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ABSTRACT

Computational modeling is emerging as a new method for researchers to test
theories of behavior. Computational models that incorporate adaptive networks are
especially attractive to behavior analysts because of the selectionist nature of these
models. A novel adaptive network model of operant conditioning, called “Artie,” is
presented. Results from simulated laboratory experiments with Artie replicated
laboratory results from real animals, lending support to selectionist accounts of operant
conditioning. In general, adaptive network models of behavior are probably better suited
for testing theories of behavior than for teaching us about the functioning of the brain.
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RESUMEN

El modelamiento computacional est4d emergiende como un método nuevo para
que los investigadores pongan a prueba teorfas de la conducta. Los modelos
computacionales que incorporan redes adaptativas son especialmente atractivos para los
analistas conductuales,debido a la naturaleza seleccionista de estos modelos. Se
presenta un nuevo modelo de redes adaptativas del condicionamiento operante llamado
“Artie”. Resultados de experimentos de laboratorio simulados con Artie replicaron
resultados obtenidos con animales reales, dando asi apoyo a las explicaciones
seleccionistas del condicionamiento operante. En general, los modelos de redes
adaptativas de la conducta son probablemente mejores para poner a prueba teorfas de
la conducta que para ensefiarnos acerca del funcionamiento del cerebro.
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Behavior analysts have begun to recognize the power of computational
models as well as the compatibility between certain types of computational
models and behavior analysis (Hutchison, 1984, 1997). Some behavior
analysts are becoming especially interested in computational models that utilize
adaptive networks (e.g., Donahoe & Palmer, 1989; Kehoe, 1989; Stephens &
Hutchison, 1993). Adaptive networks are selectionist models, meaning that
their operations can be characterized by a repeating cycle of variation,
selection, and retention (Palmer & Donahoe, 1992; Donahoe & Palmer, 1994).
Operant learning has also been characterized as a selectionist process (Skinner,
1981; Smith, 1983, 1986), theoretically making it possible to simulate the
process of operant conditioning using an adaptive network.

The current paper provides a brief introduction to the computational
modeling approach to the study of animal behavior. Included in the introduction
are discussions of the general simulation of animal behavior, the simulation of
operant behavior using adaptive networks, and the concept of “selectionism.”
Afterwards, a novel computational model of operant behavior is presented. The
model includes a computer-simulated organism named "Artie,"” whose behavior
is controlled by an adaptive network. Attempts to produce free-operant
learning phenomena with Artie provided tests of the model’s ability to simulate
operant conditioning, and the results of the simulations are presented. Lastly,
the use of resuits from this and other adaptive network models is discussed.

The simulation of animal behavior

Computer models of animal behavior can be classified into two main
categories: models that simulate group behavior and models that simulate the
behavior of individual organisms. To demonstrate the utility of computer
models of animal behavior, four models are presented. Two of the models
concentrated on group behavior, and two of the models focused on individual
behavior. Each study demonstrates the ability of computer simulations to help
researchers explore real-world animal behavior.

Group behavior
Reynolds (1987) created a realistic simulation of the flocking behavior

of groups of birds by programming a few basic rules thought to underlie the
flying behavior of individual birds. The rules were applied only to individual



THE ARTIE SIMULATION 253

birds, with no rules applied to the group as a whole. When the behavior of the
individual birds interacted, flocking emerged. By examining the parameters of
the individual rules and how they interacted, Reynolds and other researchers
have been able to better understand how flocking may occur in nature (Rucker,
1993, pp. 67-75).

Langton (1986) created one of the earliest simulations of group
behavior. Utilizing cellular automata (an array of cells arranged in checkerboard
fashion, with each cell’s behavior being determined by the behavior of its
neighbors), Langton created a population of virtual ants, or “vants.” Only simple
rules were used to simulate the behavior of each individual vant; however,
when the vants interacted through the use of simulated pheromones, a self-
organization very similar to that found in colonies of social insects emerged.
Whether or not the rules Langton used are indeed the same rules that real
insects employ, simulations such as these help researchers to understand how
complexity in the natural environment can emerge from simple processes {Levy,
1992, pp. 93-107).

Individual behavior

The second computer simulation approach to studying animal behavior
is the simulation of the behavior of individual organisms. Studies of individual
behavior can be classified into those that require experimenter intervention and
those that allow the organism to exist autonomously in an environment with
which it interacts. Kemp and Eckerman (1995) have argued that autonomous
organism simulations, or “in-situ” simulations, as they term them, allow for
stricter testing of theories of behavior. Reviewed below are two noteworthy
studies of this type.

Beer (1990) was one of the first researchers to study animal behavior
using the autonomous organism approach. Beer simulated the complex
behavior characteristic of several species of insects with a series of “computer
cockroaches.” Aided by biologically-inspired adaptive networks, his insects
were able to learn to use their six legs to walk, and even to forage for food in
atwo-dimensional environment. Then, by destroying various connections in the
neural networks, Beer was able to replicate the effects of lesion studies
performed on real insects.

Terzopoulos, Tu, and Grzeszczyck (1994} also applied the autonomous-
organism approach to studying animal behavior. These researchers simulated
individual fish living in a virtual three-dimensional environment. The fish were
developed with a realistic set of piscine muscles, fins, low-level optical sensors
(eyes), and a neural network. The fish were able to learn from “scratch” how
to “swim” and how to navigate their complex environment, adhering to the
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biomechanics of real fish and the laws of hydrodynamic locomotion. They even
learned to interact with other virtual fish and to perform behaviors such as
mating, foraging, and predator avoidance. By simulating these behaviors, the
authors were able to explore some of the rules that may allow real fish to
produce these behaviors.

Behavior analysts have also created simulations of the behavior of
individual organisms. A special class of these simulations model operant
conditioning with adaptive networks. Before this class of simulations is
reviewed, it should be mentioned that notable behavior analytic computer
models exist that simulate operant conditioning without using adaptive
networks {e.g., Shimp, 1969; Silberberg & Ziriax, 1985). Likewise, some
behavior analytic simulations use adaptive networks but do not simulate
operant conditioning (e.g., Burgos, 1997; Moore & Choi, 1997). Only adaptive
network studies of operant conditioning will be considered in the current paper.

Adaptive network models of operant conditioning

Stephens and Hutchison (1992) created a sophisticated autonomous
organism known as "7G," whose behavior was determined by an adaptive
network. 7G learned to display several basic operant phenomena, such as
acquisition, extinction, conditioned reinforcement, and stimulus control. Even
more remarkably, 7G was able to learn a variety of verbal behavior skills, such
as imitation, naming, rule learning, and rule following. Because the authors
employed strictly behavior analytic principles in the training of 7G, they were
able to provide a sufficiency proof for a contingency approach to verbal
learning, concurrently disproving one of Chomsky’s (1959) claims about the
insufficiency of such an approach.

Donahoe, Burgos, and Palmer (1993) created a novel adaptive network
that also learned from experience based on behavior analytic principles. The
experimenters were able to train the network to show such learning phenomena
as acquisition, extinction, reacquisition, conditioned reinforcement, and stimulus
control. Distinguishing it from most other behavior analytic adaptive networks,
the adaptive network in this study was developed based upon known principles
of neurobiology. The authors point out that maintaining “biological plausibility”
in behavioral adaptive network models can help integrate behavior analysis with
neuroscience. However, other researchers have disputed the necessity or even
advantage of using biologically faithful adaptive networks when studying
phenomena that occur at the behavioral level {e.g., Hutchison, 1997; Marr,
1997).

More recently, Spier and McFarland (1998) created a simulated organism
existing in a virtual Skinner box with an adaptive network determining its
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behavior. The simulation was used to test the theory that an animal must be
empioying internal representations when its preference for one of two
concurrently available reinforcers is decreased outside of the experimental
apparatus and it shows an immediate decrease in responding for just the
“devalued” reinforcer when placed back in the experimental apparatus. The
authors created their organism without the ability to form internal
representations. Nevertheless, when the organism was run on the simulated
procedure, it immediately decreased its responding for the devalued reinforcer
but not its responding for the non-manipulated reinforcer. Once again a
sufficiency proof was produced by a simulation study, this time questioning
how “cognitive” animals must be in order to exhibit certain behavioral
phenomena.

The above three studies give some indication of the use of adaptive
network studies. One of the main reasons that behavior analysts are interested
in adaptive networks is that adaptive networks are selectionist models.
"Selectionist” is a concept derived from selection by consequences theory,
which is reviewed here. Palmer (1997) and Palmer and Donahoe {1992)
provide more extensive reviews of the relation of selectionism to adaptive
networks.

Selection by Consequences

“Selection by consequences” was the name Skinner gave to the theory
that a parallel exists between operant conditioning and natural selection
(Skinner, 1986, 1981). More specifically, selection-by-consequences theory
posits that operant conditioning is responsible for the ontogeny of behavior
during the lifetimes of individual organisms in a manner analogous to the
manner in which natural selection is responsible for the evolution of species
over generations (Donahoe, Burgos, & Palmer, 1993; Smith, 1983, 1986). To
evaluate this claim, operant conditioning and natural selection must be
understood within a common framework. This may be done by describing both
as three-step iterative processes.

The Process of Natural Selection

Campbell {1960), and others {e.g. Plotkin, 1994) have described natural
selection as a process with three repeating steps.
1) variation of traits within a population
2) selection of certain traits over others based on the differential survival and
reproduction conferred by those traits
3) retention of traits across generations (by the mechanism of heredity)



256 MATT J. MORRIS

Whenever the three steps of natural selection operate on a distribution
of traits that has not already achieved equilibrium, there is an increase in
frequency of certain traits relative to others in the same population. (Ridley,
1993). A real-world example of the three steps of natural selection causing
trait frequency shifts in a population comes from the work of Peter and
Rosemary Grant (Weiner, 1994). The Grants studied species of Finches in the
Galapagos Islands, and found that the beaks of these birds varied in size and
that beak size was hereditary. When a change in the ecology of these birds
caused small beaks to be favored over large ones, the distribution of beak sizes
shifted towards the lower end; a larger percentage of Finches were born with
smaller beaks than in previous years (Weiner, 1994, pp.100-104}. Endler
(1986) summarizes other naturalistic studies that have shown changes in
frequencies of traits as a result of the three steps of natural selection.

The three steps of natural selection occur as an iterative process,
repeating themselves with each new generation. Evolution is the cumulative
change in the traits of organisms over many generations. The cumulating of
changes over generations is what allows natural selection to create such
wonderfully complex conglomerates of traits (usually referred to as
"organisms”). If the theory of selection by consequences is correct, then the
cumulating of changes is also what allows operant conditioning to create
complex behavioral repertoires (Glenn & Madden, 1995).

The Process of Operant Conditioning

Like natural selection, operant conditioning may be described as a three
step process:
1} wvariation of operants within an operant class
2) selection of certain operants over others based on the differential
reinforcement of those operants
3) retention of operants across time (by means of the central nervous system)
Whenever the above three steps occur, certain operants become more
frequent relative to others in the same operant class. An example of changes
in operant distributions resulting from reinforcement come from experiments in
which a rat or a pigeon in a Skinner box was required to press a lever or a key
with some minimum force in order to obtain reinforcement {(e.g., Stokes, 1995;
Cole, 1965; Notterman, 1959). In experiments such as these, there is always
variability in the force applied by the organism, and when the environment is
constant, the organism’s responses are fairly consistent. But when the amount
of force that is required to obtain reinforcement is increased or decreased, the
distribution of forces applied by the organism shifts in the direction of the new
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requirement. For example, when the force requirement is increased, the
organism’s responses, on average, become more forceful.

Like natural selection, operant conditioning is an iterative process,
allowing changes in responses to cumulate over time. As long as there is an
operant contingency in effect, the three steps of operant conditioning repeat
themselves, building on the effects of previous iterations. As a result, complex
behavioral patterns "evolve" during the lifetimes of organisms.

METHOD
Simulation Specifics

A computer-simulated organism named "Artie" existed in a two-
dimensional simulated environment. Artie and his environment were displayed
graphically on the monitor screen of computers running simulations. The
graphic representation of Artie contained a head, torso, two arms, and two
legs. The environment represented an operant chamber, or "Skinner box,”
containing four walls and either one or two operant levers. The dimensions of
the Skinner box were 133 pixels long by 95 pixels wide. The dimensions of
each operant lever were 20 pixels long by 1 pixel wide.

The first operant lever (“operant lever #1") was placed in the Skinner
box vertically with its top left corner 25 pixels from the left wall and 70 pixels
from the top wall. When the second operant lever {“operant lever #2") was
placed in the Skinner box for Experiment 3, it was placed vertically with its top
left corner 22 pixels from the right wall and 70 pixels from the top wall. In
order for Artie to “depress” operant lever #1, his right hand had to pass
through the graphic representation of the lever, from right to left. In order for
Artie to “depress” operant lever #2, his left hand had to pass through the
graphic representation of the lever, from left to right. At the beginning of every
experiment, Artie was placed with his torso seven pixels to the left of operant
lever #1, making it likely that he would press that lever early in the experiment
even if behaving randomly.

Although Artie could occupy any pixel position in the Skinner box, the
floor of the box was divided into 30 equally spaced cells for the purpose of
giving Artie feedback regarding his position. [n addition to moving around his
environment, Artie could place each of his arms in one of seven positions, with
each position causing the respective hand to be a different distance away from
his torso. Artie’s arm span varied from 10 pixels when fully contracted to 38
pixels when fully extended.
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Apparatus

The Microsoft Visual Basic 3.0 programming language was used to create
the simulation and all associated data analysis programs. All computer
programs were later upgraded to Microsoft Visual Basic 5.0. The simulation
was run on standard Pentium 133 MHz PC computers.

Procedure

All simulations with Artie were run as a series of iterations, or “time
steps.” Each time step, the adaptive network was presented with a set of
inputs indicating the current state of Artie’s environment. Based on these
inputs, the adaptive network produced a set of outputs that were used to select
actions. Artie performed the actions, which changed the state of the
environment and produced feedback in the form of reinforcement or
punishment. Afterwards, a new time step began and the process repeated
itself.

The adaptive network controlled all relations between Artie's
environment and his behavior. To explain the operation of the adaptive
network, first the inputs and outputs of the network are described. Second,
the structure of the network and the method for selecting outputs based on the
inputs is explained. Finally, the manner in which feedback from the
environment altered input-output relations in the network is discussed.

Inputs and outputs

Every time step, three scalar values representing the current state of
Artie’s environment were delivered to the network. These “input values”
represented Artie’s current floor position in the Skinner box, the position of his
left arm, and the position of his right arm. In addition, five output values
determining Artie’s actions for the current time step were output by the
network every time step. These “output values” were used to select Artie’s
movement in the vertical plane of his environment, his movement in the
horizontal plane of his environment, the positioning of his left arm, the
positioning of his right arm, and the amount of variation that was added to the
network. This last output value affected the amount of variation that would be
seen in Artie’'s behavior. Note that while variation may not fit with the
traditional notion of an "action," it is consistent with the findings of Page and
Neuringer (1985) that variation in behavior can itself be conceptualized as a
behavior.
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Network structure and selection of outputs

The adaptive network translated inputs into outputs via two sub-
networks. Both of the sub-networks were fully connected two-layer adaptive
networks. The first sub-network, referrea to as the “multiplier network,” used
the three inputs from the environment to determine “multiplier values” that
were then utilized in the second sub-network. Through the multiplier values,
the multiplier network influenced the effect each type of environmental input
would have on the selection of Artie’s actions. The second sub-network,
referred to as the “action network,” used the current state of the environment,
along with the muitiplier values from the first network, to determine Artie’s
actions. Explained first is the operation of the multiplier network, and explained
second is the operation of the action network.

The multiplier network contained a set of input units for each of the three
types of environmental inputs, Only one unit could be active within any input
set at a time, with active units assigned a value of 1 and inactive units assigned
a value of 0. The multiplier network contained a set of output units for each
of the five muitipliers that would be utilized in the action network — one for
each of the five types of environmental inputs. There was no limit on the
number of output units that could be active at one time, nor on the values these
units could assume.

The values of the output units of the multiplier network were determined
by the equation:

/
021 8 (1)
where o; denotes the value of output unit /, a; represents the value of input unit
i connected to unit j, w; denotes the “connection weight” between input unit
i and output unit j, and ’, represents the multiplier value utilized for the input
set associated with input unit 7 during the previous time step. Once the values
of the output units were determined, they were used stochastically to select a
multiplier value from the set {0.0, 0.1, 0.3, 0.5, 0.7, 0.9, 1.0}. One value was
selected from the complete set of values for each of the three input sets, with
the probability of choosing a value proportional to the relative magnitude of the
corresponding output value.

Like the multiplier network, the action network contained a discrete set
of input units for each type of environmental input, with the ability for only one
unit at a time to be active within each input set. And similar to the multiplier
network, active input units were assigned a value of 1 and inactive inputs units
were assigned a value of 0. The action network had a discrete set of output
units for each of the five types of actions Artie performed every time step.
Artie had seven alternatives to choose from for each type of action. There
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were seven choices for how much he could move in the vertical plane, seven
choices for how much he could move in the horizontal plane, seven positions
he could place his left arm in, seven positions he could place his right arm in,
and seven different variation values. Likewise, each set of output units in the
network contained seven individual units — one for each response alternative.
There was no restriction on the number of output units that could be active at
one time, nor was there a restriction on the values these units could assume.

The values of the output units of the action network were determined by
the equation;

/

OF3 %0 e 2
where o; denotes the value of output unit/, a, represents the value of input unit
/ connected to unit j, w; denotes the “connection weight” between input unit
/ and output unit j, and ; represents the multiplier value determined by the
multiplier network, during the current time step, for the input set to which input
unit / belonged. Once the values of the output units were determined, they
were used stochastically to select actions that Artie performed during the
current time step. One action was chosen from among the seven alternatives

within each action type, with the probability of choosing an action proportional
to the relative magnitude of the corresponding output unit value.

Update of weights

Although developed independently, the weight update method used in the
Artie simulation is very similar to Rich Sutton and Andrew Barto’s “one-step
Sarsa” version of their “temporal differences” method for adapting control
systems (such as adaptive networks) based on environmental feedback (Sutton
& Barto, 1998). In the Artie simulation, environmental feedback occurred in the
form of reinforcement, which was always a positive value, and punishment,
which was always a negative value. The reinforcement and punishment values
were added together to form a single “reward value,” R.

After calculating the reward value, the connection weights associated
with selected outputs from the current time step in both the multiplier network
and the action network were updated. Restricting the updating to only those
connection weights associated with selected outputs ensured that only those
weights that were responsible for the current actions received “credit” for the
results of the actions. The equation for updating the connection weights was

w,
W= w Vﬁ(/%ﬂ {3)
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where the arrow means that the value on the left is replaced with the value on
the right, w; represents the connection weight from input unit 7 to “selected”
output unit j of the particular network, V denotes the variation value selected
during the current time step, R denotes the reward value, and P is the
“Premack” value. The proportion value within the first set of brackets in
Equation 3 distributed the reward value among the weights, based on the
relative magnitude of each weight's value.

The Premack value, so named because of its relation to the “Premack
Principle,” (Premack, 1961), converted the difference in value between
successive actions into a single reward-like value. The Premack value was
calculated exclusively from values within the action network, based on the
values of output units that were associated with selected actions. The equation
used to calculate the Premack value was

PEID(9-ZI0(1) (4)

where o,{t) represents the value of the /" “selected” output unit in the

action network during the current time step, and o{t-1) represents the value of
the /™ “selected” output unit in the action network during the previous time
step. Note that if the summed “selected” output unit values were larger during
the current time step than during the previous time step, the Premack value
was positive. If the opposite was true, the Premack value was negative. The
one restriction applied to the P value was that its absolute value was not
allowed to be larger than the reinforcement value in effect for the current
experiment.

After the weights were updated by Equation 3, two operations were
performed to ensure that the connection weights did not become unmanageably
large or small. The first of these operations was performed every time step
after the connection weights were updated and involved subjecting all weights
to the transform

-10000 it w; <-10,000
wy={ wy if 10,0005 wy 510,000
10,000 if wy > 10,000

(5)

The second operation was performed every 10,000 time steps, at which time
all connection weights were divided in half. Although it was never explicitly
tested, it was theorized that in addition to helping control the size of the
weights, this procedure would simulate the effects of food depriving a real
animal, making the effects of that primary reinforcer more powerful.

Now that the Artie simulation ‘has been explained, the simulated
experiments conducted with Artie and their results are reported here. Each of
the experiments was designed to test Artie’s ability to produce real-animal



262 MATT J. MORRIS

operant phenomena, and results are presented in formats that allow their
comparison to results from real animals.

EXPERIMENTS AND RESULTS
Experiment 1: Acquisition, Shaping, Extinction, and Reacquisition

Experiment 1 consisted of four phases that tested the effect of
reinforcement and punishment contingencies on Artie’s lever pressing behavior.
Operant lever #1 was placed in the Skinner box at the previously stated
position. The availability of reinforcement for depressing the operant lever
varied across phases. A punishment value, on the other hand, was always
delivered for lever pressing. This punishment value simulated the aversive
component that has been theorized to accompany all operant responses
(McDowell, Bass, & Kessel, 1993). Lever pressing was recorded in the form
of cumulative records, with number of responses on the ordinate and passage
of time steps on the abscissa.

‘ Phase 1 tested Artie’s ability to acquire lever pressing in the absence of
explicit shaping for lever pressing. The connection weights in Artie’s adaptive
network were initialized to 200, a practice utilized throughout the experiments
whenever the effects of previous learning needed to be erased and/or it was
desired that Artie begin a procedure behaving randomly. Phase 1 lasted for
100,000 time steps, during which a reinforcement value of 200 and a
punishment value of —10 were delivered for every lever press Artie produced.

Figure 1 displays the cumulative record of Artie’'s lever pressing during
acquisition. During the 100,000 time steps of this phase, Artie pressed the
lever a total of 2,400 times. Initially, lever pressing was exhibited at a low
rate, but the rate soon increased as evidenced by the positively accelerated
response curve. During the second half of the phase, at which point Artie
seemed to have achieved a steady state of responding, he pressed the lever a
total of 1,887 times for an average rate of about 38.0 lever presses per 1,000
time steps.

Phase 2 tested the effects of explicit shaping on Artie’s lever pressing
behavior. All of the connection weights in the adaptive network were reset to
200, erasing the effects of Phase 1. For 10,000 time steps, a reinforcement
value of 60O was delivered every time Artie moved closer to the operant lever,
and a punishment value of -25 was delivered every time Artie moved further
away from the operant lever. Afterwards, for 100,000 time steps, a
reinforcement value of 200 and a punishment value of —10 were delivered for
every lever press Artie produced.
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Figure 1. Cumulative record of acquisition in response to continuous reinforcement for lever
pressing

Figure 2 displays the cumulative record of Artie’s lever pressing after
shaping. This cumulative record shows a very high rate of responding that
began to slow down towards the end of the phase. In 100,000 time steps,
Artie pressed the lever 10,962 times, equaling an average rate of about 109.6
lever presses per 1,000 time steps. During the last 20,000 time steps, Artie’s
lever pressing had slowed to an average rate of about 77.2 lever presses per
1,000 time steps. Based on Artie’s high rate of lever pressing, it was decided
that the connection weight values existing in the adaptive network at the end
of this phase would be saved in a separate file and would be used as the
starting connection weights for future experiments.

Phase 3 tested the effects of extinction on Artie’s lever pressing. The
connection weights in the adaptive network were not reset, in order to maintain
the effects of learning during Phase 2. For 100,000 time steps, a
reinforcement value of O and a punishment value of —10 were delivered for
every lever press.

Figure 3 displays the cumulative record of Artie’s lever pressing during
extinction. Initially, the rate of responding was very high, at about 142 lever
presses per 1,000 time steps for the first 7,000 time steps. After the initial
high rate, the cumulative record shows a negatively accelerated response
curve, followed by a complete cessation in responding. During the last 40,000
time steps not a single lever press was produced, equaling a rate of 0.0 lever
presses per 1,000 time steps.
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Figure 2. Cumulative record of acquisition of lever pressing after Artie was shaped to stand
close to the lever
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Figure 3. Cumulative record ot extinction of lever pressing

Phase 4 tested Artie’s ability to reacquire lever pressing after extinction.
The connection weights in Artie’s adaptive network were not changed, allowing
the effects of learning during extinction to remain. Reinforcement was
reinstated for lever pressing. For 100,000 time steps a reinforcement value of
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200 and a punishment value of —-10 were delivered for every lever press.

The cumulative record of Artie’s lever pressing during reacquisition is
displayed in Figure 4. Artie relearned to press the lever, achieving 3,136 lever
presses during the 100,000 time steps. The overall structure of this cumulative
record appears similar to the initial acquisition cumulative record, displayed in
Figure 1, with the exception that the initial positively accelerated response
curve is steeper in the current figure.
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Figure 4. Reacquisition in response to continuous reinforcement for lever pressing .

Experiment 2: Variable-Ratio and Variable-interval Series

Experiment 2 tested the effects of variable-ratio (VR) and variable-interval
(V) schedules of reinforcement on Artie’s lever pressing. Operant lever #1 was
placed in the Skinner box and Artie was first run on a VR series and then on a
VI series. Before each new VR or VI schedule, the connection weights in
Artie’s adaptive network were reset to the values that were saved after Phase
2 of Experiment 1.

Phase 1 tested the effects of a series of VR schedules on the rate of
Artie’s lever pressing. Artie was run on schedules VR 5, VR 10, VR 20, VR 30,
VR 40, and VR 50, with each schedule lasting 300,000 time steps. The
reinforcement value was set to 600 and the punishment value to ~10 for each
schedule. The average rates of responding from the last 10,000 time steps of
each schedule were recorded and then graphed.
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The top panel of Figure 5 displays the graph of Artie’s parametric VR
lever pressing behavior. In order to compare the graph displaying Artie’s
behavior to those from animal experiments, it was necessary to translate
between time steps and seconds. It was decided that one time step would be
considered roughly one second. The ordinate of the graph displays the average
rate of responding per minute {60 time steps) and the abscissa displays the
average number of obtained reinforcers per hour (3,600 time steps). Note that
the data is fit well by a hyperbolic function, with approximately 92.7% of the
variance accounted for. The structure and fit of this data is similar to that
found with real animal data (see McDowell & Wixted, 1988) for data from real
organisms).
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Figure 5. Artie’s responses per minute versus obtained reinforcers per hour on a variable-
ratio series and a variable-interval series. Both series were fit by hyperbolic functions, resulting in
approximately 92.7% and approximately 86.3% of the variance accounted for, respectively
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Phase 2 tested the effects of a series of VI schedules on the rate of
Artie’s lever pressing. Artie was run on schedules VI 100’, 200, 500°, 1000’
and 2000’ time steps, where “‘" indicates that the passage of time was
recorded in time steps. Each schedule was in effect for 300,000 time steps.
The average rates of lever pressing from the last 10,000 time steps of each
schedule was recorded and graphed.

The bottom panel of Figure 5 displays the graph of Artie’s parametric VI
lever pressing behavior. In the same manner as for the graph in the top panel,
the ordinate and abscissa of this graph were calibrated in terms of reinforcers
per minute and reinforcers per hour. A fit of a hyperbolic function to the data
resulted in approximately 86.3% of the variance being accounted for. Again,
this data is similar to data from real animals (see Herrnstein (1970) for data
from real organisms).

Experiment 3: Concurrent VI Schedule Series

Experiment 3 tested the ability of Artie’s behavior to conform to the
matching law when Artie was run on a series of concurrent VI schedules.
Operant lever #2 was added to the Skinner box at the previously stated
location. Artie was run on concurrent schedules VI 200°-VI 600, VI 400°-VI
600", VI 600’-VI 600’, Vi 800’-VI 600’, and VI 1000’-VI 600’, where the “*”
again indicates that the passage of time was counted in time steps. Before
each new schedule, the connection weights in Artie’s adaptive network were
reset to the values that were saved after Phase 2 of Experiment 1. For each
schedule, the reinforcement value was set to 600 and the punishment value
was set to ~10 for each lever. Each concurrent schedule was run for 300,000
time steps. The response rates and obtained reinforcement rates were recorded
from the last 10,000 time steps of each schedule.

Figure 6 presents the results of the concurrent schedule in log-log
coordinates. Plotted on the ordinate are the response rates of lever 1 and lever
2 in ratio form, and plotted on the abscissa are the obtained reinforcement rates
of lever 1 and lever 2 also in ratio form. A least-squares fit of a straight line
through the data revealed a sensitivity value of approximately 1.03, a bias value
of approximately 0.85, and a variance accounted for of approximately 96.8%.

DISCUSSION

When subjected to simulated free-operant laboratory experiments, Artie
produced behavior that looked like the behavior of real animals. Artie acquired
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lever pressing when reinforcement was made available for lever pressing,
responded to shaping by learning to lever press at a high rate, ceased
responding in response to extinction, and reacquired lever pressing when
reinforcement for lever pressing was reinstated. When placed on a series of
variable interval and variable ratio schedules, the rate of Artie’s lever pressing
increased hyperbolically with an increase in the obtained rate of reinforcement.
Furthermore, when exposed to a series of concurrent VI schedules of
reinforcement, Artie matched his rate of responding on each lever to the relative
rate of reinforcement he received from that lever.
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Figure 6. Artie’s response rate ratios versus obtained reinforcement rate ratios on concurrent
variable-interval schedules of reinforcement, in log-log coordinates

Given that Artie was able to mimic the behavior of real animals in several
simulations, what can we learn about real animals from Artie? Can we deduce
from the results that real animals are able to adapt to their environments
because their brains are conducting essentially the same calculations as Artie’s
adaptive network? Or should we restrict our inferences to the level of
behavior? If it is the latter, then what can Artie, and adaptive networks in
general, teach us about behavior?

The utility of adaptive network models of behavior is probably not their
ability to teach us about brain function. Marr (1997) has suggested that even
though adaptive network models consist of units analogous to biological
neurons, the extreme simplicity of adaptive network units in comparison to real
neurons limits our ability to extrapolate from one to the other. In addition,
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Hutchison (1997) has argued that imposing biological plausibility on behavioral
models can limit the model’s ability to teach us about behavior.

More likely, the utility of adaptive network models of behavior is their
ability to provide convenient methods for testing theories of behavior. All three
of the adaptive network models of operant conditioning reviewed earlier
showed the sufficiency of selectionist models, and thus of selectionist theories
of learning, to account for specific operant phenomena. In addition, two of the
models, Stephens and Hutchison {1992) and Spier and McFarland (1998),
refuted claims of alternative theories of behavior.

Results from simulations with Artie support selectionist accounts of
operant behavior. They also suggest some possibilities for future uses of the
Artie model. For example, Artie’s concurrent schedule performance was
produced purely by “moment-to-moment” changes in environment-behavior
relations. If further experiments with Artie can produce matching on a wider
range of concurrent schedules, the model could question the necessity of molar
accounts of matching. Another use could come from explorations of possible
causes of undermatching. Because Artie achieved nearly linear matching,
parameters of the model, such as the amount of variation added to behavior,
could be investigated for their effects.
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