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ABSTRACT

The superstition phenomenon remains a crossroad of conceptual issues,
especially regarding the operant-respondent distinction and the role of neural principles
in understanding of behavior. In the present paper, | examine the phenomenon from the
perspective of artificial neural networks, in the context of a selectionist approach to
reinforcement. | define the basic phenomenon as a persisting change in a behavior that
is not a conditional part of the reinforcement operation. Two computer simulations of
this phenomenon were run using two feedforward and fully-connected selection
networks. Superstition was obtained in both networks through the same reinforcement
mechanism used to obtain Pavlovian and operant conditioning in previous simulations.
Results showed that response-dependent reinforcement was not necessary to change
any emitted behavior, and that superstition was maximally generalized over the
networks’ repertoire. A more specific form of superstition was obtained in a third
simulation by using a partially-connected network. A similar result might be obtained
by making different responses mutually exclusive through inhibitory connections. Also,
it is likely that a form of shaping through response-dependent reinforcement will be
required in order to simulate more complex environment-behavior relations in selection
networks. | conclude by examining certain criticisms that have been raised towards
neural-network modeling in behavior analysis and the incorporation of neural principles
in our accounts of behavior.
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RESUMEN

El fenémeno de la supersticién permanece como una encrucijada de problemas
conceptuales, especialmente respecto a la distincién operante-respondiente y al papel
de los principios neurales en el entendimiento de la conducta. En el presente trabajo se
examina el fendmeno desde la perspectiva de las redes neurales artificiales, en el
contexto de una aproximacion seleccionista al reforzamiento. Se define el fenémeno
bésico como un cambio persistente en una conducta que no forma parte condicional de
la operacién de reforzamiento. Se corrieron dos simulaciones digitales de este
fenémeno, utilizando dos redes de seleccién completamente connectadas de forma
anterégrada. La supersticién fue obtenida en ambas redes mediante el mismo
mecanismo de reforzamiento utilizado para obtener condicionamiento Pavloviano y
operante en simulaciones anteriores. Los resultados mostraron que el reforzamiento
dependiente de la respuesta no fue necesario para cambiar conducta emitida alguna y
gue la supersticidn fue méximamente generalizada a lo largo del repertorio de las redes.
Una forma mas especifica de supersticién fue obtenida en una tercera simulacién,
utilizando una red parcialmente conectada. Un resultado similar podria ser obtenido
haciendo que distintas respuestas sean mutuamente excluyentes mediante conexiones
inhibitorias. También es posible que una forma de moldeamiento mediante reforzamiento
dependiente de la respuesta sea necesaria para simular relaciones ambiente-conducta
més complejas en redes neurales de seleccion. Se concluye examinando ciertas criticas
que han sido dirigidas hacia el uso de redes neurales en el andlisis conductual y la
incorporacion de principios neurales en las explicaciones de la conducta.

Palabras clave: supersticién, redes neurales de seleccion, condicionamiento
pavioviano, condicionamiento operante, principios neurales, simulacién por computadora

The phenomenon of superstition remains a crossroad of conceptual
issues, especially regarding the operant-respondent distinction and the
incorporation of biological principles into our accounts of behavior. In the
present paper, | examine the phenomenon from the perspective artificial neural
networks, in the context of a selecionist approach to reinforcement. My aim
is twofold. First, | want to provide a selectionist, biobehavioral interpretation
of superstition, as it occurs in simulations with artificial neural networks that
function according to the model proposed by Donahoe, Burgos, and Palmer
(1993), and further characterized by Donahoe and Palmer (1994}, and Donahoe,
Palmer, and Burgos (1997). Second, | want to explore certain challenges that
this result poses for said approach. | should clarify that the conclusions
reached in our previous simulation research are unaffected by the present
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results, and that some of the issues raised here are orthogonal to those
conclusions.

In the first part of the paper, | review the behavior-analytic literature on
superstition and discuss the standard interpretation of this phenomenon. in the
second section, | briefly describe the model that underlies the simulations. In
the third section, | describe the basic simulation result, and some of the
challenges it poses. In the fourth section, | propose ways of meeting these
challenges. | conclude the paper by discussing some of the criticisms that have
been made towards incorporating neural principles into our accounts of
behavior and towards neural-network modeling in behavior analysis.

Superstition in Behavior Analysis

Skinner (1948) was the first to report the basic phenomenon and call
it "superstition”. Pigeons were given a fixed-time (FT) 15-s schedule (i.e., free,
unconditional access to a feeder at 15-second intervals) for an extended period
of time. Although the animals did not end up pecking the key, their behavior
had clearly changed, suggesting that the arrangement had had a strong effect
on them. This occurred in spite of the fact that food was effectively
independent of such patterns, and that they involved the emission of skeletal,
striate-muscle responses. Staddon and Simmelhag (1971) replicated and
extended Skinner's experiment, making a more systematic and detailed
observation of the different kinds of activities displayed by the pigeons. They
observed that behavior was not as idiosyncratic as Skinner had originally
supposed, although it still was highly stereotyped. A similar result was
observed in rats, using a FT 30-s and an hexagonal chamber where subjects
could perform a variety of activities, such as drinking and running in a wheel
(Staddon & Ayres, 1975).

After Skinner, other phenomena have been observed and called
"superstition". For example, Wilson and Keller (1953) observed a similar effect
in rats, in the form of an increase in collateral behaviors between barpressing
responses under a DRL schedule. These behaviors consisted of species-specific
responses such as grooming and nose-poking. Also, Morse and Skinner (1957)
observed pigeons responding differentially (some with high rates, others with
low rates) to a light whose occurrence was independent of the animal’s
behavior, in an arrangement where food depended on keypecking. Similarly,
Herrnstein and Morse (reported by Herrnstein, 1966} trained pigeons to keypeck
for food in a fixed-interval (FlI) 11-s schedule of response-dependent
reinforcement. Then, pigeons were given a FT 11-s schedule. Keypecking
showed substantial maintenance under the response-independent procedure.
Although the rates under Fl were higher than the rates under FT, the latter were
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still substantial. In a different kind of arrangement, Boren and Devine (1968)
studied response chaining in monkeys. They observed the regular occurrence
of components that were not required for reinforcement, a phenomenon that
has been referred to as "superstitious chaining”. Also, Williams and Williams
(1969) observed substantial response maintenance under an arrangement where
food presentations depended on the keylight, but not on keypecking, while the
omission of food depended on keypecking. This phenomenon was subsequently
called "negative automaintenance"”.

On the basis of the above phenomena, superstition can be generally
defined as a persisting change in a behavior that is not a conditional component
of the reinforcement operation. That is, a response pattern is considered as
superstitious if it occurs regularly in arrangements where emitting it is not
required for reinforcement. Whether or not the pattern is stereotyped or
idiosyncratic does not define the phenomenon, for nonsuperstitious behavior
can also be stereotyped and idiosyncratic. Alternatively, a response pattern is
considered as superstitious if it deviates from a formulation of the Law of Effect
in terms of effective dependence of reinforcers on behavior.

The last characterization makes superstition a puzzling, anomalous
phenomenon. Skinner attempted to resolve the anomaly by clarifying that the
term "contingency" refers only to a relationship of temporal contiguity between
aresponse and a reinforcer. In this way, the term lost all reference to effective,
causal, conditional (‘if..., then...”) dependence of reinforcers on responses. At
best, conditionality was given a methodological role, as a way of making the
temporal contiguity between a particular response and a reinforcer as close as
possible. The Law of Effect that results from this conceptual restriction states
that if instances of a certain response class (e.g., keypecking) are followed
closely in time by instances of a certain stimulus class (e.g., food), then the
probability of occurrence of future instances of the former class will increase.
Whether or not reinforcers depend effectively on the responses becomes
theoretically irrelevant.

This formulation yielded to the standard behavior-analytic interpretation,
according to which superstition is due to adventitious reinforcement. That is,
a chance or accidental occurrence of the reinforcer immediately after whatever
response the organism was emitting at that moment, increased the probability
of future occurrences of similar responses. Such an increase, in turn, increased
the likelihood of future chance pairings of the reinforcer with new occurrences
of the same response class, and so on. Adventitious reinforcement thus
increases response probability in the same manner response-dependent
reinforcement does. The only difference is operational, in that response-
dependent reinforcement allows for a better experimental control of the
temporal relationship between responses and reinforcers. But behavior change
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in both procedures is explained by the occurrence of reinforcers in a close
temporal contiguity relationship with responses.

The above interpretation has been challenged on a number of grounds
(see Staddon, 1977). First, it is inconsistent with certain phenomena, such as
negative automaintenance and the suppression of instrumental responding
maintained by response-dependent reinforcement, by occasional response-
independent food deliveries. One could attempt to explain the latter
phenomenon in terms of the adventitious reinforcement of responses that
interfere  with the one initially maintained by the response-dependent
contingency. However, this latter response is presumably more probable than
others, at the moment of introducing the response-independent contingency.
Hence, the responses that were initially maintained by the response-dependent
contingency should be more frequently followed by the response-independent
reinforcer than others, which should result in their substantial maintenance. In
order to explain the suppression phenomenon in terms of adventitious
reinforcement, the contiguity formulation of the Law of Effect would have to
be complemented the assumption that behavior is more strongly affected by
reinforcement during acquisition than during maintenance. This move would
also be required to explain a similar phenomenon, that is, the eventual
replacement of behaviors that are more probable early in a response-
independent arrangement (e.g., putting the head into the magazine) by other,
initially less probable behaviors (e.g., pecking).

A second challenge to the standard interpretation of superstition is that
adventitious reinforcement remains mostly an interpretative, operationally
elusive concept. Therefore, it is. extremely difficult to demonstrate
experimentally that a certain behavioral pattern is due to chance response-
reinforcer pairings. Indeed, the term "reinforcement” refers to a kind of
relationship between environment and behavior. An adequate operational
definition thus requires the specification of a unit of responding and a unit of
reinforcement that preserve their identities across time and serve as criteria for
determining whether or not reinforcement has actually occurred. |f we want
the concept of reinforcement to have any predictive value, then such a
specification must be done a priori (i.e., before the organism is exposed to the
contingencies). For example, we can predict (whether correctly or not) that the
probability of occurrence of keypecking will increase after instances of this
class are immediately followed by instances of food. This kind of prediction is
possible if and only if we specify a priori a consequent-stimulus class, a
response class, and a contingency relation. Such a specification inevitably
leads to a procedure in which instances of the consequent-stimulus class will
depend effectively on instances of the response class.
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In contrast, the notion of adventitious reinforcement allows for an a
priori specification of the stimulus class, leaving the response class and the
contingency relation unspecified. In this sense, adventitious reinforcement is
a postdictive, more than a predictive concept. It thus suffers from a deep
logical limitation. At best, it allows for very indirect and general predictions
(e.g., "any response class whose instances are immediately followed by food
will become more probable"). A successful prediction of this kind, of course,
does not guarantee that any observed probability changes are due to
adventitious reinforcement, uniess a procedure is implemented for recording
chance response-reinforcer pairings. Such a procedure, however, can prove
rather intricate and, hence, not susceptible of adequate experimental control.
Another difficulty arises from the fact that the above kind of prediction
implicitly assumes that any behavior is modifiable by reinforcement
(adventitious or otherwise). This is the so-called "transituationality” assumption
(Meehl, 1950), which has been challenged by the idea of biological constraints
on learning (e.g., Bolles, 1970; Garcia, McGowan, & Green, 1972; Hinde &
Stevenson-Hinde, 1973; Seligman, 1970; Shettleworth, 1972). The evidence
indicates that a substantial portion of superstitious behavior consists of (or, at
‘least, relates in meaningful ways to) species-specific {(unconditional, biological)
responses to the reinforcer (Staddon & Simmelhag, 1971). This leads to the
possibility that superstition may arise from a complex mixture of Pavlovian and
operant contingencies, one that may be impossible to disentangle
experimentally and theoretically (but see Skinner, 1935). The issue of whether
or not superstition can be sufficiently explained without appealing to
nonbehavioral events and processes is thus raised. We have raised this issue
in relation to phenomena such as reinforcement revaluation (Donahoe & Burgos,
in press). In fact, it can be equally raised in relation to any hehavioral
phenomenon.

Appealing to nonbehavioral events and processes has become an
anathema in behavior analysis and radical behaviorism. A substantial portion
of radical behaviorists’ efforts within psychology has been to condemn as
meaningless, useless, and misleading any kind of account that appeals to
nonbehavioral events and processes. We must not forget, however, that this
effort has been directed primarily towards rejecting explanations that appeal to
inferred events and processes, of the kinds found in cognitivist psychology (a
substantial portion of Pavlovian-conditioning research with animals included).
In this particular respect, the present approach joins the radical-behaviorist
effort. However, in our zeal to jettison inferred-process psychology, we have
thrown out the baby together with the bathtub, ignoring the possibility that
nonbehavioral events and processes can be admitted without violating our
philosophical commitment against cognitivist explanations.
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I am referring, of course, to events and processes that occur in the
organism’s nervous system. The possibility, legitimacy, and even need of
incorporating such events and processes into our accounts of behavior was
acknowledged by Skinner (1974):

. we shall eventually know much about the kinds of physiological
processes, chemical or electrical, which take place when a person
behaves. The physiologist of the future will tell us all that can be
known about what is happening inside the behaving organism. His
account will be an important advance over a behavioral analysis,
because the latter is necessarily ‘historical’ --that is to say, it is confined
to functional relations showing temporal gaps. Something is done today
which affects the behavior of an organism tomorrow. No matter how
clearly that fact can be established, a step is missing, and we must wait
for the physiologist to supply it. He will be able to show how an
organism is changed when exposed to contingencies of reinforcement
and why the changed organism then behaves in a different way,
possibly at a much later date. What he discovers cannot invalidate the
laws of a science of behavior, but it will make the picture of human
action more nearly complete (p. 215).

The above paragraph is meaningful in that it was written by someone
whose work has lead to a theoretical distinction between operant and
respondent conditioning as involving different underlying reinforcement
mechanisms. Skinner himself changed his view on the matter throughout his
life. He did reject a fundamental distinction early in his work, favoring a strictly
operational distinction (see Skinner, 1935, 1937, vs. Konorski & Miller, 1937a,
1937b). However, his speculations on the evolution of behavior (Skinner,
1969, Ch. 7; 1974, Ch. 3; 1975, 1981) imply that different phylogenetic
histories may have given rise to separate neural mechanisms for operant and
respondent conditioning.

In any case, it is clear that a phenomenalistic distinction can be made.
However, phenomenalistic distinctions do not necessarily imply theoretical
distinctions. Newtonian mechanics makes a phenomenalistic distinction
between body fall, Earth's movement around the sun, and the tides, but
accounts for them theoretically in terms of a single set of principles (viz., the
famous Three Laws). In the above paragraph, Skinner thus advises us to wait
for the relevant physiological data, instead of speculating about underlying
mechanisms (his own speculations notwithstanding), if by ‘underlying
mechanism’ we mean ‘a process that occurs inside the organism’. In this
sense, talk about underlying mechanisms for Skinner amounted to talk about
neural mechanisms, but none of this talk was the behavior analyst’s job. A
theoretical distinction between Pavlovian and operant conditioning thus would
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ultimately refer to a distinction between different underlying neural mechanisms
at work in each kind of phenomenon. I[f a single reinforcement mechanism
underlies both kinds of phenomena, however, then no theoretical distinction
would be justified. The present approach sustains that this is a real possibility,
based on some of the relevant evidence from the neurosciences (for a review
of this evidence, see Donahoe & Palmer, 1994). Pavlovian and operant
conditioning may just be different phenomena, in the same sense that body fall,
Earth’s movement around the sun, and the tides are different phenomena in
Newtonian mechanics.

But Skinner’s paragraph gives us further advice. On the one hand, the
aim of a science of behavior is to get as complete an account of behavior as
possible. This search for completeness, of course, must be carried within the
limits imposed by the inherently simplifying nature of scientific theories. To
achieve such an account, we can appeal to any principles at our disposal that
seem pertinent to the phenomenon of interest, as long as they have been
derived through experimental analysis, and regardless of whether they are
behavioral or neural. On the other hand, it is a truism that organisms have

nervous and endocrine systems, and changes in these systems constitute an
" integral component of learning and behavior. To be sure, this truism does not
force us, as a matter of logical necessity, to appeal to neural events and
processes {never mind use the techniques and methods from neuroscience to
obtain ordered behavioral data). Applications of the experimental method to
derive behavioral principles are possible only by viewing the behavior of the
whole organism as a subject matter in its own right.

However, this consideration does not necessarily mean that we must
eschew any reference whatsoever to the organism’s nervous system in our
accounts of behavior, after we have established our behavioral principles
through experimental analysis. Once a behavioral principle is available, it is
legitimate {even inevitable) to ask what happens inside the organism (or, more
precisely, to its nervous and endocrine systems) in particular realizations of the
principle. We do not have to ask this, but not doing it will make our picture of
the whole organism less complete. The whole organism is not only its behavior
but also its biology. Hence, accounts that combine behavioral and neural
principles are more complete than accounts that consist only of behavioral
principles. | shall return to this issue in my concluding remarks.

The Model

Neural principles can be incorporated into our accounts of behavior in
a number of different ways. In the present approach, a model has been built
and used as a basis for simulating certain behavioral phenomena in a digital
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computer, The rationale for doing computer simulations in the present
approach is similar to the one found in other approaches (e.g., this issue). That
is, if the phenomenon of interest is successfully simulated, then the underlying
model can be used to interpret the phenomenon in question. This is an example
of a "formal interpretation” (Donahoe & Palmer, 1989).

A correspondence between simulations and behavioral phenomena only
indicates the behavioral plausibility of a model, which we consider as necessary
but not sufficient. In addition to this correspondence, the present approach
also emphasizes neural plausibility. This emphasis raises an issue to which |
shall in my concluding remarks. Suffice it to say at this point that the search
for neural plausibility is a legitimate endeavor (at least as legitimate as rejecting
it), even if current models can aspire to capture only very general properties of
nervous systems. For the moment, let me describe the present model briefly
and informally. For a more detailed description, see Donahoe and Burgos
{1999}, Donahoe, Burgos, and Paimer (1993), Donahoe and Palmer (1994}, and
Donahoe, Palmer, and Burgos (1997).

The mode! consists of two submodels, namely, a neurocomputational
model and a network model. A neural network that is designed according to
these submodels we call a ’selection neural network’. The term ’selection’
refers to the basic, unifying concept of the general approach to reinforcement
underlying the model. The use of this term arises from an analogy between
learning and evolution by selection (e.g., Donahoe & Palmer, 1994; Skinner,
1981; Staddon & Simmelhag, 1971; cf. Tonneau & Sokolowski, in press).
According to this analogy, behavior change in the individual organism, whether
Pavlovian or operant, involves the selection of environment-behavior relations
through reinforcement. Before reinforcement, an organism is capable of
responding in many different ways to many different stimuli. That is, many
different stimulus-response relations are possible (although not necessarily
equiprobable, due to species-specific biological constraints). However, only
some relations become more probable (i.e., become selected) through the action
of reinforcement on the organism’s nervous system. Exactly which relations
are selected depends on an interaction between the contingencies and the
organism'’s biology. The present model intends to capture just a few of the
neural mechanisms that may constitute the latter.

The neurocomputational submodel

The neurocomputational submodel is a discrete-time mathematical model
consisting of two sets of equations, namely, an activation rule and a learning
rule. The activation rule is a function that determines the state of a neural
processing element (or NPE, the fundamental structural and functional unit of
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a neural network), at a given moment in time. In the present model, that state
is a real number between O and 1. An activation state can be roughly
interpreted as the firing probability of a neuron. The activation rule allows for
an NPE to have a spontaneous activation, that is, an activation larger than zero
in the absence of input signals.

The learning rule arose as a neural analogue of the unified reinforcement
principle proposed by Donahoe, Crowley, Millard, and Stickney {1982), and it
is defined as a difference equation that describes changes in connection
weights across successive moments in time. A connection weight is a
magnitude that represents the strength of a connection between two elements.
In the present model, this magnitude is also a real number between O and 1.
A connection weight can be neurally interpreted as the proportion of
postsynaptic neurotransmitter receptors that are controlled by a given
presynaptic process.

The rule has three crucial features. First, it includes a signal that
modulates the amount of weight change that can occur at a moment in time.
This signal is defined as the activation state of a certain kind of NPE (see
below) at a given moment in time, minus its activation at the immediately
preceding moment. Although the signal may vary from moment to moment, it
has the same magnitude for all the weights at any given moment in time.
Hence, its diffuse nature. Also, the elements whose activation gives rise to the
signal are directly activated by the reinforcer (see below). We thus refer to it
as a ‘reinforcement signal’. We reserve the term ‘discrepancy signal’ for an
actual larger-than-zero difference in the reinforcement signal.

A second feature is that the rule consists of two mutually exclusive
modes, namely, incremental (or acquisition) and decremental {(or extinction).
The incremental mode is enabled whenever a discrepancy signal occurs.
Otherwise, the decremental mode is enabled. If the incremental mode is
enabled, any weight change that occurs at that moment is added to the
respective current weight. If the decremental mode is enabled, then weight
changes are subtracted. Finally, the rule includes a competition factor, meaning
that presynaptic elements compete for a fixed amount of weight on the
postsynaptic element. The amount of weight change for a given connection to
an NPE thus will depend on the total amount of weight controlled by other
connections to the same NPE.

The network submodel
The network submodel specifies a classification of the kinds of elements

that may constitute a selection neural network, and certain rules about how
they are to be connected. As Figure 1 shows, selection networks follow the
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standard topological organization of elements into input, hidden, and output.
In general, the activation of input elements represents the occurrence of an
exteroceptive stimulus, while the activation of output elements represents the
occurrence of a response on the network’s part. As a simplifying device for our
initial simulations, we have not given more specific interpretations to input and
output activations. Thus, an input element may represent either a sensory
modality in itself (a visual or an auditory sensor) or a sensory channel within a
given modality {a visual sensor specialized for red or blue). Simitarly, an output
element may represent either a corticospinal tract group of neurons in primary
motor cortex that controls some particular response topography {(e.g.,
barpressing or keypecking), or a component of such a group.

In the present model, the standard classification is elaborated into more
specific kinds of elements. Input elements are classified into primary-sensory,
whose activation simulates the occurrence of exteroceptive stimuli (e.g., lights
or tones), and reinforcer (or S*), whose activation simulates the occurrence of
a primary reinforcer (e.g., food or water). As a simplifying device, all selection
networks are assumed to have only one S* element. Strictly speaking, input
elements are not NPEs, for their states are not computed through the activation
rule. Rather, such states are assigned according to some prespecified training
protocol (see simulations below). Only hidden and output elements qualify as
NPEs, in that their states are computed through the activation rule. However,
like NPEs, the activation state of input elements (primary-sensory as well S*)
is represented as a real number between O and 1.

Hidden elements are classified into cortical and subcortical, in an effort
to capture the gross anatomical organization of the mammalian brain. Cortical
elements are classified into sensory-association (sa) and motor-association (ma},
while subcortical elements are classified into ca? (for the CA1 region in the
hippocampus) and vta (for the ventral-tegmental area). Output NPEs are
subdivided into operant {or R) and respondent (or CR/UR) NPEs. The only
difference is that CR/UR NPEs can be activated by S*, while R NPEs cannot
{see below). In this manner, the distinction between operant and respondent
responses in the present model arises as an anatomical distinction that leads to
a functional one.

The activation of subcortical elements is the source of the reinforcement
signals. Specifically, the activation of the vta elements is the source of the
signal that modulates changes in the weights of connections to ma, output, and
via NPEs. We call this signal ‘d,,’. The activation of the ca? elements is the
source of the signal that does the same for connections to sa and ca’ NPEs,
We call this signal ‘dy’, and it is amplified by ‘d,,’. For a neural interpretation
of these signals, see Donahoe and Palmer (1994).
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Figure 1. Classification of element types in a selection network (see text for details)

Regarding connectivity, the present model imposes very general and
flexible restrictions. More specific restrictions can be used in case a particular
architecture is needed. Most networks we have used in our simulation research
share a basic feature (also found in other models), namely, feedforward
connectivity (see Donahoe & Burgos, in press, for an exception to this feature).
In this kind of connectivity, elements are first organized into layers and then
connected from one layer to the next. Feedforward connections are one-
directional, meaning that a signal propagates from one element to the other, but
not vice versa.

One way to understand a layer is to imagine it as a set of circles
representing elements and arranged on an imaginary straight line that intersects
each circle’s centre. Depending on the orientation of that imaginary line, layers
can be arranged either vertically (one beside the other) or horizontally (one on
top of the other). In our simulation research we have used a vertical
arrangement, so | will use it here as well. This kind of arrangement, of course,
does not intend to capture the exact topological manner in which neurons are
organized in real brains. Rather, the idea is to provide a relatively clear and
simple way of representing neural networks visually. In this representation,
input elements typically constitute the leftmost layer (the input layer), while
output elements constitute the rightmost layer (the output layer), all other
elements constituting the layers that are 'hidden’ between the input and the
output layers.
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A minimal selection network consists of one input layer, two hidden
layers, and one output layer (see Figure 2). Following the above classification,
hidden layers consist of cortical and subcortical layers. We visualize cortical
layers as being on top of subcortical layers. A cortical layer may consist of
either sa or ma NPEs, while a subcortical layer may consist of either ca? or vta
NPEs. All NPEs that constitute a layer, then, are assumed to be of the same
kind. The first hidden layer is placed immediately to the right of the input layer,
while the second hidden layer is placed immediately to the right of the first
hidden layer.

sa ma
Inputs Outputs
I
Cortical R
CR/UR
Subcortical

S* o—

Figure 2. Selectjon network used in the basic superstition simulation. Small circles
represent input elements. Large circles represent neural processing elements (NPEs). The
activation of input elements simulated the accurrence of an exteroceptive stimulus. The activation
of the output NPEs simulated the network’s behavior. The activation of /, simulated the occurrence
of an exteroceptive stimulus. The activation of R NPE simulated an emitted response

In the network shown in Figure 2, from left to right, the input layer
consists of three elements. The first cortical hidden layer consists of three sa
NPEs, while the second cortical hidden layer consists of three ma NPEs. The
first subcortical layer, from left to right, consists of one ca’ NPE, while the
second consists of one vta NPE. Finally, the output layer (the rightmost set of
elements) consists of one R and one CR/UR NPE. Each input element is
connected to each sa NPE, and each sa is connected to the ca’ and to each ma
NPE. Also, each ma NPE is connected to the vta NPE and to each output NPE.
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All the connections are plastic and initially weak, except for the two
connections that constitute the S*-vta-CR/UR path, which are nonplastic and
maximally strong. The activation of this path represents the occurrence of an
unconditional reflex caused by a primary reinforcer (e.g., food, water).

Note that CR/UR can also be activated through the input-sa-ma paths. In a
typical simulation, the two forms of activating CR/UR are mutually exclusive at
any moment in time, depending on whether the S* activation is equal to or
larger than zero. If it is equal to zero (i.e., no reinforcer occurs), then CR/UR
is activated through one or more of the possible input-sa-ma paths, simulating
the occurrence of a conditioned response (CR). If it is larger than zero (i.e., a
reinforcer occurs), then it is given priority in activating CR/UR, simulating the
occurrence of an unconditioned response (UR) whose magnitude is identical to
the activation of S*. Hence the label ‘CR/UR’. The same strategy applies to
the activation of vza NPEs.

In contrast, R NPEs can be activated only through the input-sa-ma
paths. Their activation thus simulates a nonelicited, emitted response. In this
sense, R and CR/UR NPEs constitute anatomically and functionally different
response systems. A differential observation of these two systems under
differentcontingency types (i.e., response-dependent vs. response-independent,
respectively), provides one criterion for distinguishing operant from Pavlovian
conditioning in the present approach (Burgos, 1999). Another criterion is the
distinction between the two kinds of contingencies. The present approach,
however, does not make any fundamental distinction between two
reinforcement mechanisms underlying each form of conditioning.

Simulations, Interpretations, and Challenges
The basic superstition simulation

The network shown in Figure 2 was used. The initial weights for all
plastic connections were set to .01. The activation and learning free
parameters were the same as those used in previous simulations. The network
was given an ABA” sequence of treatments. During Phase A (acquisition), the
network was given 300 reinforced acquisition trials, according to a forward-
delay Pavlovian procedure. A trial was defined as the activation of the input
element labeled as /, with a magnitude of 1 for 6 time-steps (ts).
Reinforcement was defined as the activation of S* with a magnitude of 1 at ts
= B, regardless of the state of the output element labeled as R,. Hence,
reinforcement did not depend on the network’s behavior, in that the activation
of R, was not a conditional component of the reinforcement relation. During
Phase B (extinction), the network was given 300 nonreinforced trials (i.e., with
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an S* activation of 0). In Phase A’ (reacquisition), reinforcement was
reinstated. Intertrial intervals were not explicitly simulated. Rather, they were
assumed to be sufficiently long to allow for the activation of all NPEs to
decrease to a near-zero level.
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Figure 3. Basic superstition simulation. The R activation {upper panel) increased across
trials during acquisition and reacquisition to near-maximat levels, in spite of its being unnecessary
for reinforcement. Only activations at the second-to-last time-step {ts = 5) are shown. The CR/UR
activation {lower panel) increased to near-maximal levels, which simulated Pavlovian conditioning
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Figure 3 shows changes in the activation of R, (top panel) and CR/UR
(bottom panel) at ts = 5 (the moment immediately before reinforcement),
across trials. At the beginning of the acquisition phase, both NPEs showed
near-zero activations. Then, after a number of reinforced trials, the activation
of both elements increased to a near-maximal level. Note that the activation of
CR/UR reached this level a few trials before the activation of R,. Early in the
extinction phase, the activation of both NPEs decreased rapidly to a near-zero
level, remaining at this level throughout the entire phase. Then, a number of
trials after reinforcement was reinstated (fewer trials than acquisition), both
activations once again increased to near-maximal levels.

The increase in the activation of the CR/UR NPE simulates Pavlovian
conditioning in that both (simulation and phenomenon) involve a change in a
stimulus’ function due to response-independent reinforcement. During the first
acquisition trials, the activation of /, did not cause any significant activation of
the CR/UR NPE, so the former activation effectively was a neutral stimulus for
the network. However, after a few reinforced trials, the activation of the same
input element eventually came to cause a significant activation of the CR/UR
NPE. In this sense, the former activation became effectively a 'conditioned
stimulus’ (CS) for the network. The extinction and reacquisition curves confirm
the fact that reinforcement was the critical event for the network to learn to
respond during acquisition.

The way Pavlovian conditioning occurred in the present selection
network is roughly as follows. At the outset of training, connection weights
were too small for the activation of /, to cause any significant activation of the
sa, ma, and, hence, the CR/UR NPEs. The activation of S$* at the last ts of the
first trial produced a large positive difference in the activation of via, between
that and the second-to-last ts. This enabled the learning algorithm’s
incremental mode, thus causing a large positive change in all the relevant
weights (i.e., the weights for those connections between coactive elements).
As more reinforced trials were presented to the network, weights became
increasingly larger, until they allowed the activation of /; to propagate
throughout the sa and ma NPEs and eventually cause a significant activation of
CR/UR.

The increase in the activation of R, is the basic simulation superstition,
for it occurred in spite of the fact that it was not a conditional component of
reinforcement. So the result does satisfy the definition provided in the
introduction. The mechanism through which the increase occurred is exactly
the same as the one described for CR/UR. The only difference was that R, did
not belong in the S*-vta-CR/UR path. Hence, the activation of R, was not
elicited. However, this does not mean that it could not be under control by an
antecedent exteroceptive stimulus (the activation of /,), for R, belonged in the
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same path as the activated input element. Reinforcement did not only caused
weight increases that eventually allowed /, to activate CR/UR, but also weight
increases that allowed for the same input element to activate R,. [For
explanations of other features of the present results, see Donahoe, Burgos, and
Palmer (1993), Donahoe and Palmer (1994), Donahoe, Palmer, and Burgos
(1997), and Donahoe and Burgos (in press)].

A selectionist interpretation

The above mechanism provides a basis for an interpretation of what
happens to an organism’s nervous system when the organism is exposed to
response-independent periodic reinforcement. The central notion is that
nonelicited behavior may come under the control of antecedent exteroceptive
stimulation as much as elicited behavior. This notion could be challenged by
arguing that in the procedure described above, reinforcement occurred at the
end of discrete trials (i.e., the activation of /,), according to a Pavlovian
procedure. Hence, the argument goes, the procedure is more similar to an
autoshaping/automaintenance than to the typical superstition one, for the latter
does not involve the presentation of discrete trials. The difference between
free-operant and discrete-trial procedures, however, is one of experimental
control, rather than one of underlying mechanisms. Consequently, behaviors
that are learned and maintained under free-operant arrangements must also be
under the control of antecedent exteroceptive stimulation. The main difference
is that, in the free-operant case, such stimulation is not under the
experimenter’s control.

On this basis, superstition can be interpreted in terms of the selection
of stimulus-response relations through the same reinforcement mechanism that
underlies the selection of stimulus-response relations in Pavlovian and operant
procedures. This selection is physically implemented through changes in the
appropriate synaptic efficacies in the organism’s nervous system. The
mechanism in question would be similar to the one described by the learning
algorithm. This interpretation makes no fundamental distinction between
superstition, Pavlovian, and operant conditioning, at least regarding the
underlying reinforcement mechanism and the controlling exteroceptive causal
factors. All learning, be it superstitious, operant, or Pavlovian, can be
understood in terms of a selection of stimulus-response relations that are
biologically implemented in a nervous system.
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Challenges

Direct observations of particular response topographies, across different
species and with different kinds of reinforcers, have revealed that superstition
(like other kinds of schedule-induced behavior, such as adjunctive drinking and
adjunctive attack) consist largely of species-specific responses to periodic
reinforcement (Schwartz & Gamzu, 1977; Staddon, 1977). Any model that
simulates superstition should capture this feature of the phenomenon, which
poses a first challenge. In general, the present approach hypothesizes that
different realizations of the basic superstition phenomenon arise from
differences in particular biological implementations, through different nervous
systems with different phylogenetic histories. In order to incorporate this
hypothesis into the present model, a more specific semantics of input and
output signals is required. This semantics may depend critically on network
architecture. We have reported some research on the role of network
architecture (e.g., Burgos, 1996, 1997; Donahoe & Burgos, in press).
However, said semantics remains undefined. So, for the moment, 1 will simply
acknowledge this challenge and concentrate on two other, more general ones.

The two challenges in question are closely related, and are better
introduced through the following simulation. The network shown in Figure 4
was given the same treatment as the previous network. The only difference
was that the new network had an additional R output NPE (labeled as R,). The
new network, thus, was behaviorally more complex. This could mean that it
was capable of emitting either a different kind of behavior or more complex
forms of the same kind of behavior (in a moment | shall argue that this is a
crucial distinction). The results are depicted in Figure 5, which shows changes
in the activation of R, (upper panel) and R, (lower panel). The activation of
CR/UR in the present network {not shown) increased in a similar manner as the
one in the previous network. Also, like the previous network, the activation of
R, in the present network increased to a near-maximal level. However, the
activation of R, also increased to a near-maximal level.

A new network with three R NPEs was given the same treatment and
their activations also increased to a near-maximal level. If a new network with
four R NPEs had been trained, their activations would most likely have
increased as well, and so on. In general, response-independent reinforcement
would seem to induce a change in all the behaviors that a selection network
can possibly emit. Superstition in these networks thus becomes maximally
generalized over their behavioral repertoires. However, superstition in real
organisms is quite specific, in that only some of the organism’s possible
responses increase in frequency. So a first challenge to the present approach
is how to make superstition in selection networks more specific.



SUPERSTITION IN ARTIFICIAL NEURAL NETWORKS 177

A second challenge has to do with the role of response-dependent
reinforcement. The present results show that this procedure was not necessary
to increase the probability of occurrence of emitted responses in the networks
used. This implies that response-independent contingencies are necessary and
sufficient, while response-dependent contingencies are unnecessary in selection
networks. However, in real organisms, response-independent contingencies
seem to be insufficient (and even unnecessary), while response-dependent
contingencies seem to be necessary and sufficient for certain kinds of behavior
change (e.g., keypecking or barpressing) to occur under certain circumstances
(viz., free-operant arrangements). This apparent inconsistency poses the
challenge of designing simulations in which response-dependent reinforcement
is necessary, without the need to postulate any fundamental separation
between Pavlovian and operant conditioning. This challenge, of course, takes
us outside the realm of superstition, insofar as it demands a role for response-
dependent reinforcement. Nonetheless, it is worth addressing. More
challenges can be posed, but | shall concentrate on these two.

via

Figure 4. Selection network used in the second superstition simulation. The only
difference with respect to the previous network is that the present one has two R elements (R, and
R,
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Figure 5. Results of the secand superstition simulation, showing how superstition
(simulated by an increase in the activation of both R elements) becomes maximally generalized over
the repertoire of the network depicted in Figure 4

Meeting Challenges

Superstitious behavior is notably constituted by species-specific
responses to the reinforcer (Staddon, 1977). Members of the same species
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thus tend to display remarkably similar response patterns under periodic
response-independent reinforcement, although different patterns are observed
across different species. Hence, superstition is not as idiosyncratic as it was
initialty thought. Yet, superstition tends to be quite specific in that only a few
response patterns predominate after extended exposure the procedure. Such
specificity must depend critically on the organism’s biology, in particular, the
characteristics of its nervous system. On this basis, one way of meeting the
first challenge is to consider the network’s architecture as a determining factor.

I R,
R,
CR/UR
cal
S*e
vta

Figure 6. Selection network used in the third superstition simulation. In contrast to the
network shown in Figure 4, the connectivity in the present one was such that only one R element
(R,} belonged in the path activated by /,

The present model allows for an unequivocal distinction between
elicited and emitted responses. The distinction between different systems of
emitted responses is less obvious. In principle, however, this latter distinction
can also be made in terms of the network’s connectivity. On this basis, we can
stipulate that different R NPEs in a network constitute different emitted-
response systems to the extent that they belong in different input-sa-ma paths.
This stipulation is consistent with gross anatomical features of the mammalian
brain. According to this criterion, R, and R, in the second network did not
constitute two, but rather one and the same response system. This is because
both NPEs were activated through the same input-sa-ma paths, due to the
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network’s full connectivity, which explains why both increased their activations
in practically the same manner. Such activations thus did not represent two
different kinds of behavior, but rather two different aspects or components of
the same kind of behavior. The activation increases observed in R, and R,,
then, simulated superstitious conditioning of a single response topography.

For R, and R, to constitute separate response systems, a different
network architecture is needed, one whose connectivity allows for an
anatomical separation between the two NPEs and, hence, a functional
distinction between their activations. Figure 6 shows an example of such a
network. The only difference with respect to the previous networks is that the
connectivity in the present one is partial, such that only R, belongs in the path
activated by /,.

This network was given the same treatment as the other two. As
Figure 7 shows, only the activation for R, increased substantially (although in
a less stable manner), while the one for R, remained at a near-zero level. This
result demonstrates that selection networks are capable of simulating stimulus-
specific superstition, which meets the first challenge.

Stimulus-specific superstition in a selection network could be achieved
through other means. For instance, the activation of different R NPEs could be
made mutually exclusive through inhibitory connections. We still have to
explore this possibility empirically, so a brief description will have to do for the
moment. The basic idea is that inhibitory connections seem to play an
important role in multi-R richly-connected selection networks that are exposed
to certain arrangements, such as intradimensional discrimination (Burgos,
1996). In the present case, a more specific form of superstition could be
achieved by adding an inhibitory NPE, such that the activation of a given # NPE
inhibits other R NPEs. The activation of the inhibited NPEs would be expected
not to show any substantial increment. Alternatively, the activations of
different R NPEs can be made mutually exclusive. It is not obvious, however,
whether or not such a network would show any substantial increase in the
activation of any of its R NPEs. One difficulty with inhibitory connections is
that in order to be beneficial they must be in the right places.

The second challenge demands a role for response-dependent
reinforcement in selection networks, which, as | mentioned, takes us out of the
realm of superstition. Work in this respect with selection networks remains to
be done. However, it is clear that response-dependent reinforcement remains
the best procedure available for making temporal contiguity between specific
stimuli (antecedent as well as consequent) and specific responses as close as
possible. Selection networks may not be the exception. A sort of shaping
procedure through response-dependent reinforcement thus might be needed in
order to simulate more complex and specific environment-behavior relations
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with multi-R selection networks (see Gullapalli, 1997, for initial work in this
direction with a different model). To this extent, the present approach will
meet the second challenge, while remaining uncommitted to a fundamental
distinction between Pavlovian and operant reinforcement mechanisms.
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Figure 7. Results of the third superstition simulation, showing that superstition in the
network depicted in Figure 6 was stimulus-specific
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Concluding Remarks

| have proposed a biobehavioral interpretation of superstition based on
computer simulations with selection neural networks. The interpretation
endorses the existence of a single reinforcement mechanism for Pavlovian
conditioning, superstition, and operant conditioning, maintaining only a
phenomenalistic distinction among the three. Such an endorsement involves
the incorporation of neural principles into our accounts of behavior through
neural-network modeling. To conclude the paper, | want to discuss briefly two
common criticisms towards this kind of modeling in behavior analysis in
general. One criticism arises from causality arguments. The other arises from
model-plausibility arguments. To be sure, these arguments raise hard,
extensive, and largely unresolved philosophical issues whose proper analysis
goes well beyond the limits of this paper. However, a study of the history of
science reveals that there usually is a philosophical disagreement lurking behind
most scientific disputes, especially within disciplines in their preparadigmatic
stages, like behavior analysis and psychology in general. So the issues (or at
least some of them) must be acknowledged, if only to prompt future
discussions. It is often the case that a scientific dispute can be resolved
through a careful analysis of the underlying philosophical issues.
Acknowledging them is the first step towards such an analysis.

According to the first criticism, the incorporation of neural principles
into our accounts of behavior transfers causality claims from the environment
back into the inner organism. Hence, the argument goes, although neural
principles may constitute an advance over inferred processes (in that the former
are derived through experimental analysis), they still result in an internalist
psychology, that is, a psychology that puts the causes of behavior inside the
organism. This argument arises from the assumption that taking the nervous
system into account forces us to attribute a causal role to neural events,
processes, and even structures in order to explain behavior. This assumption
underlies claims about such events, processes, and structures constituting
"neural bases of behavior”, and about nervous systems "being responsible for
behavior" or "controlling behavior", insofar as "basis", "responsible”, "control",
and similar terms have a causal load.

Although many (perhaps most) neuroscientists adopt the assumption in
question, it is not a logical necessity. Certain philosophical accounts of
causality and explanation (e.g., Saimon, 1998; von Wright, 1974} allow for an
incorporation of neural principles without falling into an internalist psychology.
The basic idea here would be to view neural events and processes as
components of our descriptions (as opposed to explanations) of what happens
to organisms when they are reinforced. In this sense, neural events and
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processes would provide us with a more complete, more elaborate description
of the effects of the reinforcement contingencies (Burgos & Donahoe, in press).
This is the idea underlying a radical-behaviorist interpretation of notions such
as motivation and emotion as referring to by-products of the environmental
circumstances (Skinner, 1974). In this manner, the external environment would
retain its causal status. Another possibility is to remain neutral with respect to
the causality issue, and regard neural events and processes as participating in
environment-behavior relations. This strategy advises postponing a discussion
of whether such participation constitutes a cause of behavior, an effect of the
environment, or a complex mixture of both, until philosophical disagreements
on explanation and causality are settled.

Similar considerations apply to a second criticism, which arises from
plausibility arguments. The basic criticism goes like this (e.g., Hutchison, 1997;
Marr, 1997, this issue; Smolensky, 1990; Uttal, 1990, 1993). Neural networks
reflect very little, if anything, about the actual neural processes that occur in
learning and memory. In fact, no available neural-network model has been able
to simulate any real nervous system at any level of organization. At best, the
criticism goes, neural networks reflect very general dynamical properties that
can be found in many systems other than nervous systems. As a result, we
need know very little {if anything) about real nervous systems in order to model
(predictively or postdictively) at least certain kinds of behavior. Therefore, the
criticism concludes, neural plausibility constitutes a weak justification for
incorporating neural principles into our accounts of behavior through neural-
network modeling.

Once again, a number of extensive, difficult, and unresolved
philosophical issues are raised. One issue is the nature and purpose of
scientific models. A proper justification of the criticism in question must arise
from a careful examination of this issue. Otherwise, the criticism will amount
to little more than an intuitive speculation. Not that this is inherently wrong,
of course. However, much more is at stake than an innocent philosophical
exercise. Promising theories and, with them, potentially fruitful avenues of
scientific exploration could be prematurely dismissed.

One could reject the appeal to philosophical research on the basis that
these issues remain unresolved and scientists cannot wait for philosophers to
resolve them. However, the mere search for a resolution has generated a
considerable arsenal of analytical tools that are at the scientists’ disposal for
stronger, more informed, and systematic philosophical discussion. Forexample,
many scientists (if not most) still adopt the standard, logical-empiricist view of
scientific theories, unaware of its deep logical and pragmatic difficulties. This
view has been rejected within the philosophy of science, in favor of less
problematic, more fruitful views (e.g., Suppe, 1977, 1989; Stegmdiller, 1973,
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1979; Balzer, Moulines, & Sneed, 1987), according to which scientific theories
are something more than mere collections of statements. Moreover, some of
these views have been applied to the problem of psychoneural reduction, with
results that have implications for the validity of the criticism under consideration
{see Bickle, 1998).

Another issue has to do with how theoretical understanding relates to
empirical knowledge. There are several considerations to be made in this
regard. To begin with, there is no doubt that current neural-network models are
extremely simple, relative to the extreme complexity of real brains. Our
empirical knowledge of brains and behavior is certainly running well ahead of
our theoretical understanding of the brain-behavior relation. However, this is
not a necessarily permanent situation. We must be patient, wait for the
relevant evidence, and give modeling work a fair chance to catch up with the
experimental work. Given the potential complexity of the brain-behavior
relation, this process may take much longer than anyone expects. In the
meantime, the present approach advises us to keep searching for neurally more
plausible models, even if the best we can do for the moment is to obtain very
implausible ones. Implausible models are the first steps towards plausible
models.

Impossibility axioms are often postulated, according to which our
theoretical understanding of the brain-behavior relation is doomed to forever run
behind our empirical knowledge of brains and behavior. Such axioms, however,
are little more than hypotheses about the evolution of science and the nature
of scientific change (yet another philosophical issue), and are largely motivated
by intellectual impatience. There is nothing inherently erroneous with
formulating this kind of hypothesis, of course., What is questionable is to
regard them as demonstrated, incontrovertible truths, and use them as valid
criteria for swift verdicts on scientific theories. For better or for worse, theory
choice is a long and tortuous process that does not admit quick judgments.

Another difficulty with this kind of impossibility axiom is that it assumes
that either our empirical knowledge of brains and behavior will grow without
end, or our theoretical understanding of the brain-behavior relation will always
be incomplete, even if we reject the first assumption. The second assumption,
however, amounts to the truism that models are inherently simplifying devices.
Our theoretical understanding thus will necessarily run behind our empirical
knowledge, no matter how complete the latter. There will always be a gap
between our empirical knowledge of brains and behavior, and our theoretical
understanding of the brain-behavior relation. The issue, then, is not whether
a gap will exist, but how wide it will be. According to the criticism under
consideration, the current gap is abysmal, and one cannot disagree with this
assessment. However, the gap does not necessarily have to remain equally
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abysmal in the future. There simply is no valid criterion for predicting how wide
it will be. In this sense, the criticism in question commits the historicist fallacy,
the assumption that the current state of scientific knowledge provides a valid
basis for inferring its future states (see Popper, 1957, 1982).

The argument under consideration functions by discouraging the search
for neural plausibility as hopeless, on the basis that the resulting models are too
simplistic (as if there were a valid criterion to decide between acceptably and
unacceptably simplistic models) and that this simplicity is insurmountable in
principle (as if there were a valid criterion to predict future states of scientific
knowledge from present ones). The effectiveness of this strategy arises
partially from construing model plausibility in terms of completeness relative to
our current empirical knowledge. A more encouraging and fruitful approach is
to construe model plausibility as a matter of degree relative to other available
models. How wide the gap is between our theoretical understanding and our
empirical knowledge thus becomes less important than how wide it is between
different models. We believe that the present model is somewhat neurally more
plausible than others. We also acknowledge that some models are more closely
guided by hard experimental evidence on specific nervous systems. However,
these models tend to lack the kind of behavioral plausibility we seek. This
suggests that both kinds of plausibility may very well be antagonistic (too much
of one kind of plausibility may be detrimental for the other), another possibility
that must be taken into account when neural-network models are evaluated.
On this basis, our strategy has been to aim at a balance between the two kinds
of plausibility.

In conclusion, an emphasis on neural plausibility might indeed be a
weak justification for doing neural-network modeling, but only for the time
being (a time that certainly promises to be prolonged). In view of the above
reflections, such an emphasis remains a legitimate endeavor, in spite of the
extreme simplicity of current neural networks (relative to real brains) and the
gap that separates our empirical knowledge from our theoretical understanding
of the brain-behavior relation. This emphasis provides us with yet another
demarcation criterion, in addition to subsymbolic-distributed representation and
parallel processing, for separating between neural-network models and
cognitivist, inferred-process ones. In this manner, neural plausibility will
eventually allow us to decide between behaviorally underdetermined models,
to the extent that subsymbolic-distributed representation and paralle! processing
result in models that are equally plausible at the behavioral level,

I have explored only the surface of criticisms against neural-network
modeling in behavior analysis, and their underlying philosophical issues. A
lesson to be derived from these final reflections is that proper evaluations of
any kind of modeling must take into account the details of the philosophical
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issues involved. We must be careful not to dismiss any modeling strategy
lightly, on the basis of a few general philosophical intuitions. Otherwise,
potentially fruitful research lines might be prematurely abandoned. To use
Sober's (1993} fortunate phrasing about sociobiology models in the present
context, "there is no ‘'magic bullet’ that shows that [neural-network models are]
and must remain bankrupt, nor any that shows that [they] must succeed. Any
discussion of the adequacy of [neural-network] models inevitably must take the
models one by one and deal with details” (p. 185). We must not let our
criticisms towards neural-network modeling (or any other kind of modeling) be
motivated by the assumption that there is a magic bullet.
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