R output elements. As a starting point, | shall focus on Pavlovian
arrangements and, hence, on that aspect of a network’s behavior that is given by
the activation of the CR/UR NPEs in the presence of certain sensory stimuli. Also,
for my present purposes, | prefer not to adopt any particular interpretations of what
input and output signals exactly represent in the real world.

The neurodevelopmental model and the genetic algorithm

Formally speaking, a neural network can be viewed as a system of multiple
concurrent realizations of a neurocomputational model, such that the outputs of
certain realizations provide the inputs to others. This way of defining a neural
network provides us with a rather unique criterion for evaluating a neurocomputa-
tional model, a criterion that for all ends and purposes transcends the model itself.
Model plausibility (or validity) constitutes a primary concern in modeling work.
Usually, plausibility (however we choose to define it) is viewed as an internal
property of the modei. For example, a model is regarded as being more or less
plausible (if we view model plausibility as a matter of degree) when it corresponds
more or less to certain data. When multiple realizations of the model are put
together, making them interact with one another, we can observe the global
behavior of the resulting system. However, such a behavior may depend, at least
in principle, not only on the model itself, but also on how many realizations of it
the system involves and how they are related. These variables are not part of the
model itself, and yet they can affect the behavior of a system composed of multiple
realizations of it. When this happens, | call the system’s global behavior an
emergent phenomenon. This possibility raises the issue of whether or not the
behavior of such a system can be reduced to the behavior of its components. It
also makes us revise our model-plausibility criteria.

With respect to reduction, it is clear that if a system’s behavior not only
depends on the behavior of its constituting parts, but also on the way such parts
are put together, then the former behavior cannot be reduced to the latter, at least
not completely. The reason for this is simply that the system’s variables (number
of parts of how they are interconnected) are not variables in the model that
describes the functioning of the parts in isolation. Hence, the system’s giobal
behavior cannot be deduced from the part’s local behavior, in spite the fact that
the former clearly depends on the latter. However, such a dependency is only
partial. If we adopt a multicausality scheme, admit the possibility of causal
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relationships between a system’s behavior and that of its parts, and accept (in a
move that revisits Aristotelian causality) the structure of the system as a legitimate
cause of its global behavior, then the behavior of the part determines the behavior
of the system only partially. In this case, the model that describes the functioning
of the part is necessary but not sufficient to understand the system’'s behavior,
even if the system consists of multiple realizations of the same model. Therefore,
reduction is not possible, at least not in the sense of a system’s behavior being
completely deducible from the functioning of its parts (cf., Bickle, 1998).

With respect to plausibility, if the behavior of a system seems implausible
(relative to some proposed analogous system of interest), then it is always
possible that the source of the implausibility is the way the system is put together,
rather than the model that describes its parts. That is to say, a system may behave
implausibly, even if the model that describes the functioning of its parts is
plausible (relative to some other proposed analogous system). Plausibility thus
can breed implausibility. A model that is plausible at its own level of analysis may
generate implausible behavior in a system consisting of multiple realizations of
the model in question, again, if said behavior also depends on the way such
realizations are put together.

Applying the above considerations to artificial neural networks involves asking
whether or not a network’s behavior depends on the network’s structure. As far
as | know, only the present neurocomputational and network model has shown
clear and systematic dependencies of that kind. Moreover, such dependencies
are consistent with certain conditioning phenomena (e.g., the IsI function and
variations in the optimal 1Si across preparations in Pavlovian conditioning; see
Burgos, 1995, 1997; Burgos & Donahoe, in press). The main implication for the
present purposes is that a network’s architecture is a variable that affects its
behavior. This implication leads us to always consider the possibility that when a
network behaves implausibly (relative to some natural animal organism), such
behavior may be due to the network’s architecture. So failure to simulate a given
behavioral phenomenon in a neural network may not be due to the neurocompu-
tational model. This possibility raises a formidable methodological problem, for we
are forced to search the rather massive architecture space (the set of all possible
neural networks), in order to determine the extent to which the network’s behavior
depends on its architecture.

Clearly, it is most impractical to search such a large space manually. An
automatic search procedure thus is needed. Ideally, the procedure in question
should not only allow for a relatively efficient and successful search, but also it
should be consistent with some biological theory. The ideal choice is a genetic
algorithm, a model of evolution by selection, inspired by the synthetic theory of
evolution. Before | describe this model, however, | need to mention briefly the
model | have used to simulate neural development, a key process where ontogeny
and phylogeny intersect in critical ways.
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The neurodevelopmental model was an algorithm for transforming bit strings
(representing genotypes, the individuals’ genetic makeup) into neural networks.
The use of bit strings to represent genotypes is taken from the theory of genetic
algorithms (see later). The bit string used in the present model consisted of 323
bits representing gene loci, whose possible values (0 or 1) represented alleles.
Each bit string was subdivided into 68 fragments, each one encoding in binary a
decimal parameter that determined some feature of a network’s architecture. The
three basic features were the maximum numbers of each kind of element (s1, s2,
sa excitatory and inhibitory, ca1, ma excitatory and inhibitory, vta, R, and CR/UR),
the probabilities of different kinds of NPE connecting to one another, and the free
activation and learning parameters for each kind of NPE. The model was inspired
by the general organization of neural development into functional stages, found in
developmental neuroscience (e.g., Brown, Hopkins, & Keynes, 1991). According
to this organization, neural development starts with the stage of proliferation,
during which immature nerve cells (neuroblasts) are produced through mytosis.
Then, newborn cells migrate from their point of origin (the so-called ‘ventricular
zone) to their final resting place (the so-called ‘cortical plate’). In a developing
neural network, migration amounts to distributing nondifferentiated elements into
layers. After migration, the elements are differentiated, which amounts to deciding
probabilistically whether an element will be excitatory or inhibitory, or whether an
output element will be r or CR/UR, and so on. The activation and learning free
parameters are also assigned to each kind of NPE during this stage. During the
synaptogenesis stage, elements of different kinds are probabilistically connected,
and the initial weights are computed by multiplying the spontaneous activation of
the potential pre-and postsynaptic elements (i.e., a Hebbian rule was used to
determine the initial weights). Hence, initial connection weights were not directly
encoded in the genotype. Finally, during the cell-death stage, elements that did
not receive any connections (except for input elements) and/or elements that did
not send any connections (except for subcortical and output NPEs) were elimi-
nated from the network. Because many of the encoded parameters were prob-
abilistic, the same genotype could produce many different networks. So there was
a one-many relation between genotypes and structural phenotypes, which al-
lowed for phenotypic variation associated with the same genotype.

Finally, a genetic algorithm was used as a computational procedure for
simulating evolution by selection, according to the synthetic theory (see Goldberg,
1989; Holland, 1992; Mitchell, 1996, for introductions to genetic algorithms). The
core of a genetic algorithm is the so-called ‘selection scheme’, a procedure for
selecting individuals (whose genotypes are represented as bit strings that encode
certain phenotypic traits) for reproduction, based on a quantitative criterion known
as ‘fitness’. This criterion is used for selecting which individuals (and with what
frequency) will reproduce and, hence, pass their genetic material to the next
generation. The genotypes from those individuals that have been selected for
reproduction are recombined, with a certain, usually high probability, in order to
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produce new descendant genotypes, which will constitute members of the next
generation. Then, genes in the newly-produced genotypes are mutated (i.e., if a
gene with an original allele of 1, then is changed into an allele of 0, or viceversa)
with a small probability. In a genetic algorithm, then, most of the genetic variation
in a population arises from genetic recombination or crossover at the moment of
reproduction.

For simplicity, the present neurodevelopmental and genetic algorithm assume
that all networks had a built-in us-vta-cr/uUR path whose activation simulated the
occurrence of an unconditional reflex. Networks thus had the capacity of showing
one and only one unconditional reflex. Therefore, the present approach already
assumes the occurrence of a previous, hypothetical evolutionary process that
resulted in that kind of structure. In this sense, the approach represents an
incomplete depiction of the phylogeny of behavior, one that assumes the availabil-
ity of certain primary anatomical structures that are necessary for learning to
occur and that must have been the resuit of evolution by selection.

In the present approach, an individual’s fitness is defined as its behavior under
certain environmental conditions. More precisely, individual fitness is identified
with the behavior (functional phenotype) of a neural network (structural phenotype
developed from a genotype) under certain Pavlovian contingencies. An individual
thus is conceptualized as being constituted by a genotype (defined as a bit string),
a structural phenotype (defined as a particular neural-network architecture), and
a functional phenotype (defined as the activation of the network’s output NPES).

SIMULATIONS
General description

The main aim of the simulations presented here was to apply the system of
models that | described in the preceding section, in order to simulate the phylo-
geny of a certain aspect of social behavior, namely, responding by an individual
to the behavior of another individual, under a Paviovian arrangement. My focus
on this particular kind of arrangement is a convenient methodological simplifica-
tion, more than a theoretical proposal. Indeed, a neural network consists of a set
of interconnected NPEs. Although many different network architectures are possi-
ble, the functioning of any NPE is described by exactly the same neurocomputa-
tional model. Therefore, the present approach does not introduce any fundamen-
tal (i.e., principled, theoretical) distinction between Pavlovian and operant
conditioning (see Donahoe, Palmer, & Burgos, 1997a, 1997b). That is to say,
when this distinction is reconstructed within the context of the present neurocom-
putational and neural-network models, the only meaningful separation ends up
being methodological in nature (Burgos, 1999).
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The Pavlovian arrangement used in all of the simulations involved a forward-
delay procedure with continuous reinforcement. Such an arrangement involved
activating a network’s sensory input units with some level of activation for 7
time-steps (ts), where a ts represents a relatively short moment in time. The
specific activation of the input units depended on whether the cs in question
represented a nonsocial cs (€sS1) or a social cs (¢s2). cs1 was defined as a
constant activation of input units of a given kind (either s7 or s2) with a value of
1, throughout those 7 ts. This ¢s was considered as nonsocial only in the sense
that its source was not the output activation of another neural network. In contrast,
cs2 was defined as the activation of a given type of input unit with a level equal
to the average activation across CR/UR output NPEs of another, randomly-chosen
network. In all the simulations, ¢s1 involved the activation of all s7 input units,
whereas ¢s2 involved the activation of all s2 input units. Reinforcement involved
the activation of the us input unit with the maximum possible value.

Any given network received instances of only one kind of cs, although
different networks within a population could receive different kinds of cs. Net-
works that received cs1 were called ‘senders’, while those that received cs2 were
called ‘receivers’, both roles being mutually exclusive and permanent within a
generation. In all simulations, the probability that a network was chosen as a
sender was .05, for an average of 5 senders per generation and 19 receivers
randomly assigned to each sender. Having such a small proportion of senders
was motivated by the aim of making most of selection (and, hence, most of
evolution) depend on the behavior of the receivers, the behavior of interest here.
Once a network was chosen as a sender, it remained as such throughout its entire
generation. The same applied to the receivers. For all instances of cs1 and cs2,
reinforcement was scheduled to occur at ts = 7. Hence, the interstimulus interval
(1s1) was 6-ts long. The intertrial interval was not explicitly simulated. Rather, it
was assumed to be sufficiently long as to allow all NPE activations in a network to
decay to a low (close-to-zero) level of activation.

A simulation amounted to creating a lineage, defined as a sequence of
populations related by descent, each one representing a generation. All popula-
tions consisted of 100 individuals. All lineages started with a founder population
(known as GO) consisting of randomly-generated genotypes. A generation was
defined as a population of 100 individuals that underwent a development-training-
selection-reproduction cycle. Individual selection depended on the individual’s
fitness, which was defined for all simulations as the average activation across its
CR/UR NPEs at ts = 6 (the moment immediately before reinforcement), across 25
additional trials given after the 100 training ones. The selection scheme used for
all generations was the so-called ‘tournament selection’. This scheme consisted
in choosing, randomly and with replacement, samples of 5 different individuals
from the population, and selecting for reproduction the individual with the highest
fitness. If all individuals had exactly the same fitness, then no selection took place
for that tournament, and a new tournament took place, until a reproduction pool
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of 100 individuals was obtained. Then, reproduction took place between pairs of
individuals randomly chosen from the reproduction pool.

For all generations, the genotypic crossover probability during reproduction
was set to .8, while the mutation probability of newly-produced genotypes, after
reproduction was .001. Training only modified a network’s connection weights.
However, an individual’'s experience did not modify its own genotype, which
ensured a non-Lamarckian genetic transmission. Finally, there was no overlap
among generations, that is, parent networks did not interact (behaviorally or
otherwise) with their offspring (i.e., they were taken away from their parents at
birth). After a new population of 100 genotypes was obtained, the development-
traning-selection-reproduction cycie started anew, and it was repeated for either
50 or 100 generations.

Simulation 1

In the first simulation, | simply tried to simulate the evolution of responding to
another individual’'s behavior from scratch, so to speak, that is, starting directly
with a randomly-generated population of genotypes. A single lineage was gener-
ated, consisting of 100 generation of 100 individuals each. Each sender was first
given 100 acquisition cs1 (reinforced) trials. This initial training was considered
necessary in order to obtain a relatively high cr/UR activation at ts = 6, as to serve
as a substantial cs2 input signal for the receivers. Typically, naive networks (i.e.,
networks that have not received any training whatsoever) show very small (close-
to-zero) output activations. Therefore, naive senders provide a very weak input
signal for the receivers, thus preciuding the latter from achieving any substantial
learning. This difficulty is overcome by pretraining the senders. The implication of
this for social behavior in general is that social learning is far more effective if at
least one of the participants has had some previous experience. So, after pretrain-
ing the senders, they were given 100 additional (maintenance) cs1 trials, corre-
sponding (in discrete time) to 100 ¢s2 acquisition trials for the receivers. Finally,
all networks were given 25 additional reinforced trials (cs1 for the senders and
cs2 for the receivers), in order to compute individual fitness. After selection for
reproduction, senders could mate among themselves or with receivers. Also,
receivers could mate among themselves. Given the small number of senders in
the population, however, the most likely mating relation was the one among
receivers, for they comprised 95 percent of the population on the average.

The main result was that there was no substantial increase in the mean
population fitness across generations and, hence, there was no substantial evo-
lution. This result was due to the following situation. At the outset of the lineage
(i.e., in G0), the vast majority of the individuals showed very little acquisition, for
which their cRUR activations tended to be close to zero. Because of this, the
senders showed a very little CR/UR activation, even after 200 reinforced trials (in
preliminary simulations, this situation did not improve with larger numbers of
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training trials). Therefore, cs2 was a very weak signal, which made acquisition far
more difficult for the receivers. Consequently, most of the population showed very
little or no acquisition at all. Of course, there must have been some behavioral
variation within GO, however small. Otherwise, selection would not have taken
place and the simulation would not have gone beyond GO. Nevertheless, since
selection and reproduction occurred mostly among the receivers, there was very
little opportunity for any substantial evolution due to any learning achieved by the
senders. Any adaptive advantage that learning may have given to the senders
was statistically swamped at the moment of selection and reproduction by the lack
of learning on the receivers part. Such a lack of learning, in turn, was due to the
very little learning shown by the senders at the outset of evolution. So this
simulation produced a sort of vicious circle, where little initial learning prevented
itself from becoming more substantial across generations.

The main implication of this effect is that in order to obtain a substantial
evolution of social behavior, a previous evolutionary process must take place in
which the effect in question does not arise. In principle, such a process would
have to involve training with a maximally strong cs1, so that any adaptive
advantage provided by learning to respond to this cs is favored across genera-
tions. This was the main motivation for running the next simulation.

Simulation 2

This simulation was divided into two phases. In Phase 1, a lineage was created
from the same founder population used in Simulation 1, with the difference that all
networks were trained with ¢s1. As the upper panel of Figure 1 shows, the mean
genetic overlap (measure of genetic similarity) increased substantially from GO to
G50, which indicates that individuals in G50 were genetically far more similar
among themselves than individuals in GO. The lower panel shows that mean
population fitness also increased substantially from GO to G50. Also, individuals
in the last generation showed an increase in the average CR/UR activation across
training trials, from close-to-minimum to close-to-maximum values, indicating a
substantial learning to respond to cs1. These results reproduce previous ones
(see Burgos, 1997). Then, in Phase 2, Simulation 1 was repeated but using G50
as a founder population.

The upper panel of Figure 2 shows that the mean genetic overlap remained
roughly the same from G50 to G100 (the last generation of Phase 2). However,
this does not necessarily mean that these two populations were genetically
similar. Indeed, the lower panel shows two effects. First, the new selection
pressure substantially decreased the average fitness for G50, relative to the
fitness of the very same generation under the selection pressure in Phase 1. This
rather sharp decrease in the average population fitness was due to the fact that
the cs2 Isl for the receivers in this phase was much shorter than the cs1 1sI for
the senders in Phase 1 and Phase 2. Indeed, while the cs1 isi had an effective
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Figure 1. Changes in mean population genetic overlap (upper panel) and mean population
fitness (lower panel) from GO to G50, Phase 1, Simulation 2. Genetic overlap was a
measure of genetic similarity between pairs of individuals. An overlap of zero indicates that
the two genotypes have the same alleles in half of their genes. This is the expected value
for a randomly generated population. An overlap of 1 indicates that the two genotypes
have the same alleles in all of their genes. Individual fitness was defined as the mean
activation per CR/UR NPE per evaluation trial after training. Error bars represent standard
errors.

duration 6 ts, the cs2 IsI lasted approximately between 2 and 4 ts. This happened
because cs2 was identical to the CR by the senders to cs1, and this CR tended to
have an approximate delay between 1 and 4 ts. That is to say, while cs1 (the
nonsocial stimulus given to the senders) involved a constant, maximum input
activation across ts, cs2 (the social stimulus given to the receivers) involved a
variable input activation.

The second effect was that selection for responding with a high cr/UR activa-
tion to the behavior of another individual during Phase 2 resulted in a substantial
increase of average fitness population. This effect indicates that evolution of this
kind of responding occurred, despite the fact that the genetic variation in G50 was
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Figure 2. Changes in mean population genetic overlap (upper panel) and mean population
fitness (lower panel) from G50 to G100, Phase 2, Simulation 2. Error bars represent
standard errors.

very low. If we view G50 and G100 as representing phenotypically (and, hence,
genotypically) different species, an implication of this result is that selection for
responding to the behavior of another individual might be sufficient to produce
speciation, that is, the generation of one species from a different one. As Figure
3 shows, G50 and G100 were phenotypically (and, hence, genotypically) different.
In fact, the social contingency caused a decrease in the network size. This effect
was due to the fact that the I1si for cs2 was shorter than the IsI for cs1. As
mentioned before, previous simulations based on the present approach have
shown a systematic relation between network architecture and performance,
under temporally different stimulus relations. More specifically, smaller networks
tend to perform better under arrangements that involve a shorter 1SI than under
arrangements that involve a longer I1sI (Donahoe & Burgos, in press). Also,
selection for high CR under a shorter IsI results in smaller networks than selection
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Figure 3. Changes in the mean number of elements (upper panel) and mean number of
connections (lower panel) from G50 to G100, Phase 2, Simulation 2. Error bars represent
standard errors.

for high CR under longer IsI (Burgos, 1997). The present findings thus replicate
these resuits.

Simulation 3

In the previous simulation, speciation due to selection for responding to the
behavior of another individual (Phase 2) was obtained from the last generation of
a single lineage (Phase 1). This result, however, may be specific to the particular
population obtained in Phase 1 (viz., G50). In order to test the generality of this
result, a genetically (and, hence, phenetically) more diverse population should be
obtained from the last generation of several different lineages.

For this simulation, then, a total of 10 different lineages were generated, each
one with its own random initial population. Each lineage repeated Phase 1 of the
previous simulation, leading to comparable results. That is, selection for respond-
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Figure 4. Mean genetic overlap for each population in GO (upper panel) and G50 (lower
panel), Phase 1, Simulation 3. The inset in the upper panel shows mean genetic overlaps
for GO in a different scale. Error bars represent standard errors.

ing with a high cr/UR activation to cs1 resulted in a substantial increase in mean
population genetic overlap (see Figure 4) and mean population fitness (see Figure
5) from GO to G50. Then, a sample of ten genotypes was randomly selected from
the last generation of each lineage, to obtain a new founder population for Phase
2. As Figure 6 shows, the mean number of elements and number of connections
of the networks constituting these samples can be ordered in a scale, analogous
to the kind one can construct from certain quantitative properties of the brains of
actual species (e.g., see Eccles, 1989, pp. 39-42). Of course, strictly speaking,
the present scale is not a phylogenetic one, for the resulting populations came
from different, independent, random initial populations. Therefore, they were not
phylogenetically related. But still, the model is sufficiently powerful to generate
equally fit, although phenetically and genetically different populations, from ge-
netically different initial populations, through identical selection pressures. An
implication of this outcome for the phylogeny of behavior in actual biological forms
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Figure 5. Mean fitness for each population in GO (upper panel) and G50 (lower panel),
Phase 1, Simulation 3. The inset in the upper panel shows mean fitness for GO in a
different scale. Error bars represent standard errors.

is that identical selection pressures, working on genetically different populations,
lead to genetically (and, hence, phenetically) different populations.

Then, Phase 2 was run, which was identical to Phase 2 of the previous
simulation. As the upper panel of Figure 7 shows, the mean genetic overlap for
G50 was below .25, indicating that genetic variation in the population was consid-
erable. But after 50 generations of selection for responding to the behavior of
another individual, the mean population genetic overlap increased substantially.
The lower panel shows that this selection also resulted in a substantial increase
in the mean population fitness from G50 to G100. Note that the average fitness
for G50 was considerably higher than the one for G50 in the previous simulation
(roughly .35 versus .08, respectively). This outcome is due to the fact that some
receivers in the present G50 were able, at the outset, to learn to respond with a
relatively high CR to ¢Ss2, in spite of the fact that their ancestors had never
experienced ¢s2. This phenomenon can be explained by arguing that the prob-
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Figure 6. Mean number of elements (upper panel) and connections (lower panel) for
random samples (n = 10) of each population in G50. These samples constituted the
founder population for Phase 2 of Simulation 3. Samples were ordered according to the
mean number of elements. Each sample was identified as the lower-case letter of its
population (e.g., a’ was a random sample of ten individuals from population A’ in G50 of
Phase 1). Error bars represent standard deviations.

ability of obtaining such individuals after generating ten lineages (the case in the
present simulation) is substantially larger than after generating only one lineage
(the case of Simulation 2).

Finally, as Figure 8 shows, selection for responding to the behavior of another
individual resulted in genetically and phenetically very similar individuals. Such a
drastic reduction in variation is due to the fact that selection acted upon a single
initial population. Also, the last generation consisted on rather small networks.
This outcome can be explained, once again, by the fact that the environmental
arrangement for the receivers involved a shorter 1Si than the one used in training
during Phase 1 (see Figure 3, about Phase 2 of Simulation 2).
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Figure 7. Changes in mean population genetic overlap (upper level) and mean population
fitness from G50 to G100, Phase 2, Simulation 3. G50 consisted of random samples from
the different populations obtained in Phase 1. Error bars represent standard errors.

DISCUSSION

I have presented an approach to behavior in general and to social behavior in
particular, based on the key notion that an understanding of social behavior
requires a synthesis of biological and behavioral models that have been obtained
through conceptual and experimental analysis. The proposed synthesis assumes
a conceptualization of biobehavioral phenomena as being organized into a hier-
archy of levels of analysis or organization, which roughly correspond to those
identified in psychology and biology. Thus we have that the level of the NPE
corresponds to the ceilular level, the level of the network to the neuroanatomical
level, and the of the network behaving in time under certain environmental
conditions to the level of behavior. An additional, higher level arises from popula-
tions of individuals across time, related through descent, which corresponds to the
level of phylogeny and evolution by selection. The approach is nonreductive in
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Figure 8. Mean number of elements (upper panel) and connections (lower panel) for
random samples (n = 10) of each population in G100, Phase 2, Simulation 3. Error bars
represent standard deviations.

that it does not allow for a complete deduction of processes at one level from
processes at a lower level.

The synthesis was given a computational form, which allowed for empirical
studies through computer simulations. The simulation results suggest that social
behavior is not fundamentally different from (i.e., follows the same underlying
biobehavioral principles as) any other kind of behavior, at least with respect to the
aspect studied (viz., responding by one individual to the behavior of another).
However, social behavior may be unique regarding the particular realization of the
underlying principles. Indeed, the present results suggest that social behavior
requires a previous evolutionary process that is based on selection for nonsocial
behavior. Learning to respond to nonsocial stimuli may very well evolutionarily
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precede learning to respond to social stimuli. Also, ontogenetically speaking,
social contingencies may be unique, at least with respect to temporal relations
among stimuli. Specifically, if an individual responds in a delayed fashion to a
certain, nonsocial stimulus, and such a response serves as a stimulus to another
individual, then both individuals are under the control of different temporal rela-
tions, which, in turn, may make them behave differently.

In the present simulations, that difference was shown by the fact that the
response of the senders to cs1 in Phase 2 of Simulation 3 was delayed, for which
it was necessarily shorter than cs1. When this response served as a cs2 for the
receivers, it was equally shorter. The nonsocial stimulus for the senders (cs1)
thus was necessarily shorter than the social stimulus for the receivers (cs2),
which made the behavior of the two individuals to become under the control of
different temporal relations.

Regarding the particular kind of dyad studied here (the one-directional
sender-receiver dyad) the simulations showed that an individual required a pre-
vious nonsocial experience before it can effectively function as a sender. An
implication of this finding for analogous dyads found in actual biclogical forms
(e.g., predator-prey, leader-follower, or teacher-student dyads) is that the leading
component of the dyad must at least have had some previous experience with
nonsocial circumstances. Hence, what applies to phylogeny also applies to onto-
geny, in that nonsocial learning is the foundation of social learning.

Most social situations in actual biological forms, of course, are far more
complex than the one given by the basic sender-receiver dyad. In fact, many
instances of this kind of dyad may not be social at all, under certain definitions of
social behavior. In any case, a slightly more complex variant of this kind of dyad
would be one in which the roles of sender and receiver are more dynamic, more
changing within a generation. For example, a pair of individuals may interact in
such a way that they play different functions at different moments in time. The
specific form that this variant can take in the present approach involves training
first both individuals to respond to cs1 (the nonsocial stimulus). Then, they would
play the different roles (either sender or receiver) in different trials, so that
eventually both learn to respond to ¢s2 (the social stimulus). A preliminary
simulation in this direction was run, but the results showed that once networks
learned to respond to cs1, they were unable to learn to respond to cs2. That is,
networks showed a severe form of synaptic blocking, one that did not even require
the concurrent presence of the previously trained cs. This kind of result is due to
the fact that the learning rule of the neurocomputational model includes competi-
tion among presynaptic inputs for a limited amount of connection weight. This
characteristic of the model was very likely amplified by the fact that individuals
were selected for responding to only one cs, which resulted in populations of
specialists (i.e., individuals that could learn only one thing at a time). So, perhaps,
explicit selection for responding to two different nonsocial css may be required
before a more interactive kind of behavioral relation can be simulated.
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