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ABSTRACT

This paper deals with an extension of behavioral principles to the study of social
situations. In order to understand how individual contingencies are structured in a
collective situation, we propose to investigate social situations using experiments with
humans, in conjunction with simulations with behavioral artificial agents. In the first
part, we present results obtained with humans in a minimal social situation. In this kind
of situation, participants unknowingly interact by reinforcing and punishing each other.
We observed that cooperation increased despite the fact that participants were unaware
of the consequences of their behaviors, for they were not informed that they were in a
social situation. The second part describes the implementation of five reinforcement-
learning strategies in a computer simulation, whose performances were compared to the
one observed in humans in an analogous situation, The Staddon-Zhang strategy was
the best one to optimize cooperation and model human performance.
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RESUMEN

Este trabajo es una extensién de principios conductuales al estudio de
situaciones sociales., Para entender como las contingencias individuales estan
estructuradas en una situacién colectiva, proponemos investigar situaciones sociales
utilizando experimentos con humanos, junto con simulaciones con agentes artificiales
conductuales. En la primera parte presentamos resultados obtenidos con humanos en
una situacion social minima. En este tipo de situacién, los participantes interactian sin
saberlo, reforzandose y castigdndose unos a otros. Observamos que la cooperacién se
incrementd a pesar de que no estaban conscientes de las consecuencias de sus
conductas, ya que no se les informé que estaban en una situacién social. La segunda
parte describe la implementacién de cinco estrategias de aprendizaje por reforzamiento
en una simulacién por computadora, cuyas ejecuciones fueron comparadas con la de
humanos observados en una situacién andloga. La estrategia Staddon-Zhang fue la
mejor en optimizar cooperacién y modelar la ejecucién humana.

Palabras clave: cooperacién, diadas, simulacién multi-agente, situacién social
minima, aprendizaje por reforzamiento

‘ Skinner (1953} proposed an extension of behavior analysis to social
situations. This idea originated an important field of research in sociology
{Homans, 1961) and experimental psychology. Many studies have investigated
the effects of cooperative procedures (e.g., Hake & Olvera, 1978; Hake &
Vukelich, 1972, 1973; Hake, Vukelich, & Olvera, 1975) and have compared
competitive to cooperative contingencies (Olvera & Hake, 1976; Schmitt, 1976,
1984, 1986). Other social effects have been studied under a behavioral
perspective, such as audit response (Hake, Vukelich, & Kaplan, 1973) or
reinforcement probability (Dougherty & Cherek, 1994). In the present paper,
we propose a methodology to investigate social situations, based on human
experiments and simulations that make use of reinforcement-learning artificial
agents.

Figure 1 depicts the method. To study a social situation, the first step
{1) is to design a laboratory situation that facilitates obtaining ordered
functional relations between environment and behavior. The second step (2)
is to make assumptions about individual behavior that serve as explanations of
the social situation of interest, specifically to determine how individual behavior
is selected and what contingencies are at work in such a selection. As a third
step (3}, these findings are used as rtiles in the design of virtual agents. Finally
{4), these agents are placed in a social situation analogous to the one studied
with humans, in order to run a multi-agent simulation. The behavior of humans
{or animals) in social situations can then be compared to the results obtained
through the multi-agent simulation. If the latter matches the former, then we
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have good reason to believe that the hypothesized rules of behavior constitute
plausible explanations of the dynamics of the real social situation.
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Figure 1. Diagram of the experimental/simulation process
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By using this method we do not mean to say that the simulation could
or should replace the experiment. Rather, our purpose is to use the simulation
as a complement to the experimental analysis of behavior. Specifically, we can
use the method to test different explanations of the kind of social, collective
behavior observed in human dyads. Such a test would rely on comparisons
between this behavior and the one observed in dyads of virtual agents. From
this comparison, then, we can determine the extent to which the mechanisms
that govern the simulated behavior (e.g., selection mechanisms) constitute valid
explanatory hypotheses of the behavior observed in humans (or animals) in real
social situations. To be sure, simulations, as simplifying, abstracting,
synthesizing devices, are not supposed to mirror behavior in every single known
situation. Rather, simulations, by virtue of their underlying models, are highly
selective regarding particular theoretical assumptions. So, clearly, building a
model of operant behavior constitutes a practical as well as a theoretical
endeavor (Skinner, 1950). For our present purposes, we have chosen to design
our simulated agents following a selectionist approach to operant learning (e.qg.,
Skinner, 1938; Staddon 1983; Donahoe, Burgos, & Palmer, 1993; Donahoe &
Palmer, 1994).
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A social phenomenon: Cooperation

The method described above can be used to study a number of social
situations. In the present paper, we concentrate on a cooperation kind of
situation, which offers certain advantages for our study. Indeed, the situation
represents a real social phenomenon that is observed in everyday life, as well
as in the laboratory. Also, it can be defined in a relatively precise manner in
terms of reinforcement contingencies. Finally, it can occur in relatively small
groups (at least two individuals), which facilitates experimental-analytic work.
According to Hake and Vukelich (1972), cooperation in the case of two
individuals is defined by two conditions. First, reinforcement of one individual’s
responding must be "at /east in part dependent upon the responses of the other
individual" {p. 333). Second, the situation must allow for "an equitable division
of responses and reinforcers" (p. 333). This second condition allows us to
distinguish between cooperation and competition. Indeed, the participants in
a competition situation are interdependent, just like in a cooperation situation.
However, the end result in the former situation is not an equitable distribution
of workload and reinforcers. In contrast, participants in a cooperation situation
can improve not only their own payoffs but also the payoffs of their partners.

The earliest experimental studies of cooperation are due to Sidowski
and his colleagues (Sidowski, 1957; Sidowski, Wyckoff, & Tabory, 1956). To
study cooperation, they defined what they called a "minimal social situation”.
In this kind of situation, two individuals can mutually reward or punish one
another unknowingly. Under certain conditions, Sidowski and his colleagues
observed the emergence of cooperation. They suggested that their results
could be explained in terms of selection by consequences. Kelley, Thibaut,
Radloff, and Mundy (1962) tried to provide an experimental analysis of this
selection. In order to support this latter analysis, we examined whether or not
cooperation in that situation could be explained in terms of behavior selection
by consequences at the level of the individual. On this basis, we used virtual
agents that function according to a reinforcement-learning rule, for it is the kind
of rule that has been typically used to implement behavior selection by
consequences. Will cooperation emerge between such agents? To answer this
question, we used the minimal social situation in order to make comparisons
between the behavior dynamics of humans and that of virtual agents. To
accomplish this, it was necessary to record the same kinds of variables for
humans and agents alike. The next section describes the experiment with
humans. The section after examines an analogous simulated situation with
reinforcement-learning agents in order to compare their performance to the one
observed in humans.
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Human experiment: Cooperation as an exchange of reinforcement
Participants

Twenty-six undergraduate students (eight males and eighteen females)
volunteered to join an experiment organized by the Psychology Department at
the University of Lille Ill, France. They were randomly arranged into thirteen
dyads and were told only that they were going to participate in a learning
experiment by playing a game in a computer. They were invited individually to
the laboratory and were not told that they had been paired with another
individual to "play" in the experiment.

Apparatus

Two computers were placed in two separate, isolated rooms and linked
through a TCP/IP network (see Figure 2). Participants were not told about the
link, so they interacted with a computer without knowing that it was connected
to another computer that was being used by another participant. Each computer
was equipped with an Intel Pentium™ processor (one with a P120 and the other
with a P90; execution of the software was not significantly different from one
machine to the other), a color screen (800x600), and Windows 95™,

TCP/IP network TCP/IP network

Figure 2. Experimental setup

A program was especially designed and developed in order to display
stimuli on the computer screens and to record the responses emitted by each
participant. The program consisted in a client/server network using Java™.
The role of the clients was to display stimuli and record the participants’
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responses. The server recorded the data and communicated with the clients.
Each screen displayed a window of 466 by 190 pixels, containing two buttons
of 100 by 100 pixels each and a counter with a height of 72 pixels and the
Times New Roman font {see Figure 3). A participant could increase or decrease
(without knowing it) the other participant’s counter by clicking the left or the
right button, respectively. A click defined a response, an increase in the
counter defined a reinforcer, and a decrease defined a (negative) punishment.

3 Applet

;&pmet staried.

Figure 3. The client interface

Procedure

Each individual in each dyad was separately placed in a room with a
computer. After asking them to sit in front it, the experimenter made sure that
they were able to use the pointing device (a mouse). Then, each individual was
given the following instructions: "This is a little game. You only have to earn
a maximum amount of points. For this, you can use the mouse and click on the
two buttons on the screen. You can click as much as you want during thirty
minutes". A startup signal was given to both individuals simuitaneously. Then,
each individual in each dyad interacted with the apparatus (and, without
knowing it, with one another through the TCP/IP link) during 30 minutes, after
which they were told that the game was over. After playing the game,
participants were asked to express their impressions about the game, in order
to determine whether or not they had realized they had interacted with another
individual. No participant reported having realized he or she had interacted with
another individual during the game. In fact, participants expressed surprise
after they were informed about the real purpose of the experiment.
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RESULTS

For all participants, the number of responses ranged from 56 to 6638,
with a median of 1446. For each dyad, a cooperation coefficient Cc = [2R /
{P+R)] - 1 was computed, where R denoted the number of times a participant’s
counter increased (reinforcements) and P the number of times it decreased
(punishments), due to the other participant’s responding. Coefficient Cc ranged
from -1, representing minimal cooperation, to +1, representing maximal
competition, zero representing random responding.
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Figure 4. Changes in the cooperation coefficient during the experiment

Figure 4 shows minute-by-minute changes in Cc throughout the game,
averaged across dyads. During the first half of the game, Cc was not
significantly different from zero, meaning that participants tended to distribute
their responses more or less evenly between the reinforcement and the
punishment buttons. However, at minute 19, Cc¢ abruptly reached .35, which
was statistically significant (t = 3.06, p < .001). So, from that moment in the
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game on, the number of reinforcements that participants gave each other
increased substantially, meaning that they suddenly started to click on the left
(reinforcement) button and maintained this behavior for the rest of the duration
of the game. The net outcome of this behavior was a significant increase in the
number of reinforcements obtained by both participants, indicating that they
ended up (unknowingly) cooperating with one another.

1 1
O Correlation -

0.8 4 M Crcoefficient

0.6 1

0.4 1

0.2 - I
0 4

-0.2 -

1 2 3 4 5 6 7 8 9 10 11 12 13

DYADS

Figure 6. Comparison between the cooperation coefficient and the correlation in
groups in which cooperation appears

Figure 5 shows the Cc coefficient (filled bars) and the correlation
between the frequencies of left-button and right-button responses (empty bars),
for each dyad during the last 10 minutes of the game (minutes 21 to 30).
Participants in Dyads 3, 4, 5, 6, 7, 11, and 13 showed values of Cc near to or
larger than the statistically significant value of .35, indicating a substantial
amount of cooperation. The Cc values for Dyads 1, 8, 9, and 10 also indicate
that participants exchanged more reinforcements than punishments during this
period of the game, although these values were not statistically significant.
Punishment was the most frequent response only in Dyads 2 and 12.
Participants in these two dyads emitted a relatively low number of responses
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(nearly half the number of responses emitted by participants in the other
dyads).

Finally, correlation coefficients ranged from -.02 to .99, reaching
statistically significant values in Dyads 4, 6, 7, 8, 9, 11, and 13, of which 4,
6, 11, and 13 also showed statistically significant Cc coefficients. In general,
such high correlation coefficients indicate that participants in these dyads
tended to respond in a relatively synchronized manner during this period of the
game. The contrast between the high correlation coefficients and the low Cc¢
coefficients observed in Dyads 8 and 9 indicates that participants in these
dyads tended to respond in a very synchronized manner, although their levels
of cooperation were not statistically significant.

DISCUSSION AND HYPOTHESIS

In a social situation where participants in human dyads responded
interactively without knowing the real consequences of their behavior,
cooperation increased throughout the interaction. This result is consistent with
the ones reported in the field (e.g., Kelley, Thibaut, Radloff, & Mundy, 1962;
Sidowski, 1957; Sidowski, Wyckoff, & Tabory, 1956). The increase observed
in synchronized responding among the participants (as represented by the
correlation coefficients), in those dyads where cooperation was significantly
high, suggests that a cooperative contingency may have been at work in these
dyads, as hypothesized by Hake and Olvera (1978). That is, once cooperative
responding emerged in those dyads in which Cc was high, an increase in the
cooperation rate of one participant reinforced the cooperative behavior of the
other participant. Such a contingency would cause participants to respond in
a synchronized manner, thus yielding high Cc as well as high correlation
coefficients.

On this basis, we hypothesize that the emergence of cooperation in
minimal social situations is due to behavior selection at the individual level.
That is, if two participants A and B start to cooperate, then both of them are
positively reinforced, which selectively increases the probability of future
occurrences of the same kind of response. If A and B start punishing each
other negatively (i.e., start retiring reinforcers from one another), then an
extinction contingency enters in operation. This contingency, in turn, causes
an initial increase in response variability and, hence, in the probability of
occurrence of chance cooperative responses. Once these responses start to
occur, they are selected and mutually maintained by reinforcement. Of course,
it is possible that A reinforces B while B is punishing A, in which case B is likely
to continue punishing A (for this behavior is reinforced by A’s cooperating
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behavior). However, this would constitute an extinction contingency for A,
which would cause an initial, momentary increase in A’s behavioral variation,
thus increasing the probability of occurrence of punishing responses. The
occurrence of such responses, in turn, introduces an extinction contingency for
B, which, once again, would cause an increase in behavioral variation and,
hence, in the probability of occurrence of cooperative responses on B’s part. In
this manner, synchronized cooperation, as an emergent mutual exchange of
reinforcers, becomes an attractor for all possible initial states (Delepoulle,
Preux, & Darcheville, 1999).

The above explanation suggests that cooperation in a dyad may develop
as a result of the individual participants trying to maximize their own amount
of reinforcement. In the next section, we describe simulations using
reinforcement-learning agents, with the purpose of determining whether or not
cooperation in these agents emerges in a similar manner. The design of the
agents in question followed a particular approach to operant behavior (i.e., to
behavior that is modifiable by its consequences), namely, the selectionist
approach.

: Virtual agents

All the agents used in the simulations described in the present section
were designed after the same set of general principles. First, agents were
capable of perceiving certain features of their environment. Second, they were
capable of emitting behaviors that could have certain effects on their
environments. More specifically, they were capable of producing or retiring
reinforcers (Kaelbling, Littman, & Moore, 1996). Aside from these very general
principles, however, details on how reinforcement modifies behavior, the so-
called "policy", yield different models. For our present purposes, we compared,
via computer simulations, the performances of five reinforcement-learning
architectures, namely, the law of effect, the Hilgard-Bower rule, the Staddon-
Zhang model, the action-value rule, and Q-learning. We describe their key
features in the next subsections, after which we describe the simulations in
question. For all the models, time was discrete and only one behavior, among
a set of possible behaviors, could be emitted at any moment in time.

The Law of Effect

Thorndike (1898, 1911), in his Law of Effect, proposed that whenever
an organism’s response is followed by a reinforcer (i.e., by a biologically
favorable consequence), the probability of future occurrences of similar
responses increased. Reciprocally, when a response is followed by a negative
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consequence (i.e., the absence of a biologically relevant stimulus), such a
probability decreased. We propose to formalize this law in terms of the
following difference equations:

!
AR (1)
1+s?
p'I
M= L for all ##j
1es' (2)

where / <denotes the last emitted behavior, t denotes a moment in time, p
denotes the probability of occurrence of a given response type at a given
moment in time, and
t
oS if.C{ 20 (3)
s'= lC,' 1

0 otherwise

where g denotes a learning-rate parameter and C;/ denotes the consequence
of behavior i, which can be either +1 or -1.

The sum of probabilities for all the different kinds of behaviors must be
equal to one at each time t. Equation 2 is necessary to preserve this relation.
This algorithm is nonlinear in that the variation rate depends on p,. Behaviors
with a low probability will change quicker than those with a high probability.
In our simulations, a = 1.5.

The Hilgard-Bower Law

Hilgard and Bower (1975) used a rule that is very similar to the law of
effect, named “linear reward-inaction algorithm”. Basically, all non-reinforced
actions are weakened, that is, their probabiiities are decreased. This algorithm
always converges with a probability of 1 on a particular action (though not
always to the optimal action). The mathematical expression of this algorithm
is:

if Cf > 0, then p/+' = pt + a(1-p}),

and for allj 52 i, p;'*' = p! - apf
If action 7 succeeds (i.e., if C; > 0), the probability is increased; if it does not,
the probability remains unchanged. Like in the Law of Effect, a represents a
learning rate, which was set to 0.05 in our simulations.
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The Staddon-Zhang Model

Staddon and Zhang (1991) proposed a simple parallel model that aims
at solving the assignment-of-credit problem without a teacher (unsupervised
learning). They showed that this model could account for certain qualitative
properties of response selection. Their model is consistent with paradigmatically
normal behavioral phenomena, as well as with certain anomalous phenomena,
such as autoshaping, superstition, and instinctive drift.

Each behavior is characterized by a value V, which is computed at each
time-step. All values V, compete against one another, the competition rule
being “winner takes all”. That is, the only behavior emitted is the one
corresponding to the largest V!. Two equations describe the changes in the
value of V! according to C/:

if C7 # Othen Vi+' = a-Vi + &+(1-a) + BV}

if C! = Othen V,™*' = a-Vf + (1 -a)

forallj # i, V,i*'= V!
where 0 < a <1 is a kind of short-term memory parameter, set to .5 in our
simulations. The reinforcement parameter g should be positive for rewards and
negative for punishments. In our simulations, g = 1 and & was a random
number between 0 and 1.

Action Value

The goal of this method is to estimate the mean payoff for each
behavior and to choose the best action to follow, in order to optimize the
forthcoming payoff. Sutton (1998) gives a method to compute this estimation
by iteration. Let V¢ the estimated (mean) payoff, C; the immediate
consequence of behavior /, and A/ the number of occurrences of / in the past.
If behavior 7 is emitted, then,

Vit = 1/ NIC + (NF-1)-V]L,

Nir+1 = Nl_t +1'

foralli # j, V,"*'= V;tand Nf*' = NL.
The agent chooses the behavior that has produced the largest mean payoff.
Such a method converges rapidly if we allow it to explore other behaviors. A
simple policy could be (with N,, the number of possible behavior)

Let e a random number in [0;1],

if e > € theni = argmax; (V(i)}
else i = random number in [1 ; N}
So, under this policy and with € = 0.1, an agent would behave randomly.
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Q-Learning

The Q-Learning algorithm was proposed by Watkins and Dayan {1992),
based on the Time Derivative (TD) model {Sutton, 1988; Sutton and Barto,
1990). It is an algorithm for solving rapidly and easily stochastic optimal
control problems where the agent is the controller and the environment is the
system to be controlled. In order to optimize performance, Watkins introduced
the quality value Q,, (hence, Q-value), which represents the expected future
payoff of emitting action a in state s. Q-Learning works by modifying Q,, for
each state-action pair, according to the following algorithm:

1. Choose an action a according the current state s. The agent enters state
s’ and receives the payoff r.
2. Modify Q,, according to the following equation:
Q,, =Q,, + alr + ymax,Q,.,-Q,,l
3. Gotol.
where o denotes a learning rate and y denotes a discount factor. In a
Markovian and stationary environment, Watkins has shown that this algorithm
converges, with a probability of 1, to the optimal value. In practice, Q-Learning
does not explore sufficiently the state space, for which it has been suggested
to introduce variability by adding some noise to the choice performed. Instead
of always emitting the best action in state s, the algorithm chooses the action
at random with probability .

In contrast to the other four methods, Q-Learning is not “context-free”.
This means that its behavior is sensitive to the context. So, if a certain
behavior is reinforced in a precise situation whereas the same behavior is
punished in other cases, the algorithm is able to emit this behavior only in that
particular situation.

Q,, is a measure of the expected reward of performing the action a in
the state s. This explains why the Q-Learning algorithm is able not only to emit
the best behavior in a state but also to reach this state. Furthermore, Q-
Learning is able to avoid states that ordinarily lead to negative consequences.

In our simulation, a and y were set to 0.5 and € = 0.1. States were
determined by the variation of the counter from ¢-1 to t.

Simulations

Two kinds of simulations were run, namely, individual-agent and multi-
agents. Each kind of simulation consisted of a total of five simulations, one for
each learning algorithm described above. In the individual-agent simulations,
agents were tested individually. In the multi-agent simulations, agents were
tested in a situation analogous to Sidowski’s minimal-social situation used in
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the human experiment. Simulations were run using a Java applet. The
experimenter could choose, via a graphical interface, the number of agents, the
learning algorithm, and the duration of the simulation (measured in number of
time-steps). The behavior of agents was displayed in a graphical window and
stored in files. The simulation program can be executed from http://www-
lil.univ-iittoral. fr/ ~ delep/Expe/Simul/Agent.htm/

Each individual-agent simulation lasted for 100 time-steps. At each
time-step, agents could emit one out of three possible responses, namely, self-
reinforcement (R}, self-punishment (P), and no effect (N). These simulations
were run to determine whether or not the agents could learn in a relatively
simple environment. For the five learning algorithms, the evolution of behaviors
was very similar, for agents succeeded in optimizing their behavior. At the end
of each simulation, all agents emitted mostly R responses. Only the Staddon-
Zhang agents continued emitting a significant number of N responses.

In the multi-agents simulations, an agent could emit three behaviors,
namely, reinforce its partner (R}, punish its partner (P}, or do nothing (N}. We
introduced the N behavior in order to approximate better the human situation,
for in this situation participants not only could respond at any moment, but also
were allowed not to emit any response for as long as they wished. Applying
this strategy to the simulations was critical in order to prevent the emergence
of synchronized cooperation in the agents as an artifact due to the discrete and
sequential way of functioning of Turing-machine based computers. We wanted
such a cooperation to be due as much as possible to the close temporal-
contiguity relation between consequences and responses, as stipulated by the
learning algorithms. This kind of control is rarely mentioned in simulation
research, despite the fact that it is critical for assessing the validity of
simulation results.

In a multi-agents simulation, a given learning algorithm was applied for
1000 time-steps to 13 dyads of agents of the type stipulated by the algorithm
in question. So dyads within a multi-agent simulation consisted of agents of
the same type. In order to compare the performance of the agents to the one
observed the participants of our human experiment, we computed a cooperation
ratio Cr = R/(P +R), for both humans and agents. The graphs in Figure 6 show
changes in the mean dyad Cr across time, for participants in the human
experiment (dotted line) and for each type of agent in the simulations
(continuous line). Agent responses were grouped into 30 periods of time, each
of which contained the same number of responses. During each period, each
agent emitted approximately the same number of responses that a human
subject did during one minute. A comparison among the graphs reveals that
overall the closest simulation of human performance was achieved by the
Staddon-Zhang agents, especially towards the end of the game, where humans
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and agents reached very similar Cr values (near .7). The other kinds of agents
invariably ended up with Cr values below human performance.

LAW OF EFFECT | HILGARD-BOWER LAW

STADDON-ZHANGMODEL |  ACTION VALUE

-

Figure 6. Evolution of the cooperation rate (Cr) in human (dotted line} and agent dyads
defined according to the five models (continuous lines). In all plots, the ordinate is a linear scale
that varies from 0.2 to 1, and represents Cr, the ratio between the number of reinforcement
behaviors being emitted and the total amount of behaviors being emitted. The abscissa represents
the duration of the human experiment {linear scale from 1 to 30 minutes)

The above conclusions must be taken in the context of two caveats.
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First, each model relied on a particular set of parameters that determined the
agents’ behavior and whose impact in a situation of cooperation with humans
must be assessed. Second, different results might be obtained with different
measures of cooperation. In the present paper, we have limited ourselves to
cooperation behaviors. However, if we consider cooperation as a mutual
exchange of reinforcements, then measuring the number of behaviors of
cooperation emitted by both agents simultaneously would be more appropriate
{Delepoulle, Preux, & Darcheville, 1999). In this case, only Q-learning,
Staddon-Zhang, Law-of-Effect agents would differ substantially from a random
distribution. Moreover, the performance of the Staddon-Zhang agents would
remain the closest one to human performance.

GENERAL DISCUSSION AND PERSPECTIVES

We have shown how a selectionist explanation of the emergence of
cooperation in human dyads in a minimal social situation is supported by
simulations based on reinforcement-learning models. The results obtained with
humans may thus be interpreted as resulting from selection by reinforcement,
as suggested by Sidowski, Wyckoff, and Tabory (1956) and by Kelley, Thibaut,
Radloff, and Mundy {1962). Moreover, in the present paper we showed that
such an emergence is more closely modeled by a particular reinforcement-
learning scheme, namely, the Staddon-Zhang algorithm. Of course, this
algorithm is too simple to capture more complex instances of cooperative
behavior or other forms of social behavior. Certain social phenomena may, for
example, involve discrimination, a phenomenon that is not readily captured by
the Staddon-Zhang algorithm, for this algorithm is, by definition, a free-operant
model. Hence, for a more comprehensive understanding of cooperation, other,
more complex experimental situations, such as the ones studied by Hake and
colleagues, in which case, more complex models would be needed for
explanation. But certainly selection by consequences would still constitute a
central piece of such models. Far from contradicting a selectionist approach to
social behavior, more complex models would be expected to make such an
approach more complete.

Our present interest in virtual agents is clearly different from the
optimization approach that guides most of engineering applications. Indeed, our
aim is to compare selection by consequences in natural and in artificial social
situations, rather than obtain optimal solutions to certain practical problems.
Our main purpose is to build agents relying on models of behavior selection by
consequences. In this sense, the goodness of a model thus depends on how
closely its simulation realizations correspond ({via either prediction or
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postdiction) to the behavior observed in real organisms (humans or animals),
even if such simulation and behavior are regarded as being nonoptimal when
viewed from an engineering, optimization perspective.

On this basis, the Staddon-Zhang model can be judged as being the
best among the other four models in predicting human performance, particularly
towards the end of the experiment. This result is likely to be due to the fact
that agents designed according to this model can continue responding under
intermittent-reinforcement conditions, which involve nonreinforced responses.
In fact, these agents keep exploring the state space during the entire
simulation. This is the reason why they continued emitting the do-nothing
behavior {N) in 30% of the cases in the individual simulations. In this sense,
this algorithm captures the idea of behavior selection by consequences more
closely than any other model, which may explain why it succeeded in
simulating the emergence of cooperation in a minimal social situation. In any
case, and beyond particular selectionist models, it is clear that a selectionist
behavioral approach allows for the emergence of cooperation under conditions
in which agents and human participants alike have no explicit knowledge about
the situation. This conclusion is consistent with the ideas about the evolution
of cooperation proposed by Axeirod (1984).
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