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ABSTRACT

We propose an operant approach to the emergence of cooperation in the
iterated Prisoners’ Dilemma (IPD). The approach yields to the design of reinforcement-
learning agents whose behavioral repertoire includes not only cooperation-related
behaviors, but also controlling behaviors that may influence the behavior of the other
player. The task of an agent is to learn to coordinate its own cooperation- and control-
related behaviors with those of the other agents. It is suggested that this situation is
closer to natural cooperative situations than the classical approaches to the IPD.
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RESUMEN

Proponemos una aproximacién operante a la emergencia de cooperacién en el
dilema iterado del prisionero (IPD). La aproximacién lleva al disefio de agentes de
aprendizaje por reforzamiento cuyos repertorios conductuales incluyen no sélo conductas
cooperativas, sino también conductas controladoras que pueden influir la conducta del
otro jugador. La tarea de un agente es aprender a coordinar sus propias conductas
cooperativas y controladoras con aquellas emitidas por los otros agentes. Se sugiere
gue esta situaciéon es mdas cercana a las situacones cooperativas naturales que las
aproximaciones clésicas al IPD.

Palabras clave: dilema iterado del prisionero, conductas controladoras,
aprendizaje por reforzamiento, agentes digitales, arquitectura actor/critico, ecuacién
Rescorla-Wagner, ecuacién Staddon-Zhang

‘ The iterated Prisoners’ Dilemma (IPD) is a two-player game in which, at
every turn, each player must either cooperate or not cooperate with {defect
from) the other. The payoffs for all the possible combinations of these two
behaviors are shown in Table 1.

Table 1
Payoff matrix for the Iterated Prisoners’ Dilemma (IPD)

A2\A1 Cooperation Noncooperation

Cooperation A1:R A1:T
A2:R A2:S

Noncooperation A1:S A1:P
A2:T A2:P

If P, R, T, and S denote four quantitatively different payoffs (e.g.,
amounts of money or food), then this table must satisfy two conditions in order
to qualify as an IPD payoff matrix. First, T>R>P>S must be the case. That
is, at any turn, defection must be the best strategy (i.e., payoff must be
highest) for an individual player if and only if the other one cooperates in that
same turn. So, if a player cooperates, it should be better for the other player
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to defect and ‘exploit’ its partner’s cooperative behavior. However, mutual
cooperation must return a higher individual payoff than mutual defection (i.e.,
R>P), although the latter must return a higher individual payoff than unilateral
cooperation l(i.e., P>S). Second, 2R>T+S must be the case. That is, the
overall payoff for mutual cooperation must be higher than the one for unilateral
cooperation (or defection).

IPD has attracted a much attention in a wide variety of disciplines, from
economics to evolutionary biology. This is due to the fact that it emphasizes
a surprising and important property of many cooperative situations, namely,
that cooperative contingencies not only favor cooperative but also exploitative
behavior. This is a threat to the long term stability of cooperation, as it has
been demonstrated in laboratory with humans and animals, and in certain more
natural situations (Axelrod, 1984). For instance, Green, Price, and Hamburger
(1995) showed that pigeons trained in a Skinner box failed to demonstrate
cooperation, even when they played against Tit-For-Tat, a computer strategy
that promotes cooperation. On the other hand, real organisms embedded in a
natural IPD situation are able to maintain stable cooperative interactions.
Several impressive examples can be found in natural populations. One of the
best known cases refers to vampire bats that share blood with unlucky
conspecifics that haven’t been able to collect enough blood during their
nocturne hunt (Dawkins, 1989). So, how can stable cooperation emerge in an
IPD?

To answer this question, researchers have designed and studied how
computer strategies behave in an IPD situation, through "ecological" computer
tournaments (Axelrod, 1984). In such tournaments, computer agents using
different strategies interact with one another in an IPD situation. The cumulative
gain of an agent at the end of a tournament in a given generation determines
the number of copies of itself it leaves for the tournament in the next
generation. This methodology allows for the detection of good strategies, as
well as the study of complex dynamical phenomena, such as oscillations or
chaos in the evolution of the population of agents {Delahaye & Mathieu, 1995).
Although some of these resuits have been applied to the interpretation of the
phylogenetic evolution of cooperation in animal populations (Axelrod &
Hamilton, 1981; Dawkins, 1989), they have relied more on formal than on
biological constraints.

Approaches to the IPD using reinforcement learning algorithms have
only been recently proposed, which has started the exploration of a class of
biologically plausible strategies that have been previously neglected. In the
present paper, ‘reinforcement learning” does not refer to the study of operant
conditioning in experimental animal psychology, but rather the study of learning
algorithms in artificial agents, based roughly on the idea of selection by
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consequences. These algorithms have been inspired by experimental
psychological research on animal learning {see Sutton & Barto, 1981) and
constitute an active research field in contemporary artificial intelligence and
artificial life. Reinforcement learning algorithms have been applied by some
behavior analysts to the modeling of operant behavior {e.g. Donahoe, Burgos,
& Palmer, 1993; Hutchison, 1998). An excellent introduction to reinforcement
learning in artificial intelligence can be found in Sutton and Barto (1998).

Sandholm and Crites (1996) have developed a series of computer
experiments using Q-learning agents, a popular reinforcement learning method
that was originally developed on formal grounds by Watkins (1989). Also,
Burgos (1999) has applied the Donahoe-Burgos-Palmer neural network model
of operant and Pavlovian conditioning (Donahoe, Burgos, & Palmer, 1993) to
the simulation of learning under an IPD situation. Reboreda and Kalcenik (1993)
also devised a simple Pavlovian model based on the Rescorla-Wagner equation
(Rescorla & Wagner, 1972) to interpret their data obtained with starlings
playing an IPD-like game.

The present research is another example of a reinforcement-learning
approach to the IPD. It differs from the previous studies not only in the
architecture of the agents used in the simulation (see below) but also in the
guiding hypotheses. We consider the IPD payoff matrix as a group contingency,
that is, as a contingency of reinforcement in which the consequences of the
operant do not only depend on the behavior of a given organism, but also on
the behavior of other organisms embedded in the same situation (Schmitt,
1984). Experimental studies of group contingencies have demonstrated the
spontaneous emergence of collateral behaviors not explicitly arranged for
contingency (see Schmitt, 1984 for a review). The role of such behaviors in
the success of the interaction has been suggested by Lubinski and
MacCorquodale (1984), in relation to symbolic communication between
pigeons. In this study, one pigeon maintained the interaction with a conspecific
that was always deprived of food, no matter the physiological state of the
former, due to the non-programmed emergence of species-specific behaviors
in the permanently-deprived pigeon. Based on these studies, we propose that
a group contingency not only reinforces behaviors explicitly specified by the
contingency (let’s call them ’principal behaviors’), but also collateral behaviors,
insofar as they have an effect on the principal behaviors of the other organisms
embedded in the group contingency. The interplay between indirectly-reinforced
emergent collateral behaviors and directly-reinforced principal behaviors
determines the outcome of the interaction. If we apply this analysis to the IPD,
it leads to the conclusion that the payoff matrix does not only bring the direct
reinforcement of cooperative and defecting behaviors (the principal behaviors),
but also the indirect reinforcement of collateral behaviors. More specifically,
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whatever you do as a player in an IPD situation, it is always better for you that
the other player cooperates, because this will either prevent him/her from
defecting or it will allow you to exploit him/her. The emergence of these
controlling behaviors may explain why some groups are able to maintain a
stable cooperation while others are not. Perhaps, previous studies on the IPD
have overconstrained the situation by restricting the behavioral repertoire of the
players. This analysis of the way a stable cooperation can emerge in an {PD
situation is tested here in a computer simulation. But first, let us describe the
architecture of the agents.

Agent architecture: The RW-critic/SZ-actor model

Our agents were built according to an actor/critic architecture (Sutton
& Barto, 1998). This architecture consists of two parts, namely, a critic that
computes a prediction of future reinforcement, based on the state of the
environment and current reinforcement, and an actor that chooses which
actions to emit, based on the state of the environment and the evaluation
computed by the critic. The critic in our agents was designed after the
Rescorla-Wagner (RW) equation (Rescorla & Wagner, 1972), while the actor
was designed after the Staddon-Zhang (SZ)} equation for credit-assignment in
operant learning (Staddon & Zhang, 1991). Hence, we called our model the
RW critic/SZ actor model (see Figure 1). We chose these two equations on the
basis of their simplicity, relative to other models.

The SZ equation was originally proposed to explain how a given kind of
response could be selected by contingent reinforcement. The equation can also
account for other reinforcement-related phenomena, like the effect of
reinforcement delay, superstitious behavior, and instinctive drift {see Staddon
& Zhang, 1991, for further details). We consider an agent as a collection of
behavioral repertoires, a behavioral repertoire being defined as a set of
behaviors that are mutually incompatible at a given moment in time (or time-
step or iteration). At each moment t, the activation level a of a behavior/in a
repertoire is computed according to the following equation:

aft-1)-wafd+y(-afhre(1-4) ()

where 0 < g < 1 is a short-term memory decay rate (in our simulation, g =
0.4), € is a random variabte uniformly distributed over [0,1], and y is a
reinforcement evaluation computed by the critic (see below). At each moment
t, the behavior / with the highest activation level a(?) in a repertoire is emitted
(this is the so-called 'winner-takes-all’ rule). If y(t) is positive (see below}, then
(1) amplifies the differences between the activation levels of the different
behaviors constituting the repertoire. Since by definition the reinforced response
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is the one with the highest activation level, it will be favored over the other
behaviors in the repertoire. Hence, the reinforced response will be emitted
more often, even if the overall repertoire output maintains some variability due
to €.

Reinforce;

behavior

RW critici | SZ actor SZ actor| [RW critic

Reinforcement evaluation

Environment

Figure 1. Schema of the RW critic/SZ actor model. An agent was a collection of RW
critic/SZ actor units or agents (two in this example}. A common reinforcement signal based on
previous behaviors emitted by the SZ actors was delivered to the RW critics. Based on this signal
and on the previous behaviors emitted by their associated SZ actor, the RW critics computed a
reinforcement evaluation that was fed into the SZ actor and partiailly determined its output

Regarding the critic part of the model, and from the standpoint of
reinforcement learning, the RW equation can be viewed as the simplest iterative
prediction algorithm, for it computes a prediction of reinforcement only for the
next time-step (Sutton & Barto, 1990). Each behavioral repertoire has its own
RW critic that computes its own reinforcement evaluation (see Figure 2). The
behavior just being emitted by its corresponding behavioral repertoire
determines the state of the environment on which the RW critic bases its
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evaluation. The evaluation process is summarized in the two following
equations, which implement the RW equation in the context of the RW critic/SZ
actor model:

Y()=E()+p {A()-E()] (2)

where (1} is the corrected reinforcement evaluation [also used in (1)], A(?) is the
actual amount of reinforcement given at ¢, p is a constant learning rate (in our
simulation, p = 0.1), and E(?) is the overall amount of reinforcement predicted
by the RW critic at ¢ (i.e., the amount of reinforcement predicted for all the
repertoire behaviors occurring at t), which is given by

E()=Z 7, w(t-x(d

where w; is the reinforcement expectation associated with behavior /, whose
value depends on the agent’s history, and x{t) = 1 if behavior / was emitted
at t; otherwise, x,(t) = O; and n; is the total number of behaviors constituting
the behavioral repertoire j. The reinforcement expectation for behavior / is

updated according to:
w(t1)=wd+p {A(H-E())x() (4)

If x{t) = 1 (i.e., if behavior / was emitted at ) and E(#) # A(?) (i.e., if there is
a discrepancy between the predicted and the actual overall amount of
reinforcement), then the expected amount of reinforcement for 7/ will be
changed, thus reducing the difference between E and A for the next time-step.

An agent can be considered as a multiagent system, each subagent
being constituted by a RW critic/SZ actor (see Figure 1). Each subagent lives
in its own private environment, so to speak, since the input to the RW critic is
different for each subagent and they work quasi-independently, being unable
to transfer information about their own functioning to other subagents. The
only property they share is the actual amount of reinforcement received, A(t).

(3)

Simulation of the IPD in RW-critic/SZ-actor agents

The agents used in the present simulation had two behavioral
repertoires, namely, cooperation-related (principal) behaviors and control-related
(collateral) behaviors. The cooperation-related repertoire is constituted by two
behaviors, namely, cooperation and defection. The control-related repertoire
was also constituted by two behaviors, namely, a controlling behavior that
could affect the behavior of other agents by manipulating their contingencies
of reinforcement (see below, Table 2.b) and a collateral behavior that had no
effect whatsoever on the behavior of other agents.
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Tables 2.a and 2.b show payoffs in terms of A{#) values for Agent 1
(A1) as a function of A1 and Agent 2's (A2) behavior. The corresponding
tables for A2 are symmetrical to Tables 2.a and 2.b, for which they are not
shown here. The free parameter u represents the minimum amount of
reinforcement that an agent could receive. In our simulations, u = 0.08. Table
2.a is a standard IPD matrix. The contingency described in Table 2.b slightly
enhances the payoff of cooperation. In a control condition, only Table 2.a was
used to compute the payoff. In the experimental condition, Table 2.b was used
to compute the payoff for one agent if and only if the other agent emitted a
controlling behavior. Otherwise, Table 2.a was used. Table 3 summarizes the
payoffs for each agent in the control condition, while and Table 4 does the
same for the experimental condition.

Tables 2.a and 2.b.
Payoffs in terms of A(#} values for Agent 1 (A1), according to its behavior and Agent 2's (A2).
The free parameter u represents the minimum amount of reinforcement an agent could collect.
in our simulations, u = .08. Table 2.a (top) is a standard, classic IPD matrix, used in the
control condition. Table 2.b {(bottom) was used to compute the payoffs in the experimental
condition

A2\A1 Cooperation Noncooperation
Cooperation 6u 10u
Noncooperation u 2u
A2\A1 Cooperation Noncooperation
Cooperation 8u 10u
Noncooperation 3u 2u

We crossed two independent variables, namely the number of iterations
in a simulation {either 1000 or 2000, which corresponded roughly to the
number of iterations that the SZ equation took to settle down to equilibrium in
previous simulations) and the opportunity to control. In one condition of this
second variable, A was computed according to Table 2.a (standard IPD), so
emitting a noncooperative control behavior by any of the agents did not affect
differentially the contingencies, with respect to the emission of the other kind
of noncooperative behavior (see Table 3). In the other condition, A was
computed according to Table 2.b for A1 whenever A2 emitted the
noncooperative controlling behavior {(experimental IPD, see Table 4).
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Table 3
Payoffs for each agent in the control condition (classic IPD)

A1 A2

Cooperate  Control Cooperate Control Payoff for A1 Payoff for A2

yes yes yes yes 6u 6u
yes yes yes no 6u 6u
yes yes no ves u 10u
yes yes no no u 10u
yes no yes yes 6u 6u
yes no yes no 6u 6u
yes no no yes u 10u
yes no no no u 10u
no yes yes yes 10u u
no yes yes no 10u u
no yes no yes 2u 2u
no yes no no 2u 2u
no no yes yes 10u u
no no yes no 10u u
no no no yes 2u 2u
no no no no 2u 2u

The simulation was replicated 20 times, each time with a new dyad.
For each agent in each replication, we computed a cooperation score
(percentage of cooperating responses) and a control score (percentage of
controlling-behavior responses). These scores were used to classify dyads into
cooperative, non-cooperative, and exploitative, according to a weak criterion
and a strong criterion. The weak criterion was based only on the cooperation
scores. Using 50% as a cutoff point, a dyad was classified as cooperative,
noncooperative, or exploitative depending, respectively, on whether its
cooperation score was above this point in both agents, below in both agents,
or above in one agent and below in the other. The strong criterion was based
on both scores. A dyad was classified as cooperative according to this criterion
it its cooperation and control scores were above 50% for both agents. If a
dyad was classified as exploitative according to the weak criterion, and the
control score for the agent with the lowest cooperation score was higher than
50%, then the dyad was classified as exploitative. The strong criterion was
identical to the weak criterion for non-cooperative dyads.
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Table 4
Payoffs for each agent in the experimental condition (experimental IPD)

A1 A2

Cooperate  Control Cooperate Control Payoff for A1  Payoff for A2

yes yes yes yes 8u 8u
yes yes yes no 6u 8u
yes yes no yes 3u 10u
yes yes no no u 10u
yes no yes yes 8u 6u
yes no yes no 6u 6u
yes no no yes 3u 10u
yes no no no u 10u
no yes yes yes 10u 3u
no yes yes no 10u 3u
no yes no yes 2u 2u
no yes no no 2u 2u
no no yes yes 10u u
no no yes no 10u u
no no no yes 2u 2u
no no no no 2u 2u

The results obtained in the 20 replications are summarized in Figures 2
through 5. Figures 2 and 3 show the cooperation {left panels) and the control
scores (right panels) obtained in the standard (upper panels) and the
experimental IPD (lower panels), for 1000- and 2000-iteration simulations,
respectively. In both simulations, cooperation scores tended to be below 50%
in the standard-IPD conditions, while control scores tended to concentrate
towards 50%, indicating that agents tended to emit controlling responses in a
random fashion. As the upper panels of Figure 4 show, such score distributions
in the standard IPD conditions resulted in most of the dyads being classified as
noncooperative, a substantial number of dyads as exploitative, an none as
cooperative, even by the weak criterion.

In contrast, agents tended to cooperate substantially in the
experimental-IPD conditions. Indeed, as the lower left panels of Figures 2 and
3 show, a larger number of dyads satisfied the weak criterion, which resulted
in a larger number of cooperative dyads in the experimental- {see empty bars
in lower panels of Figure 4) than in the standard-IPD conditions.



AN APPROACH TO THE ITERATED PRISONERS’® DILEMMA 221

1000 ITERATIONS

COOPERATION SCORES CONTROL SCORES
O - CLASSIC IPD

S @ .
30 4 § Q¢ ] ‘?
20 A e o ;
10 1
0 T ————— v ——r—r

A2

110 1
100 - o} 1 %o
90 4 [¢] 4

80 1 € ] °
70 - ] o ©
60 4 o]

50 - o 1 o © e °
40 1 o @ o
30 -
20 1 c
10 1
0

0 10 20 30 40 50 60 70 80 90 100110 0O 10 20 30 40 50 60 70 80 90 100110
A1

Figure 2. Cooperation {left panels) and control scores {right panels) for Agent 1 (A1) and
Agent 2 (A2} in the 1000-iteration simulations with the classic- (upper panels) and experimental-IPD
{lower panels) conditions

Taking the control scores into account (see lower right panels of Figures
2 and 3), we see that a larger number of dyads also satisfied the strong
criterion. This resulted in a larger number of dyads that were cooperative
according to this criterion (see filled bars in lower panels of Figure 4). These
effects were more pronounced in the 2000- than in the 1000-iteration
simulations, indicating that a prolonged exposition to the group contingencies
caused agents to eventually shift from a noncooperative to a cooperative
strategy. Given that exploitative dyads were substantially more numerous in
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the 1000- than in the 2000-iterations conditions (an effect that is also
observed, although less pronounced in the standard-IPD conditions), such a
transition may have been bridged (and, to that extent, facilitated) by the
exploitative strategy. Finally, an examination of the cooperation and control
scores suggests that they were more closely and positively correlated in the
experimental- than in the control-IPD conditions, between each other as well as
between the agents within each score.
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Figure 3. Cooperation (left panels) and control scores (right panels) for Agent 1 (A1) and
Agent 2 (A2} in the 2000-iteration simulations with the classic- {upper panels) and experimental-IPD
{lower panels) conditions
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Figure 4. Classification of dyads into cooperative (C}, exploitative (E), and noncooperative
(NC), according to the weak criterion {empty bars) and the strong criterion {filled bars)

The above results are consistent with our analysis of the emergence of
cooperation in an IPD, at least in the sense that stable cooperation emerged
substantially in the experimental-IPD condition, and that such an emergence is
positively correlated with an increase in control scores. However, in order to
show that agents learned to cooperate because they learned to control each
other, we must show that the increase in control scores was not superstitious.
That is to say, we must ensure that such an increase was not due to an
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adventitiously reinforced random biased functioning towards the control-related
repertoire. To test for this possibility, we devised another simulation that was
also replicated 20 times, 2000 iterations each replication. In this simulation,
A was computed using Table 2.b only for both agents. Table 2.a was never
used. Table b summarizes the payoff for each agent in this condition. Control
scores were computed for each dyad and each agent. Results are shown in
Figure 5. The distribution of control scores is far from random, but it does not
display the pattern observed in the upper right panel of Figure 3. So, the
increase in controlling scores observed in the experimental-IPD conditions of the
previous simulation did cause the increase in cooperative scores.

Table 5
Payoffs for each agent when the contingency of Table 2.b is used unconditionally

A1l A2

Cooperate Control Cooperate Control Payoff for A1 Payoff for A2

yes yes yes yes 8u 8u
yes yes yes no 8u 8u
yes yes no yes 3u 10u
yes yes no no 3u 10u
yes no yes yes 8u 8u
yes no yes no 8u 8u
yes no no yes 3u 10u
yes no no no 3u 10u
no yes yes yes 10u 3u
no yes yes no 10u 3u
no yes no yes 2u 2u
no yes no no 2u 2u
no no yes yes 10u 3u
no no yes no 10u 3u
no no no yes 2u 2u
no no no no 2u 2u

Figure b is interesting because it suggests a way in which the agents
could have handled the task. Again, a comparison between this graph and the
one depicted in the upper right panel of Figure 3 reveals that control-related
behaviors did not affect the amount of reinforcement earned by the agents in
the standard-IPD/2000-iteration simulation, nor in the new, unconditional-
reinforcement simulation. Indeed, in the former simulation, agents clearly
detected the non-contingent relation between control-related behaviors and
reinforcement, for which they emitted these behaviors in a random fashion. In
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contrast, the same non-contingent relation in the new simulation caused agents
to be superstitiously reinforced for emitting control-related behaviors. Skinner
(1948} attributed the development of superstitious behavior in the pigeon to
adventitious reinforcement of whatever response was occurring at the moment
of reinforcement. Qther behavior analysts have challenged this explanation,
relying on the fact that pigeons are able to make fine discriminations between
contingent and non-contingent reinforcement (e.g., Killeen, 1978). How can
we explain these results?
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Figure 5. Control scores when the contingency of Table 2.b was used unconditionally

The RW critic/SZ actor model suggests that both explanations can be
true, depending on the situation. If such a duality could be demonstrated in
real organisms, this would be an interesting constraint on our models of
learning. Indeed, the major characteristic of the dynamics of the SZ equation
is that it converges to O whenever 4 + y(t) < 1, diverging to infinity whenever
4 + ylt) > 1. Thus, the enhancement of the differences in the activation level
a,(t) is more important in the latter than in the former case, which causes the
agent’s behavior to become less flexible. This situation seems to be caused by
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the contingency of Table 2.b but not by the one of Table 2.a. Another factor
that may explain the results is the fact that the RW critic introduces a
discrepancy between the real amount of reinforcement received and its effect
on the SZ critic. This effect depends on the learning rate p. Rewriting Equation
{4) in order to express w(f) as a function of amplitude, reinforcement
frequency, and p may help expressing these intuitions more formally, which, in
turn, will allow us to make empirical predictions about the way the RW critic/SZ
actor dynamics is affected by a group contingency.

CONCLUDING REMARKS

We have provided a behavior-analytic account of the IPD in terms of an
explanation of how stable cooperation may emerge in this kind situation. A
computer simulation using simple operant agents supported this analysis.
Hence, we have illustrated how a group contingency can give rise to social
coordination. _

This work can be extended in several ways. The evolution of a whole
population of agents can be studied, each agent using different controlling
behaviors (some reinforcing cooperation, others defection) to see how the
control-related repertoire evolves. Studies of other group contingencies,
incorporating constraints from real situations that are faced by animal
population can also be done. Finally, extensive comparisons with other
reinforcement- learning approaches to the IPD might lead to novel perspectives
in the study of this situation, and of reinforcement-learning agents in general.
Extensions of the RW critic/SZ actor to other learning situations, different from
the IPD one, could also be tested.
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