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Abstract

This chapter has been aboul implicit and explicit choice. Implicit choice refers to
the processes that determine the proportions of time that animals spend on dif-
fcrent activities, the factors that maintain that distribution, and the effects of dis-
turbing 1t by blocking activities or making access to one activity contingent on the
performance of another. Explicit choice refers to special experimental procedures
that pit two similar responses, such as pecking Left and pecking Right, against one
another.

The first part of the chapter discussed temporal and stimulus control in the
context of explicit choice between complex cancurrent (choice) schedules. The first
scction showed how temporal control (in the form of proportional or scalar timing)
and stimulus control combine in well-trained animals to produce the effect knawn
as conditioned reinforcement on chain schedules. I also showed how conditioned
reinforcers acl as aids to memory when animals learn to respond on delayed reinfor-
cement schedules and how memory limitations may underlie the effects of second-
order schedules. Proportional timing seems to determine performance even on ratio
schedules. 1 discussed in some detail a vancty of cxperimental results on simple
and concurrent chain procedures. The discussion showed that most, perhaps all, the
concurrent effects do not represent choice in the usual sense at all. The animals do
nof secm to be comparing alternatives, but rather scem to treat cach alternative as
if it occurred in 1solation. T was able to derive quite complex patterns of apparent
prefercnce and preference shift from an “ideal pigeon” who behaves according to
proportional timing. I also showed how this analysis relates to the eptimal policy on
chain schedules, ic., the patiern of responding that maximizes food rate: it turns
out that proportional timing almost always produces a close-to-optimal pattern of

1 Correspondence should be addressed tn LILR. Staddon, Departmen of Psychology: Fxperimental,
Duke University, Box 90086, 229 Soci/Psych Bldg, W9, Durham, North Carclina 27708-0086.
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choice. I also showed the similarities between the optimal policy for animals on
chain reinforcement schedules and the optimal foraging theory predictions about
diet selection. The last part of this section discussed the self-contro! problem-
prelercnce for small-immediate vs. large-delayed rewards and showed how the
same proportiomal-liming rule applies here also.

The last half of the chapter discussed implicit choice, the factars that deter-
mines the distribution of activities under free conditions. We saw that under many
conditions the activity distribution is stable, and the organism resists in various
ways perturbations that threaten to change the distribution from its paired-baseline
level. The first attempt to understand these cifects was made by David Premack,
who concluded that higher-probability activities always reinforce lower-probability
activitics, This molar principle was extended first by the qualitative principle of
response deprivation and then by a variety of quanttative optimality and economic
analyses. The first of these, the minimum-distance model gave a special status to
the paired-bascline levels or bliss paint.

Optimality analysis is a general ool that can be applied to any adaptive system.
It has allowed us to see common principles underlying implicit choice and explicit
choice. Robust experimental findings such as the matching law turn oul to be
generally consistent with optimality models. Similar adaptive principles-diminishing
marginal utility of reward frequency and amount-scem to underlie both the silua-
tions studied by Premack and more conventional schedules of operant reinforce-
ment.

Despite their many successes, all optimality models fail under some conditions,
because they are functional models, not models of mechanism. Animals and people
arc rarcly, if cver, literal optimuzers, systematically comparing the long-term
payoffs associated with different policics. Thus, while matching on concurrent Vi
V1 schedules fits in with a number of optimal policies, matching on concurrent VI
VR does not. I described a number of other experiments in which animals clearly
behave nonoptimally. The last part of the chapter therefore locked at the
mechanisms of choice and behavioral allocation. The first conclusion was that mar-
ginal changes in molar variables probably do not have any direct effect on behavior,
underlining the conclusion that even good optimality madels, particularly molar op-
timality models, only describe what animals achieve, not how they achieve it. The
last part of the chapter therefore focused on molecular mechanisms of behavioral
altocation. 1 discussed three, momentary maximizing, ametioration, and linear wait-
ing. The first and the last make very similar predictions i choice situations, but
linear waiting promises to be more general. Quite apart from the quantitative
details, it 1s clear that the expected ume 1o the reinforcer, assessed throuph a
memory-consirained timing mechanism, plays a dominant role in all the compiex
patterns of behavior generated by a variety of reinforeement schedules.

Key words: explicit chuice, implicit choice, conditioned reinforcement, chain
schedules, delayed reinforcement, behavioral allocation, behavioral economics.
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Resupmen

En esic capitulo sc analizd la cleccion implicita y explicita. La eleccidn implicita sc
refiere al proceso que determina las proporciones de tiempo que los animales
pasan ¢n diferentes actividades, los factores que mantienen esa distribuecién v log
cfectos de distribuirla, blogueando actividades o haciendo el acceso a una ac-
tividad contingente sobre la gjecucion cn otra. La eleccion explicita se reficre a
procedimicntos experimentales especiales que confrontan dos respuestas similares,
tales como picar a la izquierda y picar a la derecha, una contra la otra.

En la primera parte del capitulo sc discutio el control temporal y de estimulos
cn ol contexto de la eleccion cxplicita entre programas concurrentes complejos
(cleccidn). Fin la primera seccion se mostrd como ¢l control temporal (en la forma
de estimacion del tiempo proporcional o escalar) y cl control de estimulos se com-
binan, en animales bien entrenados, para producir ¢l clecto conoadoe como refor-
zamiento condicionado en los programas cncadenados. Tambidn se mostrd como
los reforzadores condicionados actitan como facilitadores de la memoria, cuando
los ammales aprenden a responder en programas de reforzamiento demorado v
como las imitaciones de memoria pueden subyacer a los efectos de los programas
de sepundo orden. Parece que la estimacién del tiempo proporcional determina la
gjecucion atn en los programas de razon. Se discutid con algin detalle una
variedad de resultados experimentales en procedimicntos encedenados simples y
concurrentes. La discusion mostrd que la mayorfa, quizds todos, {os efcctos concur-
rentes no representan cleceion en el sentido wsual, en lo absoluto. Los amimales no
parccen estar comparando alternativas, sino mdés bicn parecen tratar cada aller-
naliva como st oenrricra ¢n aislado. S derivaron patrones bastante complejos de
preferencia aparente y cambio de preferencia de un “pichén ideal”, que se com-
porta de acuerdo a la cstimacion del tiempo proporcional. También se mostrd
como cste andlisis se relaciona con el principio de eptimizacién cn los programas
encadenados, por ejemplo, el patrdn de respuestas que maximiza la lasa de com-
ida: resulta que la estimacién del fiempo proporcional casi siempre produce un
patrdn de eleccion cercano al Optimo. S¢ mostraron las similitudes entre el prin-
cipio de optimizacion, para los amimales ¢n los programas de reforzamicnto en-
cadenados y las predicciones de la teoria de forrageo dptimo acerca de la seleccion
de dieta. En la Gluma parte de csta scecion se discutio el prablema del auto-controf
—la preferencia por recompensas pequenas pero inmediatas versus grandes pero
demoradas— y s¢ mostrd como también se aplica aqui la misma regla de
estimacion del tiempo proporcional.,

En la altima mitad del capitulo se diseutié la cleceidn implicita, los factores
que determinan la distribucion de actividades bajo condiciones libres. Se vio que
bajo muchas condiciones la distribueion de sctividad cs estable y el organismo se
resiste, de varias mancras, a las perturbaciones que tratan de cambiar la dis
tribucion de su nivel de finea base upareadu. David Premack, hizo el primer intentlo
por entender estos efectos y concluyd que las actividades con mayer pro babilidad
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sicmpre refuerzan a las actividades con menor probabilidad. Este principio molar
st cxtendié primero con el principio cualitativo de la privacién de respuesta y
después con una varicdad de anilisis cuantitativos de optimizacién y economia. El
primero de cstos, ¢l modelo de distancia minima dio un estatus especial a los
niveles de linca base apareada o punto de satisfaccidn.

El analisis de optimizacion es una herramicate gencral que se puede aplicar a
cualquier sistema adaptativo. Nos ha permitido ver principios comunes subyacentes
a la eleccion implicita y explicita. Hallazgos experimentales robustos tales como la
ley de igualacién son gencralmente consistentes con los modelos de optimizacion.
Principios adaptativos similares — disminucion de la utilidad marginal de la fre-
cuencia y cantidad dc la recompensa— parccen subyacer a las situaciones cs-
tudiadas por Premack y los programas mAas convencionales del reforzamiento
opcrante.

A pesar de todos sus éxitos, todos los modelos de optimizacion fallan bajo al-
gunas condiciones, porque son modelos funcionales, no modelos de mecanismos.
Los animales y la pente rara vez, son literales optimizadores, sistematicamente
comparando los pagos a largo plazo asociados con diferentes principios. Asi,
mientras que la igualacidn en los programas concurrentes IV IV se ajusta con un
niimero de principios de optimizacion, la igualacién en lus concurrentes [V RV no
lo bace. Describi otros experimentos donde los animales claramente se comportan
dc una'forma no 6ptima. En la gltima parte del capitulo, por lo tanto, se revisaron
jos mecanismos de la eleccion y la distribucién conductual. La primera conclusidn
fue que los cambios marginaies y las variables molares probablemente no tienen
ningiin efeclo dirccto sobre la conducta, subrayando la conclusidn de guc aiin los
bucnos modelos de optimizacion, particularmente los modclos de optimizacion
molares, solo describen lo que los animales logran, no como lo logran, La dltima
parte del capitulo, por to tanto, se enfocéd en los meocanismos moleculares de la
distribucidn conductual. Discuti tres, la maximizacion momentinea, el mejoramien-
to y la espera lineal. El primero y ¢l tltimo hacen predicciones muy similares en las
sitaciores de eleccion, pere la espera lineal promete ser més general. Muy aparie
de los detalles cuantitativos, es claro que el tiempo estimado para el reforzador,
evaluado a través de un mecanismo de estimacion del tiempo de memoria restrin-
gido, jucga un papel dominante en todos los patrones complejos de conducta
gencrados por una variedad de programas de reforzamiento.

Palabras clave: eleccion cxplicita, eleccién implicita, reforzamiento con-
dicionado, programas cncadenados, reforzamiento demorado, distribucién conduc-

“tual, economia conductual, .

The study of choice is the study of the factors that makc animals and
people do one thing rather than another. Perhaps no topic in the field of
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operant learning has reccived more attention during the last ten years. In
common speech, choice implies conscious deliberation. We often ponder
decisions such as: Shall we go out for dinner or eat at home? Shall I stay
home tonight and study or go out to a movie and have a good time? But
animals also choose, and here the role of conscious comparison between al-
ternatives is less clear. Whether the subjects are animals or people, the
central scientific questions are (a) What measurable, external, faclors
determine choice? And (b) What mechanisms underlie choice behavior?
These arc the questions I will attempt to answer in the following pages.

I will look at choice in two kinds of situation, termed implicit and ex-
plicit choice. Implicit choice refers to the allocation of behavior under rela-
tively free conditions. It 1s this kind of choice that 1s implied by real-life
examples such as: How should the organism spend its ime? How much
time should it spend sleeping, cating, drinking, mating, and so on? Are
there prefered patierns of time-allocation? Implicit choice is the study of
the factors that determine the prefered pattern and indicate bow it might
be altered.

Explicit choice refers to special experimental arrangements that aliow
us to measure the effects on preference of factors such as reward amount,
probability, delay and type. This chapter begins with an analysis of a variety
of explicit choice procedures.

The chapter is divided into five parts. The first two parts are about cx-
plicit choice in chained schedules. They identify some simple general prin-
ciples related (o stimulus discrimination and reward delay. The third part is
ahout implicit choice and the malar allocation of behavior. It concludes
with a discussion of optimality models for the allocation of behavior under
[ree conditions and on schedules of reinforcement. The fourth part takes
up the optimality theme and shows how it is related to the economic ap-
proach to behavior. T discuss in this scction the much-studicd matching law
and some potential explanations for it and related findings. It turns out that
optimality and economic models can provide a comprehensive account for
behavioral allocation although, like all functional accounts, they fail under
some conditions. The last part of the chapter therefore takes up the ques-
tion of mechanism, the moment-by-moment rules that animals use to adapt
to reinforcement schedules. Recent advances are beginning to reveal what
scem to be quite simple rules, including the reward-delay principle
described in the first section, underlying the apparently complex behavior
on reinforcement schedules. T conclude by pointing out some promising
directions for future research.
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Chain Schedules and Conditioned Reinforcement

In this section, I show how temporal discrimination and discrimination be-
tween nontemporal stimuli interact to determine behavior on procedures in
which stimulus changes are produced by the animal’s own behavior (chain
schedules). Experimental results from some of these procedures have im-
plications for theories of choice, human as well as animal, and for what has
been termed sclf-control: refraining from choosing a small, immediate
reward in favor of a larger, delayed reward. I begin by looking at how exter-
nal signals modulate the effects of food delivery that is delayed or periodic.

Delay and Conditioned Reinforcement

Animals will usc any available cue to help them allocate their behavior effi-
ciently. For example, when food is delivered at fixed time intcrvals, animals
behave differently during early and late parts of the interfood interval.
During the late part of the interval they engage in food-related activities;
during the early part they engage in activities less directly related to tood.
This' is behavioral allocation that is under the control of time, measured
from a time marker which, on FI schedules, is the delivery of food. Time
acts like a stimulus that guides the allocation of behavior.

There is a similar pattern on schedules in which two or more exterocep-
tive stimuli, such as lights or sounds, alternate (multiple schedules). Food-re-
lated behavior is more likely in the presence of the stimulus that signals food;
other activities occur in the presence of the stimulus that signals no-food.

Both these processes, control by time and control by a food-signalling
stimulus, are involved in more complex procedures called chain schedules,
in which stimulus changes are under the control of the animal. The com-
plex patterns of behavior on chain schedules and related procedures il-
lustrate four functions of stimuli:

{a) stimuli as aids or impediments to memory;

(b) stimuli as sources of value (conditioned reinforcement);

(c) stimuli as guides ta behaviora! allocation (behavioral contrast);

(d) stimuli as time markers.

These four functions, and the behavioral mechanisms associated with
them, will allow us to make sense of a wide variely of experimental results
from complex reinforcement schedules. I begin with chain schedules.

I will introduce chain schedules by first considering a simpler procedure
called delayed reinforcement. Suppose we attempt to train a pigeon to
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peck a White key for food reward, but delay the food for 5 seconds after
cach peck. This is a delayed -reinforcement schedule. Even if the animal
does eventually peck the key, the effect of each reward 1s likely to be small.
The pigeon will make few pecks and will consequently get few food
deliverics. The functional reason for the weak effect of delayed reinforce-
ment is that it is difficult for the anima) to pick out the peck, which is a
hrief event preceded and followed by other activities, as the best predictor
of food that occurs several seconds later (in artificial-intelligence studies of
learning mechanisms this is called the assignment-of-credit problem). Other
events or behaviors, closer to the time of reinforcer delivery, are likely to
be selected as predictors. But since the peck is the only effective response,
the rate of reinforcement drops if pecking is displaced by other activitics,
so that the pigeon may eventually cease to respond actively at all (i.c., be-
havior extinguishes). How can we make the delayed-reinforcement
schedule easier for the pigeon?

Chain Reinforcement Schedules:
Stimuli as Memory Aids and Sources of Value

We can make the bird’s task much eusier by altering the procedure slightly.
Suppose that pecks on the White key are now immediately followed by a
change in the color of the key to Green. After 5 seconds of a Green
stimulus, food is presented as before. That 1s, a peck now produces a
stimulus change plus food after 5 seconds. After food, the White key reap-
pears (Figure 1). This procedure is called a chain schedule becausc the first
contingency for food, a response, is linked to an additional contingency, in
this case time, that is associated with a signal-the Green light. The time
relations between pecking and food are exactly the same as in the delayed-
reinforcement procedure yet the pigeon will rapidly learn to peck the
White key if given 5 seconds of Green as a prefood signal.

Figure 1
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The change from White to the Green stimulus here is used as a reinforcer
and seems to act like one. However,-the Green stimulus gains its power not
innately (or early in development), as does food reinforcement, but by vir-
tue of its pairing with food. Therefore, a food-signalling stimulus is termed
a conditioned or secondary reinforcer (to be contrasted with primary rein-
forcers, such as food). Why is this conditioned-reinforcement procedure
more effective than the simple delay procedure?

The Green-key conditioned reinforcer appears to aid conditioning for
two reasons. First, it bridges the temporal gap between the peck (the real
cause of the food) and its consequence (the food)-it is an aid 10 memuory.
Rather than having to remember a bricf event occurring 5 seconds before
its consequence, the animal has only to remember that pecking leads to
stimulus change (and that the stimulus is associated with food). Because
the peck-stimulus-change delay is negligible, this presents no difficulty.
Second, because the rate of food delivery in the presence of the Green
stimulus is much higher than in the presence of the White stimulus, the
Green stimulus acquires a higher value than the White. The value is rela-
tively transient and depends upon reliable delivery of the food. If food
ccases 'to oceur, the Green stimulus will quickly lose its value. The pigeon
pecks to produce the Green stimulus because by doing so he turns off a
stimulus with a low (zero) rate of food delivery and turns on one with a
higher rate.

There are procedural tricks that will allow conditioned stimuli to retain
their value for some time after primary reinforcement has ceased. These
tricks depend upon memory confusions like those discussed in a moment in
connection with second-order schedules {See discussions of second-order
conditioning-for example, Rescorla, 1982).

The factors that maintain behavior are often very different from those
that give it birth. Qur pigeon learns to peck for the Green stimulus because
it has more value than the White stimulus it replaces. But once the bird has
learned to peck the key, other factors come in to play. The duration of the
Green stimulus is fixed, for example. Thus time can begin (o play 2 role,
and the role it plays is in some respects surprising. What would you expect
to be the effect of increasing the duration of the Green stimulus from 5 to
10 5, for example? Will this change have any effect on how long the animal
waits in the presence of the White key before pecking to produce Green?
It makes no sense for the animal to wait for any but the shortest time in
White, since the delay-to- food in Green is fixed; every second the bird
waits in White unnecessarily delays food by the same amount. Neverthe-
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less, the longer the Green stimulus, the longer the bird will wait in White
before pecking to produce it (Wynne & Staddon, 1988). This is an example
of a mechanism called proportional or scalar timing that plays a dominant
role in chain-schedule performance. 1 describe proportional timing in a mo-
ment. Now let’s look in more detail at the factors that maintain (as op-
posed to initiate) performance on chain schedules. We will sec that the
function of stimuli as sources of value is much less important than other
functions, such as stimuli as memory aids or impediments and stimuli as
time markers.

Pigeons on multilink chain schedules behave in ways that are not fully
explained by the idea that pecking in link N is reinforced by the production
of link N+1. Consider a chain schedule with three links: pecking in link 3
(83) is reinforced by food; pecking in link two (S3) is reinforced by the
production of link three; pecking in link 1 (§;) is remnforced by the produc-
tion of link 2. There is nothing in principle wrong with extending such a
chain indefinitely, to six links, for example (Figure 2, top). Suppose that
each link (8, Sz, etc.) 15 T-seconds long; i.c., the first peck after T-s in the
presence of $; causcs it to change to 8;, and so on-this is called a chain FI
schedule. How many such fixed-interval links can be strung together and
still maintain responding in S1, the stimulus most remote from food?

Figure 2
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Six links of a F 15 s schedule. Top: A 6.link chain; bottom: a comparable 6-link tandem schedule,
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Figure 3
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Top: Cumulative record from a well-trained pigeon on a S-link chain FI 15 s schedule. The record resets
after food delivery. Middle record: Performance on a comparahie tandem schedule. Bottom: Record
from a pigeon exposed te both the chain and the tandem schedule, each signaled by apprapriate stimuli
{(rom Catania, 1970).

The answer, for even quite short T-valucs, is not more than five or six.
The top record in Figure 3 shows a cumulative record from a pigeon trained
with six fixed-interval 15-second links (there is a blip in the record to indi-
cate cach stimulus change; the recorder pen reset after food). Long pauses
occur after food and the times between {ood delivery are always much
longer than the 90-second minimum prescribed by the schedule. An addi-
tional link would have caused the pigeon to stop responding altogether.
With longer fixed intervals, five links arc the upper limit. What causcs this
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breakdown? We can get some clues by changing the procedure slightly-by
climinating the different stimuli that signal cach link in the chain. This new
procedure is called a fandem ¥1 schedule (Figure 2, hottam).

Landem Schedules. The middle record in Figure 3 shows typical perfor-
mance on a six-link tandem FI schedule. On a tandem FI schedule, the
timer for the second link doesn’t start until the apimal has responded after
time ‘1 1n the first link, and so on, but the stimulus on the response key is
always the same. Performance on the tandem schedule is different from
performance on the chain in twe main ways. First, there are no pauses at
the onset of each link-because there are no stimulus changes to serve as
time markers. Second, the response rate at the end ol the interfood inter-
val is much lower on the tandem, but the postfood pause is much shorter
than on the chain. You can see these differences in the cumulative records
in Figure 3: the last fixed interval befare {food has a much steeper slope in
the chain than the tandem record, for example. These differences appear
even more clearly in the bottom record, which shows both types of
schedule successively in the same pigeon.

Clearly, one problem with the simple conditioned-reinforcement idea is
that il cannot explain results like those m Figure 3. Why should five or six
chain links be the limit? Why should the pigeons respond less in the first
chain link than in the first tandem link? These problems are usually hand-
led by factors in addition to the value-added property of conditioned rein-
torcement. Three differences between chain and tandem schedules have
been suggested as reasons for the very different behavior they produce.
First. the relative proximity to reinforcement (food) of each stimulus in the
serics (stimuli early o the chain are far trom the next food, later stimuli are
successively closer). Second, the pairing, or lack of pairing, of a stimulus
with {food. And third, the contingency between pecking and a transition to
a stimulus closer to food.

The last two factors, pairing with food and contingency, define condi-
tioned reinforcement in the strict sense. Pairing with tood is important be-
cause a reinforcer must have value, and value is derived from direct
association with tood. The contingent relation between response and rein-
forcer 1s important hecause reinforcers are usually assumed to act through
response contingency. It is well known that once the response has been ac-
quired, contingency is not all-powerful even for food reinforcement
{animals well-trained to respond on a tood-contingent schedule will persist
almost indefinitely 1f the pattern of food deliveries 1s maintained, even if
the response contingency is abolished, of. Herrnstein, 1966), so we should
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not be surprised to see that contingency turns out to be relatively unimpor-

tant for conditioned reinforcement also. The pairing with food 1s impor-
tant, as we will see in a moment.

Figure 4

PROXIMITY TO FOOD

G

SERIAL QRDER

Stimull arranged according to their serial order (x-axis} and temporal proximity to food (y-axis) for
three different serial procedures: chain schedule {color symbols), tandem schedule (17, and a scrambled
chain schedule (5},

But the first factor, relative proximity of each stimulus to food, scems to
exert the major effect (cf. Mazur, Snyderman & Coe, 1983; Shull & Spear,
1987). This is illustrated in Figure 4, which plots the senal order of cach
stimulus against its temporal proximity to food. The color symbols (see Fig-
ure 2) in the figure denote stimuli in the chain schedule. For this casc scrial
order is perfectly correlated with proximity to food, and response rate is
perfectly correlated with both: the closer to food, the more responding to
the stimulus (sce Figure 3). The “T” denotes the serial order and average
proximity to food of the single tandem stimulus. Here the stimulus has an
intermediate temporal proximity to food, and it sustains an intermediate
rate of pecking. The “S”, in the figure, represents the proximity to food of
all six chain stimuli when their order is “scrambled” from interval to inter-
val so that each stimulus occurs in cach scrial position 1/6 of the time. Once
again, proximity to food seems to be the major factor, because all six stimuli
sustain the same intermediate responsc rate under these conditions.
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Catania (1979) has demonstrated the relatively weak role of the
respanse contingency on chain FI schedules. So long as the response contin-
gency for food is maintained in the final link of a chain FI schedule, the con-
tingency can be omitted in the earlicr links with little effect on key pecking.
That is, the fixcd-interval schedules can be replaced with a fixed-time
schedule in all but the final link and the pigeon will continue to peck in
cach link much as before. If the stimuli truly serve as “rcinforcers”, in the
sense that their effect depends on the contingent relation between peck
and stimulus change, responsc rate should have decreascd when the contin-
gency was removed. [1 changed little, suggesting that the other factors, tem-
poral proximily to food, and pairing with food, aure more important.

Thus, data from chain and tandem schedules all point to relative tem-
poral proximily to food as the major factor that maintains pigcon behavior.
I will now show in more detail how this timing process works.

Dynamics of Chain and Tandem Schedules: Stimuli as Time Muarkers

All reinforcement schedules present stimuli and reinforcers to the subject
in a temporal sequence, On most schedules this sequence is quite regular,
We know that mammals and birds readily detect temporal regularity-the
phenomenon is termed temporal discrimination. For example, we know that
on FI schedules animals always pause before heginning to respond, and that
the pause 1s roughly proportional to the interfood interval. We will term
this temporal discrimination process proportional timing. The tcrms scalar
timing (Gibbon, 1977) or linear waiting (Wynne & Staddon, 1988) have also
been used for more sophisticated versions of the same 1dea.

Let’s sce how proportional timing might work on chain schedules. On a
two-link chain FI T s, the first response after T s in the presence of §p, the
first stimulus after food, causcs a change to S;. The first responsc after T's
in §; yields food. We know also that the pause is determined by time since
a time marker which, on FI schedules, is just the delivery of the reinforcer.
But on our two-link chain schedule there are two time markers, the reinfor-
cer (usually food)-which determines the first pausc-and then the trapsition
from Sy to S;-which determines the sccond pausc, in the final link. For
simplicity, suppose our animal pauses just half the expected time to food.
Since the expected time to food right after food is at least 2T (the minimum
duration of the two fixed intervals), the first pause in our chain schedule
should be T s. The sccond pause should be T/2, because the cxpected time
to food after the stimulus change from §; to $2 45 °I's.
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With these values the timing process is both stable and optimal, 1n the
scnsc that our hypothetical pigeon behaves in such a way that food i1s
delivered as soon as the schedule permits: with this pattern he gets food
atter 2T s every time. But notice what happens if we add one more FI link,
making a 3-link chain. If the animal updates his expectation about the time
to food very rapidly, from interfood interval to interfood interval, the pat.
tern of pausing is no longer stable at the original values, and not optimal.
The sequence of pause values and times-10 food is shown in Table 1, which
shows hypothetical performance on a 3-link FI 100 schedule.

Table 1
Behavior on a 3-link FI 100 5 Chain

Pause Fraction: 0.5

Expecied Time to

Cycle Stimulus Food Pause  Link Length
S1 300 L50 150
1 52 200 160 100
53 100 5¢ 100
Interfood Interval 350
51 350 175 175
2 52 200 100 100
S3 100 50 100
375
$1 375 138 188
3 §2 200 100 100
S3 100 50 100
388

The key times in Table 1 are in boldface. 1 assume that in the first cycle
the animal expects the miimum possible times-to-food: 300 s just after
food in the first link, 200 s at the beginning of the second link, 100 s at the
beginning of the last link. But notice what happens in the next cycle: be-
cause the pause in the first link (150 s-one half the 300 s expected-time-to-
food at the onset of $;) was longer than the 100 s FI value, the total
interfood interval is increased from 300 (the minimum prescribed by the
three FI1 100 links) to 350 s. In response to this, the first pause in the
second cycle increases Lo 175 s, which means that that cycle is still longer
than the preceding one: 375 vs. 350 s. The third cycle is longer still, It is
casy to show thal the process illustrated in Table 1 stabilizes with an initial
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pause of 200 s, giving a total interfood interval of 400 s-which is suboptimal
because 100 s more than the minimum permitted by the schedule.

The equilibrium interfood interval deviates still more from the mini-
mum permitted by the schedule when we add additional links, because the
animal begins to show pauses longer than T (100 s in the example) in links
after the first.

We know that proportional timing is a very reliable feature of perfor-
mance on periodic-food schedules. We have just shown that it explains one
characteristic of chain schedules: the excessive pausing in early links. But
our explanation still lacks something, because it makes identical predictions
for chain and tandem schedules-until the number of links increases to the
point that pauses greater than T occur in links after the first (such pausing
is possible only on the chain, where the transitions from one link to the
next are accompaniced by siimulus change). Morcover, the simple propor-
tional timing process always stabilizes at a finite value: timing alone cannot
predicl the extinction that is such a dramatic feature of performance on
multilink chain schedules. Animals also do not respond in the rigid way im-
plied by a constant pause fraction: pause duration varies somewhat from
link to link. Real amimals also do not adapt to changes in interfood interval
as rapidly as our ideal pigeon, and their average pause may well be less
than 50% of the typical time-to-food. All these deviations from the simple
mode] tend to mitigate its predictions, to shorten postfood pausing on mui-
tilink chains. Nevertheless, in practice pigeons, at least, are unable to main-
tain their responding on chain schedules of more than five or six links.
What is missing?

What seems to be missing is a factor that reflects whether or not food
actually occurs in the presence of a stimulus: in a tandem schedule, food
does in fact occur in the presence of the stimulus; but in a chain, food only
occurs in the presence of final stimulus in the chain. The pairing between a
stimulus and food contributes a positive factor for performance on the tan-
dem schedule that is lacking for stimuli other than the terminal one on
chain schedules. The absence of this factor, plus remoteness [rom food,
produccs extinction in the earliest component of a multilink chain. The fact
that food actually occurs in the presence of the stimulus accounts for the
maintenance of behavior on multilink tandem schedules and on chain
schedules in which the components are scrambled from cycle to cycle.

This analysis, and the weak effects of the contingency between response
and conditioned reinforcer, de-emphasize the role of conditioned reinfor-
cement as a “strengthencr” on a par with food reinforcement. It scems that
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behavior on chain schedules is determined largely by pairing with food (or
its absence) and by temporal proximity to food-as it is on fixed- and vari-
able- interval schedules, and multiple schedules.

The higher response rate in the final link of a chain schedule, compared
with the corresponding tandem, also reflects the allocation of terminal and
interim activities. The process is the same one proposed as one explanation
for behavioral contrast (Hinson & Staddon, 1978). Interim and terminal ac-
tivities are segregated into early and late links on chain schedules, because
the early stimuli are never paired with food; interim and terminal activities
are less-well segregated on tandem schedules, where only (postfood) time
distinguishes carly and late “links”. Hence, terminal responding sufters less
reduction from competition, and therefore occurs at a higher rate, in the
late links of the chain.

It is also worth noting that a rehable temporal pattern for well-trained
anmimals on multiple schedules, high response rates in anticipation of a
“rich” component, and low rates in anticipation of a “lean” component, fol-
lows from the kind of timing process described in Table 1. Response rate is
high just before the transition 1o a rich component because expected time
to food is short then, low before a transition 1o a lean component because
expected time to food is long (¢f. Williams, 1979).

Second-Order Schedules: Stimuli as Impediments to Memory

Stimuli that signal delayed reinforcement [acilitate the acquisition of be-
havior because they aid recall. Figure 5 shows the results of a procedure
that is superficially similar to a chain schedule where response-produced
stimuli seem to facilitate responding by interfering with recall. The top
cumulative record shows the relatively high response rate and scalloped
pattern produced in a well-trained pigeon by splitting up a fixed-interval 60-
minute schedule into 15 fixed interval schedules with 4-minute components,
each terminated by a response-contingent brief (0.5-second) stimulus. Food
follows (that is, is paired with) the last such brief stimulus in the 15-com-
ponent cycle. This arrangement is called a second-order schedule. Second-
order schedules differ from chain schedules in that the component-change
stimulus is brief, and always the same. The bottom record in Figure 5 shows
behavior on a comparable tandem schedule. The tandem schedule perfor-
mance shows thal without the brief stimuli response rate 1s very low, and in
the absence of time markers other than food therc are no 4-minute scallops
within the longer 60-min interfood interval.
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Figure 5

FR15(F14: W)

500 Responses

®

FR 15 (FI14)

508 Responses

b

min

Top: Cumulative record from a well 1rained pigeon on a second-order FI 60 min (FI 4-min) schedule.
Every 4 min a peek produced a brief (0.7 s} stimulus on the response key (indicated by the blips on the
reenrd). At the end of the 15th stimulus, food was presented. Bottom: Performance on lhe same
schedule wilh no brief stimulus presentations (tandem: from Kelleher, 1966).

The brief stimuli in this experiment seem to act by interfering with the
animal’s recall for the most recent food delivery, There are data from ex-
periments with interpolated stimuli showing that the pattern of pausing fol-
lowing a stimulus that signals a delay to food (on so-called primed
fixed-interval schedules) depends upon the animal’s ability to recall the
most recent time marker {cf. Staddon, 1974). The most reliable ume
marker in the second-order schedule shown in Figure 5, is food delivery.
However, food is temporally remote (the interval is 60 min long) and the
intervening time is filled with pertodic brief stimuli, Maoreover, the last
briel stimulus is also a potential time marker because food is always
preceded by a brief stimulus 4 minutes carlier. The brief stimulus is less
rcliable than food as a temporal predictor food only follows one of the 15
brief stimuli-but it is a great deal closer in time: when food occurs after a
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brict stimulus it does so after only 4 min, as opposed to 60 min afier food.
The greater validity of food as a time marker secms to be outweighed by
the greater frequency and closer proximity-to-food of the less-valid brief
stimulus. The brief stimulus seems to retroactively interfere with recall for
food delivery as the effective time marker. Because the animal does not
know where he is in the interval he must treat each brief stimulus as if it
were the last, hence anticipates food at each stimulus presentation. Since a
brief stimulus occurs every 4 min, response rate is naturally higher than on
the tandem schedule, which is treated much like an FI 60-min. The cffects
of the second-order stimuli can be so large {(when the signaled time-to-food
is only a few scconds) that the term guasi-reinforcement was once suggested
for them {Neuringer & Chung, 1967; Staddon, 1972).

The effects of brief stimuli were at one time attributed to the pairing of
the final stimulus with food. Subsequent work has shown that pairing secems
to be important only for the initial acquisition of the pattern of responding
{Squires, Norborg & Fantino, 1975; Stubbs, 1971).

In summary, conditioned reinforcers scem 1o aid the acquisition of be-
havior because they act as aids to memory, that is aids to solving the assign-
ment-of-credit problem, and as signals for food. They aid the maintenance
of behavior under some conditions because they signal conditions of more-
frequent reinforcement-but they also impair behavior on extended chain
schedules because carly links in the chain arc both remote from, and un-
paircd with, food. Under other conditions, second-order stimuli can main-
tain behavior by confusing the animal: by interfering with the animal’s
ability 1o recall the time of food delivery.

I carlier described the “reinforcing” effect of the stimulus in hill-climb-
ing terms: the pigecon pecks the White key to produce a Green key, because
Green is associated with a higher frequency of food reinforcement than
White. Will animals only work for “good news” —a situation clearly better
than the current one-or will they work for information, good news or bad,
about the conditions of reinforcement? This issue has been pursued by
scveral rescarchers beginning many years ago with experiments on what
was called observing behavior (Wyckoff, 1952).

Observing Behavior: Information or Conditioned Reinforcement?
In an observing-behavior experiment, pigeons arc offered the opportunity

to produce a stimulus that tells them whether a reinforcer is likely or not,
but has no effect on the actual availability of the reinforcer. Responding
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sustained by the production of such an informative stimuluy is termed ob-
serving behavior. For example, suppose that food for hungry pigeons is
scheduled on a variable interval 60-scecond (VI 60) schedule for pecking on
the Left key, which is normally Whitc. Pecks on the Right key have no ef-
feet on food delivery, but turn the Left key Green if the V1 is due to make
food available within the next 30 seconds. Under favorable conditions,
pigeons will soon learn to peck the Right key. Does this ndicate that “in-
formation™ is reinforcing in and of itself, or can we deduce this result from
familiar principles? The answer is that we do not need to postulate a desire
for information on the part of the bird. The delay to food delivery in the
presence of Green is less than its delay in the situation as a whole. Hence,
pigeons should peck for Green on the Right, even though the observing
response has no effcet on the overall rate of reinforcement. According to
our hill-climbing idea, responding is maintained on the observing key by an
overall reduction in the dclay to reinforcement. The reduction is only ap-
parent, of course, but the pigeon is not in @ position to know that.

A better test for the information idea is a procedure where the Teft key
is normally White, as before, but a peck on the Right, “observing” key
turns it Green if food is not to become available in the next 30 see. This
“bad ncws” procedure gives the bird just as much information as the “good
news” procedure just described. But pigeons will not peck the “observing”
key under these conditions because it is associated with a delay to reinfor-
cement longer than the overall average. This preference for “good news” 1s
the same as the preference for positive hits in the human experiment
described in the previous chapter. It also reflects the underlying hill-climb:
ing process discussed elsewhere: Organisms act in ways that lead to an im-
provement in their overall situation. Pigeons, at least, have little use for
information in the abstract {(cf. Fantino, 1977).

Proportional Timing and Ratio Schedules

W¢ have scen how proportional timing secms to be the major factor in per-
formance on fixed-interval, and chain FI, schedules. We will see in a mo-
ment how it can help us understand the complex patterns of data on choice
procedures. It may also underlie behavior even on procedures that seem to
have nothing whatever to do with timing, namely ratio schedules. I will pur-
sue the argument with the aid of our “idcal pigeon”. I use the term ideal
pigeon in the way that physicists use the term ideal gas. An idcal gas is one
that obeys the gas laws perfectly, as recal gases do not. Nevertheless, the
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ideal is close enough to the reality to provide interesting predictions. Our
ideal pigcon obeys the principle of proportional timing perfectly: he always
walts a fixed fraction of the expected time to food delivery before respand-
ing; and when he responds he does so at a steady rate until the next food
delivery. I will also assume (following the argument in Table 1) that he up-
dates his estimate of the expected time each time he gets food. We will see
in a moment that the ideal pigeon mimics the behavior of real pigeons in
very many concurrent chain experiments. What will such a predictable bird
do on when he gets food for every peck, i.e.. on a fixed-ratio 1 schedule?

The first food delivery doesn’t tell him much because he has no time
marker (other than the beginning of the session) Lo tic it to. Bul the sccond
food delivery occurs time t1 after the first, where t1 is just the time be-
twecen the first peck and the second. Now he has a time marker food (or a
peck, since they occur al the same time) and an estimated time-to-food-t1.
Proportional timing says that his next peck will therefore be after a time t2
that will be shorter than t1, because the pause is always a fraction of the ex-
pected time to food. By the same process, the next pause, (3, will be shorter
still, and so on in a positive-feedback process that will soon have the animal
responding as rapidly as possible. Rapid responding is of course the main
characteristic of performance on ratio schedules.

Suppose now we slowly increase the ratio size, first two pecks to food,
then three, and finally ten, say. Now we have two time markers: food, which
signals a relatively long time to the next food (because the animal must
complete the 10-peck ratio in between); and the peck, which still signals a
short ime to the next food opportunity (we assume that the animal cannot
count, so cannot tell one peck within the ratio “run” from another). The
very short minimum peck-food time implics that once the animal begins to
respond he should continue to respond at a high rate. But the longer food-
food time implies that the first postfood peck will be delayed, i.e., the animal
should develop a postfood pause. The fixed ratio begins to look like a two-
link chain schedule: the first link is the time between foad and the first
peck; the second link is the ratio “run”, once pecking has begun. Moreover,
the larger the ratio size (the longer the second link), the longer the pausc
should be. Postfood pause is indeed directly related to ratio size on fixed-
ratio schedules.

How long can we continue this process; that is, how large can we make
the ratio before behavior collapses and the bird quits responding? Here the
simple theory is less accurate, but it is at least possible to calculate how the
postfood pause should increase with ratio size. Suppose the animal always
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waits half the expected time to food, i.e., E/2, and suppose that he cannot
peck faster than one peck every 1 sec. If the ratio size is N, the time taken
up by cach ratio “run” is therefore Nt sec. Hence, the expecled lime to
food, E, 1s just t; Nt, where 1p is the postfood pause. But, by our hypothesis,
the postfood pause is always half the expected time to food, ie., tp= E/2.
Thus, we have two equations to solve to tind the actual value of the pause:

= tp+Nt, and

We just need to eliminate E from these two equations to find t, as a
function of N. The answer is t,= Nt, i.e., the pause is proportional to the
ratio value as the verbal argument led us to expect. In general, if the pause
fraction is A, where A is belween 0 and 1, the relation is t,= ANt/(1-A).

Experimental results also show that the pause fraction, A, depends
upon the size of the food delivery the animal gets: the larger the food
dclivery, the smaller the pause fraction (Powell, 1969). We will have use
for this relationship between pausc fraction and reward magnitude later,
when we come to discuss self-control. This proportional-timing process is
stable no matter how high the ratio, the ideal pigeon should still continue
to respond so long as our assumption that the animal cannot discriminate
one peck from another holds up. But at very large ratios, the first peck in
the ratio “run” occurs a long time after food and may perhaps become dis-
criminable from later pecks. But this first peck signals a long time to food,
s0 that a pause may begin to develop after this peck just like the pause fol-
lowing the onset of the second link in a multilink chain schedule. This
pause lengthens the total time bctween food deliveries, and thus the
postfood pause. Ratio strain is the name given to the pausing that begins to
occur during the ratio run at high ratio valucs. Ratio strain is usually a sign
that the animal is almost at its limit of ratio size and further increases are
likely to lead to extinction. It is presumably the cumulative effects of the
development of pausing during the ‘ratio run that lead to the eventual
breakdown of ratio-schedule performance at high ratios. Other processes,
thc sheer cffort involved in a leng run of pecking, for example, may also
contribute (I discuss explicitly the hypothesis that effort is a factor in
schedule performance later in the chapter).

What about variable-ratio schedules? Here the positive-feedback
process that produces high response rate operates just as it does on fixed-
ratio. But food delivery 1s no longer a reliable signal for a long expected
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time to food, because some ratio valucs are very small. Hence, proportional
timing implies no postfood pause. Pausing does not in fact occur on VR
schedules, aithough response rate is indeed high, just like fixed-ratio.

Thus, the main propertics of responding on both tixed- and variable-
ratio schedules, the high “running” rate and the FR postfood pause, are
directly traccable to the proportional timing process.

Delayed reinforcement and choice

Chain schedules have been used extensively in choice procedures intended
to discover quantitative principles of reinforcement. Some of these proce-
dures are complicated, but the basic design of all of them-and many ex-
perimental results-can be understood quite casily by begioning with an
idcalized two-choice procedure. Look at the FUschedule diagrammed in the
top panel of Figure 6, which shows how the ideal pigeon will respond
during a single interfood interval. The bird waits for a fixed fraction, say
1/4, of the time to food before beginning to peck, and then (I assume)
pecks at a constant rate until food is delivered at the end of the interval.
The steady rate of pecking is represented by the filled area that begins 174 5
into the T s (nterval.

l'igure 6

FIXtD FOOD ‘
INTERVAL

LEFT FQOD !

CONCURRENT
FIXED-INTERVAL.

RIGTH  1YOOD FOOD

T

Asingle cycle of simple (top panel) and concurrent (bottom panel) fixed-interval schedules.
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Now look al the bottom panel, which shows a concurrent FI FI schedule:
two response keys, Left and Right, cach of which allows access to its own,
independent FI schedule. The two schedules are not of equal length: onc s
T\, s, the other Tg s and Ty > T How will the pigeon respond in this situa-
tion? The answer tells us a great deal about how animals treat much more
complex procedurcs. '

The simplest assumption we can make is that our ideal pigcon trcats
cach key in the concurrent situation in cxactly the same way he would treat
it 1n isolation. That is, he waits Tr/4 s after food before beginning to
respond on the FI T, key, and TR/4 s before beginning to respond on the FI
TR key (since the pigeon cannot respond at the same time on both keys,
there will inevitably be competition for available time after Tr/4 s, when the
bird must peck on both keys; I will ignore this factor for the moment since
it affects both keys equally). But there is an ambiguity here: Obviously the
animal will actually receive food earlier on the Teft, FI Ty, key than on the
Right, FI Tgr, key. There are now two ways that the procedure might work:
(a) the FE TR timer could continue even after food for a Left response, until
a peck eventually produces {ood on the Right, or (b) both scheduling
timers, Right as well as Left, could be reset, so that the two FI schedules
are timed from a food delivery produced by either key. The important thing
to notice 15 that this procedural ditfference makes a great deal of difference
to how the animal is likely to behave.

If we adopt programming method (), and reset the Left FI timer only
when food is praduced by a Left response, and the Right FI timer only
when food is produced for a Right response, then we favor some respond-
ing to both keys. The reason is that cven if the animal starts out by
responding almost exclusively on the Left (short-FI) key, after only a few
food deliveries a single peck on the Ripht will produce food because the
Right timer continues to run wntil food is produced by a Right responsc. A
pigcon with some initial tendeney to peck both keys will soon detect this
fecature, hence will continue to make some responses on the Right as well
as on the Left. This mixturc of Left @nd Right responding is termed a par-
tial preference. Conversely, if we resct both timers after food, according to
mcthod (b), with the response pattern shown in Figure 6 the immediate
result will be that the animal only receives food for a Left response because
the Left timer always scts up first and food delivery resets both timers.
Thus, a Right-key peck will never be followed by food and the Right key
will become a stimulus that 1s never paired with food, so Right responding
will eventually drop out entirely. Hence, programming method (b) favors



186 J.ER. STADDON Special issue, Vol 21

exclusive choice of the Left key. Pigeons behave as thesc arguments sug-
gest, showing partial preferences on procedures programmed according 10
method (a) and tending towards exclusive choice on procedures
programmed according to method (b). We will see several examples of both
effects later on.

Figure 7

Si 52
SIMPLE
CHAIN FOOD ’

FOOD

LEFI  FOOD ‘

CONCURRENT
CHAIN

RIGTH TOOD l FQOD

tRs TR

A single cycle of simple {top panel) and concurrent {bottom panel) chain FI Il schedules,

Let’s look at a chain-schedule version of the two-choice procedure.
The top pancl in Figure 7 shows a single interfood interval on a 2-link
chain FI schedule: an initial link of {-s duration, 1n the presence of stimulus
Sy, followed by a response-produced transition to a second link of T-s dura-
tion 1n the presence of stimulus 5. The two response records show the
hypothetical performance of our idcal pigeon, who follows the now-
familiar pattern described in Table 1. After the initial time marker (food)
he pauses a fixed fraction (say 1/4) of the total time to food {i.e, (t+T)/4 s)
and thereafter responds at a steady ratc until the response-produced transi-
tion from §; to S;. When 83 comes on, he pauses the same fraction of the
remaining time to food (i.e., T/4 s). (I ignore the additive effect of the pair-
ing of S; with focd because that has no bearing on behavior in Sy, which is
whal we are really interested in).

The bottom panel in Figure 7 shows a concurrent chain schedule, which is
just two keys, programmed in the same way as the single key in the top panci
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but with different values for the duration of the second link, which is Tp on
the Left and Ty on the Right. The procedure has an additional fcature that
was nol necessary on the single-link concurrent FI FI schedule: when the
pigeon successfully produces a transition to either second kink (i.e., cither 81 »
Or Sgz), the other key is turned off until after food delivery, when both keys
return 1o their initial-link stimuli. Thus, once the animal has produced a
second link, he s committed to it until food is delivered. The programming
rule for the t-s timer in the first links is rule (b), above: that is, when food is
delivered in either second link, both first-link FIL timers are reset.

The response records for our ideal pigeon in Figure 7 show how he will
behave on this new procedure. The main result is obvious: he waits much
longer before beginning to respond in the first link on the Right, which leads
to the longer second link. Because the proportion of time taken up by
responding (i.e., the shaded area) is larger on the Left than on the Right, the
ideal pigeon will seem to be responding at a higher rate in the first link on the
Left (which has a short second link) than on the Right (which has a longer
second link). Notice that because of the “commitment” feature of the proce-
dure (once a sccond link is entered the other key becomes ineffective) the
animal will continue to get about 50% of his food for pecking on the Right
key. Nevertheless, because of the late start on the Right, the proportion of
responses is obviously much less on the side leading to the longer second hink.

This result some responding on both sides, but more on the side leading
1o the shorter second link is not surprising, although responding on both
sides is not always optimal behavior under these conditions (I return to the
question of optimal policy in a moment). Nevertheless, it is in fact what
pigeons usually do, although the schedules used are little more complex
than the ones shown in Figure 7. In the usual concurrent chain experiment,
the delays in the second links are often fixed, as in our example, but the
first-link schedules are usually variable- rather than fixed- interval. The
reasons {or this are larpely historical this is how the [lirst experiments were
done (c.g., Herrnstein, 1964) but this difference does not affect our con-
clusion, which depends only on the animal setting his waiting time in the
two initial links to a fixed {fraction of the expected time to food.

Optimal Policy on Concurrent Chain Schedules
How should pigeons respond on concurrent chain schedules with equal first

links? What should they do so as to minimize the average time between
food deliveries? The pigeon really only has two options in this situation:
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either ignore the key leading to the longer second link, or sampic both in
such a way as to enter each second link as soon as it is available. I'll call the
first strategy fixate {on the short-link side) and the second sample. It is
pretty obvious from Figure 7 that with fixed-duration, equal, first links, that
are reset with each food delivery, there is absclutely no reason ever to
respond on the side that has thc longer second link. But what if the first
links are variable rather than fixed-interval? In this case, everything
depends on the relative durations of the first and second links. The argu-
ment is straightforward: For the strategy fixate the average interfood inter-
val will be just t+Tr, where t is now the value of both first-link Vi
schedules. But for the strategy sampie the avcrage interfood interval will be
the average of two numbers: a number representing the average time the
animal spends in the first link, plus a second number which is the average
of the two second-link delays. The first number, when the first links are
equal VI's, will in fact be half the VI value, since the two VI's are indc-
pendent and each sets up once every t s. Thus, the average interfood inter-
val under the sample strategy is just {t+Tp+Tgr)/2. Fixate is better than
sample if the corresponding interfood interval, t+7Ty, is less than {(t+T
+Tgr)/2, which reduces to the condition:

1+TL<TR

In short, the animal should be more likely to fixate as the duration of the
{irst-link VI, t, decreases. This makes perfect intuitive sense: by waiting long
enough, the animal can ensure that a single peck on the Right gets him im-
mediately into the second link. The point is that this peck will only be worth
making if the delay he must then suffer, Ty, is shorter than the expected time
1o food for just continuing to respond in the first link on the Left, t+ Ty

The interesting thing about this prediction is that this shift, away from
fixation towards indifference as t, the first-link VI, is increased, is precisely
the pattern that pigeons show on these procedures (Fantino, 19693, I show
in a moment that this pattern, and a number of other results from cxperi-
ments with concurrent chain schedules, is also what we would expect from
our ideal pigeon who bchaves close-to-optimailly under these far from-
natural conditions. But of coursc the ideal pigeon is not optimizing at all:
he is simply following blindly the proportional-timing rule, which happens
to work pretty well in the situations I have discussed so far. Naturally there
are situations where proportional timing does not work so well; and in
these situations the ideal pigeon behaves suboptimally. It is interesting that
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thesc are situations where real pigeons also fail to maximize their rate of
food delivery. I return to thesc topics in a moment.

Chain Schedules and Natural Foraging. The choice between two thain
V1 FI schedules is formally the same as the problem of choosing between
two different prey types that have different profitabilities. This is a classic
problem in behavioral ccology, the problem of diet selection (see Stephens
& Krebs, 1986, for an excellent survey of thcoretical and experimental
work). For examplc, imagine a predator {a squirrel, say) who has two types
of nuts available to him. Let’s for the moment assume that both nuts have
the same nutritive value (food amount), but that nut A has a thicker shell
than nul B, so takes longer to crack (ic., has a longer handling time). To
further simplify the situation, i will assume that the two types of nut are
equally abundant. When should our squirrel eat either type of nut when-
cver he cncounters it, and when should he just specialize on the more
profitable type? (Profitability is just the ratio of energetic value, E, to han-
dling time, h: profitability = E/h). If each type of nut is encountecred on the
average cvery t s, his rate of energy intake if he specializes on B is Rg=
E/(t+hg), where hp is the handing time for B, i.c., Rp is equal to the encr-
gy-per-nut, E, divided by the average time betwcen nuts, which is en-
counter interval t, plus handling time hy (see Figure 8). If he gencralizes,
accepting both A and B, on the other hand, his rate of energy intake will be
E, divided by the average encounter time, which is now t/2 {since we now
count encounters with cither equally abundant type) plus the average han-
dling time, (ha+hg)/2, so that Ro= 2E/(1+ha +hp). The animal should spe-
cialize if Rg>Ra, which reduces to t+hg<hs —which is the same as the
condition for the policy fixate in our chain-schedule analysis. The main
ecclogical implication of this analysis is that as food density decreases (ic.,
cacounter time, t/2, increases} the animal should be less and less likely to
specialize and more and more likely Lo accept any food he encounters, even
the feast profitable. Numerous experiments have confirmed this qualitative
prediction in scveral species (Sce Stephens & Krebs, 1986).

Figure 8

E: L Ex

11 hi

A typical cycle of foraging for a food type with profitability Ey/hi, encountered on the average every tl s
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A more general diet-selection problem provided the initial impctus for
the whole ficld of optimal foraging theory: this is the so-callcd optimal-diet
problem (Macarthur & Pianka, 1966). Consider two prey types, one of
which is highly profitable (low handling time and/or high energy conicnt)
the other less profitable: Ey/hy>Ex/h;. These two types have different
abundances: type 1 ts encountered on the average every ty s, type 2 every Uy
s. The guestion is: Under what conditions should the animal take both
types, whenever he encounters them (generalize) and when should he just
take the more prolitable one (specialize)? The analysis is similar to what we
have just done, but it also allows us to introducc a new technique, the
method of marginal value. 1 first derive an cxpression for the expected food
rate under strategy specialize. The situation herc is just like a simple chain
schedule, as shown in Figure 8. It is cbvious {rom the diagram that the cx-
pected rate of energy acquisition under specialize is just Ri= E/{ty+hy),
that is, the cnergy in one prey item, Ey, divided by the time between items,
t1, plus the time it takes to cat an item, hy.

Generalize is a bit more difficult, because we must somehow average the
payoff from both types of itcms. At first blush, it might seem that our
predator should always take cven the less-profitable item, but that is be-
cause we forget what economists call the opportunity cost of eating a {ow-
profitability prey item. The opportunity cost is incurred by the item’s
handling time, hy: if hy is long, then it might be better tor our optimal
predator to spend the time looking for the more profitable prey, rather than
waste time struggling to eat the less-profitable one. The casiest way to see
the optimal strategy herc is to usc this argument, which is known as a mar-
ginal value argument. The idea is that under most conditions an animal can
maximize its raic of return by always picking moment-by-moment the op-
tion with the highest expected reward rate. The base comparison here is of
course with the specialize strategy: if the animal ignores the less-profitable
ilem, he can always get food at a rate R1= E;/(ti+hy). So when he en-
counters a less-profitable item, he should comparce Ry with the expected food
rate once he has already encountered the less-profitable item, namely Ey/h,,
the profitability of the lesser food type. This argument yields the counter-
intuitive result that in a situation like this, the abundance of the less-
profitable item {dctermined by t;) should have no effect on the animal's
willingness to take it-only the abundance of the more-profitable item
(determined by 11) should have any cffect.

Under many conditions this prediction secems to hold up. For example,
Krebs et al, {1977}, did a laboratory prey-selection experiment with great
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tits (Parus major), small insectivorous European birds. The birds were
presented with artificial prey (mealworms) that passed in front of them on
a little conveyor belt. There were two types of prey, “bigs” and “smalls”;
the experimenters varied the frequency of the “bigs” to see if there was in-
deed a critical frequency above which the birds would suddenly cease to
take any “smalls”. They did find a transition, bul it was smooth, rather than
sudden (you can probably think of many reasons for the gradualness of the
change: how well could the birds estimate frequency, for example?). In
another experiment, Werner and Hall (1974) looked at bluegill sunfish
feeding on Daphnia {(water fleas) of three different sizes in a 1ank. There
were cqual numbers of cach size. The more fleas there were in the tank,
the less likely the fish were to take the smaller sizes.

Thus, optimal foraging analysis can be extended to make predictions
about what animals should do when the two food types have different
abundances, or are of different nutritive values. The case where encounter
rates arc the same, but nutritive values and handling times are different,
rescmbles the self-control experiments [ discuss later on (sec also Box 1).
These optimality arguments don’t say anything about the mechanisms or
rules that underlie the animal’s behavior, of course. We will see in the next
section that proportional timing, which is the main mechanism that seems
to drive choice on these procedures, does not always produce optimal be-
havior. We can therefore expect optimal foraging predictions to fail under
some experimental conditions.

Parametric Effects on Concurrent Chain Schedules

Pigeons will peck a key to produce a stimulus if the stimulus signals a
higher rate of food delivery than the prevailing rate. This finding led re-
scarchers to assume that the value of a conditioned reinforcer is directly re-
lated to the rate of primary reinforcement in its presence. They believed
that (a) pecking to produce conditioned reinforcers is maintained by the
value of the conditioned reinforcers; and (b) that the value of a condi-
tioned reinforcer is related to the rate of primary reinforcement that it sig-
nals.

As you have seen, it now seems unlikely that the reinforcing property of
conditioned reinforcers is as important to the maintenance of pecking as
their proximity to food. Nevertheless, you need 1o know the theoretical
presumptions that have led to a long series of experiments aimed at measur-
ing the value of conditioned reinforcers. The reasoning was along the fol-
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lowing lines: Perhaps stimulus A, in whose presence food occurs after T s, 1s
about half as valuable as stimulus B, in whose presence the same food occurs
atter a delay of only T/2 s, It this is true, perhaps pigeons will work twice as
hard to B as for A. ITow can we verify this prediction, researchers wondered?
We might ask pigeons, on a trial-by-trial basis, to choose between two keys,
one displaying stimulus A, the other stimulus B. But cven the stupidest
pigeon is likely to choose stimulus B exclusively. This tells us something
about the relative values of A and B, namely that B is greater than A; but it
does not tell us Aow much greater, Something more subtle was needed.
Richard Herrnstein (1964) proposed an ingenious solution to the prob-
lem of measuring the value of a conditioned reinforcer, based on an carlier
result with primary {food) reinforcement. He and his collcagucs had al-
ready shown that if pigeons are allowed to respond concurrently on two in-
dependent variable-interval schedules they will approximately match their
ratio of key pecks, Right/Left, to the ratio of abtained food reinforcements
(if the VI schedules are different), or to the ratio of food magnitudes (if the
V1 schedules arc both the same); see Herrnstein (1970) for a review. If we
denote rates of responding on Right and Left by x and y, and rates of rein-
torcecment obtained by R(x) and R(y), the simple matching law is just

xy= R(x}/R{¥).

[ will say more about the matchig law later in the chapter.

The matching-law result with schedules of primary reinforcement sug-
gested to Herrnstein a procedure to measure the value of conditioned rein-
forcers: Why not ask pigeons to choose between two condirioned reinforcers,
cach delivered according to the same VIschedule? This is just the concurrent
chain procedure we have been discussing, but with VI, rather than FI,
schedules in the first link. The matching result implics (Herrnstein argued)
that the ratio of kcy pecks in the first links should provide an accurate
measure of the ratio of conditioned reinforcing values of the second links.

In his first experiment Herrnstein found, as he had expected, that the
ratio of pecks on the Right and Left in the equal-VI first links matched the
inverse ratio of second-link delays: thus, if the sccond link delays were Ty =
T and Ty= /2, pecks Right/pecks Left in the first links were in the ratio 1
to 2. Evidently the value of a conditioned reinforcer is indeed inversely re-
lated to the food delay in its presence.

However, subscquent experiments soon showed that this conclusion is
valid only under certain very specialized conditions. From a present-day
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perspective we can see that Herrnstein’s result was unlikely to be universal
because it rested on a functional argument éxplaining behavior in terms of
its outcome. Like any functional principle such as the principle of reinfor-
cement itself Herrnstein’s simple rule took no account of the mechanisms
that underlic performance. Just as reinforcers somelimes fail to reinforce
(cf. instinctive drift and superstitious behavior), so conditioned reinforcers
will sometimes fail to act in the expected way. Just as the failures of the
reinforcement principle have told us something about the mechanisms that
underlie reinforcement, so the failures of conditioned reinforcement tell us
something about how if works.

The first experiment to cause problems showed that the quantitative
preference for the shorter-second-link key diminishes as the length of the
first-link VI's is increased: the longer the first links, the more the animal
tends to be indifferent between the two keys (Fantino, 1969). As we saw
earlier, this makes intuitive sensc: if the first links arc very long relative to
the both second links, then the animal’s optimal policy is to get out of the
first link, either link, as soon as possible. It follows directly from the op-
timality condition for fixation on the short-link side we derived carlier, t+
Ti,<Tr: the longer the value of t, the first-link delay, the less likely the
anmimal is to respond on just one key. This kind of result poses severe, if not
insuperable, difficulties for the simple conditioned-reinforcement idea, The
difficulties come from the fact that the value of a conditioned rcinforcer
depends on more than the rate of primary reinforcement that it signals: cvi-
dently conditioned-reinforcing value 1s a relative rather than an absolute
property. The difficultics are not insuperable because we can simply revise
our functional principle to accommodate this relativity, and numerous at-
tempts have been made to do so. But the cost is greatly increased theoreti-
cal complexity, and loss of predictive power.

Over the years several other limitations on Herrnstein’s original con-
clusion have appeared. First-link preference is affected by the absolute (as
well as relative) durations of the second links and by the variability of
second-link delays, as well as by the absolute value of first-link delays.
First-link preference is surprisingly little alfected by the number, as op-
posed to the delay, of second-link reinforcers,

I now show how all these effects can be derived from the proportional:
timing mechanism. The arguments are as follows:

Effect of First-Link Delay. Figure 9 shows how our ideal pigeon should
respond on three concurrent chain schedules with the same pair of unequal
second link delays, and increasing, but equal, first-link delays. As before,
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we assume that first-link responding begins when 1/4 the expected-time-to-
food has elapsed. The period of responding during each first link is indi-
cated by the cross-hatched region. It is easy to sce that the ratio of first-link
pecks approaches indifference (1:1) as the first-link delays increase.

Figure 9

51 Ly

LEFT FOOD FOOD

RIGHT FOOD | FOOD
LEFT FOOD l FOOD
RIGHT FOOD J FOOD

LEFT FOOD

1 FQOD

RIGHT FOOD FOOD

The effect of first-link duration on concurrent-chain-schedule performance. First-link responding
begins 1/4 time to food delivery in every case.

Effect of Second-Link Delay. Figure 10 shows how our ideal pigeon
adapts to increasing the absolute duration of the two second links, while
keeping the equal first links constant. It is casy to see that as the absolute
durations of the two second links increase, preference should shift towards
exclusive choice: This is basically the same as the previous result: in the
first case, the second links were held constant and the first links increased,
in this case the first links are held constant and the second links are in-
creased. Real pigeons show both the predicted effects (MacEwen, 1972;
sce review in Fantino ct al., 1972).

Effect of Variable vs. Fixed Second-Link Delay. Figure 11 shows the
time relations in a concurrent-chain experiment with equal first links. The
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second link on the Left is a constant delay, T. On the Right twe ditferent
delays, 1 or 2T-1, averaging T, occur with equal probability. Numerous ex-
periments have now shown that pigeons have a strong preference for the
variable alternative, i.c., the one that leads to either a short or long second
link with ¢qual probability. Our idcal pigcon also shows this effect because
he begins responding in the initial link in anticipation of the first food op-
portunity (providing that opportunity is not too infrequent). Since the vari-
able side provides thc first opportunity, responding should begin much
carlier on that side. The ideal pigeon becomes indifferent between the two
alternatives only when the fixed alternative is almost equal in value to the
shorter of the two variable alternatives (rather than equal to their mean, as
the optimal policy requires).

Figure 10

51 82
LEFT FOQOD FOOD
RIGHT [ 81830 — J FQOQD
LEFT FOGD J FOOD
RIGHT FOOD ] FOOD
LEFT FOQOD \ I FOOD
RIGHT FOOLD ' FGOGD

The effect uf sceond-link duration on concurrent-chain-schedule performance. The ratio of sceond-link
delays is constanl in egch case. First-link responding begins 1/4 time to food delivery in every case.
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Figure 11
LEFI KLY QUTCOME 3 L)
(FIXED) FOOD l \ FOOD
T sec
RIGHT KEY OUTCOME
(VARIABLE) FOOD | ] FOOD
2T-1 sé.c I -
OR
FOOD | | | FOOD
1 sec

Concurrent-chain procedure with variable vs. fixed second links. The two variable RIGHT sceond links
occur with equal probability and have 1he same average duration as the fived LEFT second link.

James Mazur (1986) developed a negative-feedback or ftration procedure
that allowed him to estimate the point of indifference in procedures like
this. His schedule is complicated, but its essential feature is that if the
animal shows a prefercnce for the variable side, the duration of the fixed
second-tink delay is reduced; conversely, if he prefers the fixed side, its
duration is increased. In this way the animal is driven towards indifference.
Mazur found that given a choice between a variable alternative with 0 and
20 s delays, pigeons will become indifferent anly when the fived delay is set
to a little over 1 s, a strikingly large departure trom the optimal policy,
which implies indifference when the fixed delay is 10 s. In another confir-
mation of the proportional-timing hypothesis, Gibbon, Church, Fairhurst
and Kacelnik (1988), who have also developed an c¢legant quantitative
theory of scalar timing, have shown that pigeons greatly prefer a distribu-
tion of variable-length delays where short delays predominate to a distribu-
tion with equal mean and variability where long delays predominate. The
Gibbon et al. result shows quite clearly that the pigeons’ behavior in
Mazur’s experiment does not in any way imply a preference for variabifity
as such. The birds prefer the short-delay distribution because the expected
time to the first food opportunity is shorter than in the long-delay distribu-
tion (cf. Williams’, 1979, data on following-component effects in multiple
schedules, discussed earlier).
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Effect of Number of Second-Link Reinforcers. Figure 12 shows a proce-
dure thal onc might expcct to produce a strong Right preference. First-
and second-link delays are the same, but on the Right two reinforcers are
delivered in close succession before the first link rcappears. Optimal
responding here implies a strong Right preference, but our ideal pigeon
shows an outcome close to indifference, because the first food opportunity
is at thc same delay on both sides. Real pigeons are also almost indifferent
between the two sides on this procedure. The second second-link food
delivery does have a slight effect, smaller the larger the delay between it
and the first (Mazur, 1986; Moore, 1982).

Figure 12

b Sz
LEFT FOOD { ! FOOD

Concurrent-chain procedure in which the second link on one side gives two food deliveries for every one
on the other side,

RJQHT FOQD 2x I'OOD

Conclusion

The mechanisms that underlie performance in concurrent chain schedule
cxperiments, turn out to be two in number, hoth quite simple: (a) an effect
due to the pairing of a primary reinforcer (food) with a stimulus, and (b} an
effect due to the delay between a time marker and the primary reinforcer.
Pairing adds valuc and reinforces to the extent that the rate of food delivery
in the presence of a to-be-produced stimulus is greater than food rate in the
current stimulus (hill-climbing). Reipforeer delay acts through a timing
process that causes the animal to wait an approximately fixed proportion of
the expected time to food betore responding (proportional timing). The ef-
fects on well-trained pigeons of many experimental manipulations of initial-
and second-link length, of second-link variability, and of number of sccond-
link reinforcers are all explicable by the cffects of delay alone.

This simple summary nevertheless omits a number of secondary effects.
This Is an active rescarch area and the issucs, and experimental procedures,
can become complex. There is some evidence for eifects that cannot be
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reduced to our two processes: Pigeons seem 1o anticipate more than just
the next food delivery, for example; and very infrequent food opportunities
are less effective than 100% food. But it is fair to say that these effects are
less powerful and reliable than the ones T have described. Pairing, and
proportional timing, scem to be by far the most important processes in-
volved in the performance of pigcons on chain schedules.

It is noteworthy that these mechanisms, simple though they are in out-
line, are sufficient to produce behavior that is close to optimal under very
many conditions. It is also noteworthy that the situations in which behavior
is optimal have close parallels in nature (stmple concurrent chains resemble
the optimal diet problem, for example), whereas those in which behavior is
suboptimal have no obvious natural parallel (concurrent chains with lixed
vs. variable second links or links with different numbers of reinforcers, for
example).

The Self-Control Problem

People’s inattention to delayed consequences poses a chronic problem for
public policy makers. People smoke, drink and take drugs for the present
pleasure they give, and ignore the future pain, which is not only delayed
but is often oniy probabilistic: Cigarette smoking gives some peaple cancer;
it may not give me cancer. Individual economic decisions also are often
made unwisely because of a failure to evaluate future events realistically:
we may impulse-buy now, and fail to pay our rent or insurance later. These
obvious practical applications have maintained interest in self-control as a
scparate problem area, even though, in the present context, it is but one of
many possible variations on the concurrent chain procedure.

A typical self-control experiment is depicted in Figure 13 (Green &
Snyderman, 1980). It is a mtinor variation on the second-link-duration prob-
lem depicted in Figure 10. The only difference is that the procedure com-
pares second links that differ not just in the delay to food, but also in the
amount of food. A successful peck on the Left, say, produces a small
reward, Ej, delivered after a short delay, T: a successlul peck on the Right
produces a larger reward, Eg, delivered after a longer delay, KT (i.e., K <1;
let ER/E; =A >1). The presumption is that under most conditions it pays to
show self-control and choose the longer delay to get the larger reward
rather than being “impulsive™ and choosing the short-delay alternative. We
will sec in a moment that the optimal policy depends on a number of
things: sometimes impulsiveness pays.
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Figure 13
51 L2
LEFT FOOD l <t Ts } SMALL FOOD: Fi,
RIGHT FOOD | <t KTs J LARGE FOOT: Eg

The self-control problem. 81 is present during the initial equal delay {usually equal VI t 5 schedules). A
successful response produces one of the two delays, and associated food amounts in a single second link.

Proportional timing seems at first to aid us little in predicting the results
of these experiments, because the small reward always comes sooner than
the larger. Strict application of the rule would have the idcal pigeon always
showing impulsiveness, 1.c.. picking the short-delay alternative. But of
course this Is what he is likely to show so long as the two reinforcers are of
equal sizc and the initial link is not too long. To account for different
results, therefore, we must include a factor that biasces the animal in {avor of
the large-reinforeer choice. The simplest possibility is just that the amount
of foed affects the proportion of time the animal waits before beginning to
respond (cf. Powell, 1969, first encountered in the carlier discussion of
tixed-ratio schedules). If he waits 2 s before beginning to respond in an-
ticipation of a small amount of food delivered after 10's, he might wait only
1 s for a large amount delivered with the same delay: increasing the amount
reduces the pause fraction. We will see that this assumption seems to ac-
counlt for most of the results from the exiensive manipulations of second-
link delay 1n the Green and Snyderman (1980) experiment.

Green and Snyderman looked at three ratios of long to short second-link
delay (I denote the short link by T, the long by KT). The three valucs for K
were 1.5, 3 and 6. For each value of relative delay, K, they looked at several
values of T, the gbsolute delay. They knew the carlier results on varying
second-link delay (T) with equal rewards on both sides; they were interested
insceing how these results are change’d by piving unequal reward amounts for
the short and long delays. We have alrcady seen that when the rewards are
equal, increasing T always produces a shift of prefercnce towards the shorter
link. Qur idcal pigeon shows exactly this pattern of results in Figure 14, using
4 pause {raction 6f 0.15. The downward slope of the curves indicates that as
absolule second-link duration, T, increases, preference shifts away from the
longer-link alternative at all three K (relative delay) values. (The tormulas i
uscd are described in Box 1, which can be skipped by the nonmathematical).
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Figure 14
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Predictions of proportional timing for the concurrent chain prucedure with constant- ratio second links.
Ciraph shows ratio of fimst link responses (LONG/SHORT) as the absolute value of the second links {1')
15 varied. at three long-short rauos (K).

Green and Snyderman found that when the shorter link led to 2 s ac-
cess to food and the longer link 1o 6 s access, the results were slightly dif-
ferent from thosc shown in Figure 14: at the’ smallest K-value, 1.5,
preference for the longer link increased as T was increased; at the other
two K-values, however, preference shifted towards the shorter link, as it
does when both rewards are cqual. The ideal pigeon also shows this pat-
tern. in Figure 15, assuming that the pause fraction in anticipation of the
larger reward is half the pause for the smaller. The prediction on the as-
sumption that the large-reward pause was one third the smaller is shown in
Figure 16: now prefercnce shifts toward the longer side at two of the three
K values, There is some reason to believe that the effectiveness of food
rewards is less-than-proportional to their physical magnitudes (see later
discussion of utility functions), as we had to assume to obtain correct
predictions of Green and Snyderman’s results (The same assumption s also
nceessary 1o reconcile these data with the optimal policy: see Staddon
[1980], p. 239).
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Figure 15
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Predictions of proportional timing for the “self-control*concurrent chain procedure with canstant-ratio
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Figure 16
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Conclusion. Proportional timing, in the form of our ideal pigeon, seems
to handle the rather complex pattern of experimental results on self-control
procedures, as it does for other concurrent-chain schedule data. There are
of course many differences between real and ideal pigeons: real pigeons
show considerable variability in timing, although average pause is related to
minimum time-to-food in the same way as for our ideal bird; real pigeons
don’t adjust their waiting time just interval-by-interval, but also day-by-day-
they show long-term as well as short-term effects; and limitations on
memory mean that some time markers are better than others. These dif-
ferencXe mean that some of the most direct predictions from our ideal
pigeon that pausing, not just average response rate, should vary in the first
link of concurrent chain schedules, for example, are not as well supported
as the more indirect predictions about patterns of results (although, to be
fair, no one seems to have looked caretully at anything but average rate).

There are also other, more elaborate descriptive theories of performance
on chain schedules (scc, for example, Fantino’s delay-reduction theory, e.g.,
Fantino & Abarca, 1985; the scalar timing of Gibbon at al., 1988; Killeen’s in-
centive theorty, e.g., 1985). The theory of Gibbon et al. is equivalent to
proportional timing but makes additional assumptions about the staochastic
properties of the timing process; delay-reduction under many conditions
reduces to the optimal policy; incentive theory is also a delay-based theory
that makes many of the same predictions as our simplified ideal pigeon. Many
details remain to be resolved; but the overwhelming importance of reward
delay, n self-control and other chain-schedule procedures, is now very well
established. '

Although interest in the self-control problem is fueled by its obvious
similarity to human situations in which delayed consequences sometimes
fail to affect people’s behavior as we feel they should, we cannot generalize
directly from the animal results to the human situation. The reason goes
beyond these particular experiments. It is just that what generalizes (if any-
thing) 1s not the particular result of any animal experiment, but the prin-
ciples and mechanisms that underlie the result. It is not sutficient to show
that pigeons or rats show sclf control or impulsiveness under this or that
condition. We need to know why they show these effects befare we can
confidently apply what we have learned to the human case.

Although the theoretical problems in this area are far from scttled, our
ability to predict the major patterns in the Green and Snyderman experi-
ment, one of the most careful and elaborate done to date on this problem,
from the idea of proportional timing supports the hypothesis that this
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mechanism underlics these effects. But proportional timing cannot operate
until the animal has had opportunity to learn about the time intervals in-
volved which means repeated cycles of exposure to each alternative and its
outcome. But this is almost never possible in those cases of most urgent in-
terest to public policy such as the smoking habit or prudent personal
spending. We cunnol run people through several lifetimes so that they can
compare at first hand the conscquences of smoking vs. abstinence, or
profligacy vs. prudence. We may therefore have to look elsewhere than
laboratory sclf-control experiments with people or pigeons for public policy
reccommendations on how to climinate bad habits with long-delayed conse-
quences. The major problem may not be people’s assessment of delayed
consequences as much as their assessment of things about which they have
been told, but which they have never actually experienced.

What we can take away is the overwhelming importance to organisms
of strongly valued events, such as food for a hunpry animal. These choice
situations may not, from the pigeon’s puint of view, involve any real choice
at all. The pigeon is not much distracted by our colored lights and response
contingencies remate from food. He keeps his eye on the ball and for the
most part allocates his behavior in relation to the ultimate goal, food,
rather than the intermediate ones we have set up for him. People, on the
other hand, all too often mistake the pointing finger for the moon and toil
at subpoals while losing sight of the ullimate objective. Whether this is a
rellection of the greater cognitive complexity of human beings. which al-
lows them better to compartmentalize their tasks, or whether it is simply
because their goals (at least in psychology experiments) arc not as impor-
tant to them as food for an underweight pigeon, 15 not clear. Because we
cannot cthically manipulate human motivation to the extent that we can
alter the hunger of a pigeon, we cannot really answer this question directly,
with human subjects. We therefore have little choice but to continuc to
pursue through animal experiments the problem of how organisms choose
between highly attractive alternatives.

Implicit choice: the allocation of behavior

Peopie and animals choose things that have value, and they prefer things of
higher value to things of lower valuc. Thus, the study of choice is also the
study of reinforcement. Yet orgamisms do things all the time, and many of
the things they do scem not to be directed at any particular goal; much be-
havior seems to exist “for its own sake”™ and not for its consequences. Pet-
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haps there are conditions under which a/ activities (and nol just consum-
matory activities like eating or copulation) are reinforcing? This is what
David Premack proposed some years ago. He argued that essentially all ac-
tivities have some value, and that the necessary and sufficient condition for
pusitive reinforcement is just the opportunity to exchange a less-valuable
activity for a more-valuable one. His work has led to major advances in our
understanding of the functional basis for reinforcement. Extcensions of it, in
the form of economic and optimality accounts, have revealed unsuspected
relationships between implicit and explicit choice, i.e., between how
animals allocate their time, and how their choice behavior is guided by rein-
forcement. I begin with a discussion of implicit choice and the allocation of
behavior.

The Premack Principle

Imaginc an animal such as a rat in a semi-natural environment in which it
can-do several things each of which we can record and make available or
unavailable. There are two main kinds of expcriment we can do with such a
situation: (a) Add or remove the opportunity to do various things and look
at the effect on the amount and temporal pattern of the remaining ac-
tivities. Or, (b) impose contingencies between pairs of activitics and see if
the operant response increases in rate. For example, make the animal run
in order to get access to water, and see if he runs more. David Premack was
the first to see a connection between the pattern, of activities under free
conditions measured in experiments of the first type and the effect of
making one activity contingent on another the second type of experiment.
In studies with rats and monkeys, he showed that the effect of making ac-
cess to one activity contingent on performance of another depends upon
the levels of the activities under unconstrained conditions. Let's examine
one of Premack’s experiments and then describe the ways in which the im-
position of a reinforcement contingency can be expected to change the
levels of the activities involved.

In this experiment, Premack (1965) studied the reinforcing relations
among the activities of Cebus monkeys. The monkeys were in individual
cages and there were four things that they could play with: a lever (L), a
plunger (P}, a hinged flap (F), and a horizontally operated lever (H). Ac-
cess to each of these things was controlled by the experimenter. Premack'’s
idea was that “reinforcement” is not an absolute property of a consum-
matory activity, such as “eating food”, but 1s just the relation between a
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more probable activity and a less probable one. In other words, it is the fact
that eating, for a hungry animal, is morce probable than (say) lever pressing
that makes eating rcinforcing, not something special about eating itsel.
Premack’s cxperimental situation was more effective for iesting this idea
than the usual Skinner box, both because more activities werg available,
and becausc diffcrent animals showed different preferences for the dif-
ferent activities.

Premack comparcd the proportions of total time spent in cach activity
under free conditions with the proportions after he had imposed a 1:1 con-
tingency between the several possible pairs of activitics (The [rec situation,
with which the contingent situation is to bc compared, is known for some
obscure reason as the paired-baseline condition). The contingency was like
a fixed-ratio 1 schedule, but the units were time rather than responses. For
example, the animal might be required to accumulate 10 s of time doing ac-
tivity A before he would be allowed 10 s of activity B. Activity A here is
termed the operant or instrumental response and B the contingent response.
Premack (1965) wrotc:

The clearest predictions possible were those for Chicko, who in the
tirst procedure [free access to all activitics paired baseline] showed three
reliably ditferent response probabilittes [proportions of timc spent}. In-
deed, Chicko’s protocol made possible three kinds of contingencics: contin-
geni responsc [the reinforcer] higher than, less than, and, in one case,
about cqual to the free [operant} response....the oulcomes for the three
types of contingencies were as follows: (1) contingent response higher than
free response produced...an increment in the free response; (2) contingent
less probable than free response produced..a decrement...; (3) the one
case 1n which the responses were about equal produced little or no change,
increment or decrement. Thus, a monkey that spent 10% of its time playing
with L, and 20% playing with P under free conditions, incrcased its level of
L. when L, the operant response, had to occur for several seconds in order
for P, the contingent response, to be available for scveral seconds. Evident-
ly, access to a high-probability activity will serve to “reinforce” a low-pro
bability activity. If you watch TV for, say, three hours cach day and study
for only one hour, we can increase the amount of time you allocate 1o study
by making access to your baseline (three hours) TV allocation contingent
upon three hours of study: you may wind up watching TV less, but you will
also study more. The reinforcing effect of a high-probability activity on a
low-probability onc exemplifies the Premack Principle, which Premack
proposed it as a general principle of reinforcement.
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Are there any limits to the principle: Is behavior probability really what
determines reinforcing effectiveness, for example? Do Premack’s results
really represent “reinforcement” in the familiar sense? I begin with the last
question.

Figure 17
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Schedule and ume atlocation constraints with only two available activities.

Let’s look first at the simplest possible theoretical case. The animal can
do only two things, and always does one or the other. That is, there are just
two mutually exclusive and cxhaustive activitics. The situation under free
conditions is illustrated in Figure 17, which shows the amounts of time
devoted to each activity along the x- and y-axcs. A given activity distribu-
tion is then just a single point whose coordinates arc the times taken up by
the two activities. The time constraint is shown by the line of negative
slope. The term time constraint just refers to the fact that if the animal in-
creases the amount of onc activity the other must decrease by the same
amount. Point By, the free-behavior point, represents the times taken up by
each actwvity under frec conditions. As I've drawn it, the animal spends
more of its time in activity A than in activity B. The line of unit slope
through the origin represents the schedule constraint imposed by the 1:1
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contingent relation between the activitics, Remember, i stipulated that x
units of operant activity are required for x units of coniingent activity,
which mmplics 4 feedback function of unit slope-the feedback function for a
fixed-ratio-onc (FR 1) schedule.

The animal’s behavior must satisfy both the schedule constraint and the
time constraint. The only point that satisfies both is the intersection of the
two constraints, point Bl in Figure 17. The arrow indicates the forced
change in the proportions of the two activities implied by the shift from B0
to B1: activity A (the contingent, and more frequent, activity) decreases,
and activity B (the operant, and less frequent) increases.

Notice two things about Figure 17. First, by making the more-frequent
activity contingent on the less-frequent, we cause the less-frequent to in-
creasc. But, second, notice that this increase is not a “reinforeing” effect of
the more probable activity on the less probable. It i1s not an adaptive
response, but merely a forced change, caused by the two constraints. Be-
cause Lhe schedule makes operant and contingent activities oceur equally
often, and bcecause the contingent activity occurs more often than the
operant activity under free conditions, the first cffect of the 1:1 schedule
caonstraint is artificially to restrict the time devoted to the contingent ac-
tivity. Because the animal must engage in onc activity or the other, restric-
tion of the contingent activily forces an increase in the operant response.
This forced change in activity levels is called a restriction effect.

It should be obvious that the two constraints, time allocation plus the
FR1 schedule, exhaust the degrees of freedom available 1o the animal in
this simple situation. We will sce in a moment that to get something more
than restriction effects we must have more activitics than constraints at
least three activities, if we have a schedule constraint in addition to the al-
ways present time constraint.

There is a simple experimental test for whether a piven increasc is just
a restriction effect, or something more. The test for a restriction cffect s to
ask whether the increase in the operant response associated with the im
position of a contingency is greater than, or mercely equal to, the increase
produced by just restricting the proportion of time the animal can devote
to the contingent activity. The effect of restriction is illustrated in Figure
17 by the dashed vertical line through point B1. Under these conditions
{two mutually exclusive and exhaustive activities) restriction of the contin-
gent response Lo the level attained under the contingency condition yields
the same increase in the operant response, despite the lack of any contin-
gent relation between the two activities.
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The Yoked-Control Method. This test is casy to slate in principle, but it
15 not so obvious how we would go about it in practice. We want to com-
parc the level of the operant response, activity B (e.g., lever pressing) ob
tained under the contingency with its level when the contingent responsc,
activity A (e.g., wheel running) is artificially kept at the samc level as it is
under the contingency. One way to do this would be by comparing the two
condittons successively. First, in phase 1, we impose the contingency and
measure the level of activity A. This might require several daily experimen:
tal sessions to get reliable data, Then, in a sccond phasc, we usc a timer to
restrict access to A {l.e., lock and unlock the running wheel) to the same
level it attained in the first phase. For a fair comparison, we also want to
control the temporal pattern of A, to keep it the same as it was in the first
phasc which means that we need 1o have recorded the time of every occur-
rence of A 1n phasc 1. This method works quite well, so long as we are sure
that the animal’s experience in phase 1 has not changed him i1 some way so
that his behavior in phasc 2 is different from what it would have been if we
had run phase 2 first. For Premack’s kind of experiment, this is not usually
a problem. But when it is, there is an alternative method which requires us
to use two animals at a time, One animal is called the /eader the other the
foltiower. Leader and follower are housed in two separate boxes, both con-
trolled by the same computer. The leader works under the contingency: to
get access to A he must cngage in B. The follower cannot control access to
A; but he gets access to A whenever the lcader gets access to A. Thus the
follower gets exactly the same temporal distribution of A as the leader, but
he gets it independently of his behavior.

We can now compare the level of behavior B for the leader and the fol-
lower. If both are equal, we conclude that any clevation in B refative to
paired-baseline levels is just a restriction cffect. But if the leader shows a
higher level of B than the follower, we conclude that we have a rcal rein-
forcing effect, termed a contingent cffect. Contingent cffects are the main
topic of this chapter.

Both these procedures are known as yoked-controf procedures, The first
is within-animal the second between-gnimal. Both have their limitations.
The within-animal method fails if our effects are not completely reversible,
i.c., if the cffect of either treatment depends on prior experience. The be-
tween-animal method fails if (as Premack in fact found) our two animals are
not identical: if one animal has a higher tree level of A than the other, for
cxample (we can mitigate this problem somewhat by looking at average data
from several Icader-follower pairs, but this is not always a good solution).
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We must rely on our knowledge of the animals and the activities we are
studying to judge which is more appropriate in any particular case.

Premack’s carly experiments lacked the necessary controls to rule out
restriction effects. Nevertheless, later work has borne out his principle that
a more probable activity will gencrally reinforce a less probable one on
which it is contingent and that this increasc is greater than that expected
merely from restriction.

Premack thought of reinforcement as being particularly associated with
gaciivities not with cvents. For cxample, with ecating rather than the
avallability of food, or with running rather than the availability of a running
wheel. But as we will see, the important thing is just the preferred levels of
evenls, which may be activities but can also be the presentation of stimuli.
Consider the casc of punishment, for example. Receiving electric shock is
not an activity. Nevertheless, animals clearly have a preferred rate for such
an cvent, which is zcro. With this sole quantitative difference, electric
shock can be treated as just the reverse of reinforcement. Requiring an
animal 1o engage in a low-probability act, or experience an cvent that is
generally avoided, for aceess to one of higher probability has a rcinforcing
effect 'on the low-probability act, but it has a punishing effect on the high-
probability act. Reinforcement and punishment are thus two sides of the
same contingent coin. The main difference is a practical one: commonly
uscd punishers like shock are usually events that can be delivered to the
animal without its cooperation. However, this is not an essential difference
between reinforcement and punishment. Animals can be punished by for-
cing them to engage in more of a low-probability activity than they would
like, just like the schoolchild required to write 100 “lincs”, and they can be
positively reinforced by hypothalamic brain stimulation which requires as
little cooperation as clectric shock.

Notice that the imposition of a contingency allows the animal & rangc
of possible options. In Figure 18 the free levels of two mutually exclusive,
but not exhaustive, activitics are indicated by B, the free-behavior point. A
ratio contingency-access to Y depends on performance of X-is indicated by
the linc through the origin. If it is much more important to the antmal to
regulate the rate of Y than the rate of X, then we might expect X to in-
crease to the level indicated by point B, which allows Y to continue to
ocecur at its baseline rate. But if regulation of X is much more important
than regulation of Y, X will remain at its bascline rate, forcing a large drop
in the rate of Y. In practice, either extreme result is rare and animals usual-
ly settle for a compromise solution, such as point Bs, where activity X oc-
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curs above its preferred level and activity Y below its preferred level. 1 will
discuss some explanations for this kind of compromise in a moment.

Figure 18
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}t shows the free levels of two activities mutualy exclusive {activity Y and activity X) but not exhaustive.
This levels are indicated by Bo; the [ree behavior point. The line through the origin shows the cantin-
gency of Y over X,

In addition to the explicit assumptions we have alrcady discussed,
Premack’s hypothesis contains an important implicit assumption: that rein-
forcing effects depend only on molar measures such as the total proportion
of time devoted to an activity. He was not at all concerned with molecular
properties, such as the pattern in time of particular activities, or contiguity
relations between the operant and contingent responses. Many experiments
have shown that continuity is important; a [ew experiments have also shown
that the temporal pattern of an activity, not just its average frequency, can be
important. So we may suspect that Premack’s theory is at least incomplete.
Nevertheless, his emphasis on molar analysis has proven to be a useful ap-
proach that has led to several advances in our understanding of behavioral
regulation and the functional properties of reinforcement schedules. I take
up these topics in a moment, and return later to the molecular analysis of be-
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havioral allocation and choice. But first, I need to say something about the
dynamic processes underlying behavioral allocation.

Dynamics of Behavioral Aliocation

Over a 30-min period animals like rats or pigeons typically show a varied
pattern of activity. A rat, at the appropriate time in its daily cycle, may
groom itself, run in a running wheel, drink, and eat during such a time in-
terval. What causes the transition from one behavior to the next? What
determines the distribution of activities over this time, i.c., the proportions
of time spent in running, eating, etc.? We can get an idea of the pos-
sibilitics by artificially preventing the animal from doing one activity, such
as eating. We can expect two kinds of effects: (a) some change in the dis-
tribution of the remaining activitics, and (b) a compensating change when
the blocked activity is restored.

It access to one activity 1s blocked, then the time devoted to at least
one other activity must increase. A simmple stochastic competition model
{cf. Staddon, 1988) illustrates the simplest rule for behavior reallocation. In
this model, two or more activities compete for expression. The “strength”
of each activity depends upon a variable V that varies in random fashion;
the activily with the highest V is the one to occur. When there are three ac-
tivitics, whose strengths vary according to the same random pracess, then
each will obviously occur for about one-third the time. Suppose we now
block one activity. The situation is reduced to one with two activities,
whose strengths vary randomly. Clearly these two will now split the time up
equally. This sugpgests a general rule for behavioral reallocation: the rela-
tive proportions of time taken up by the activilies remaining afier one or
more has been blocked will remain constant. For example, suppose we have
three activities A, B, and C that take up the following percentages of the
total time: A: 50%, B: 25%, C: 25%. If we now block C, this rule implies
that A will increase to 67% and B to 33%. This rule is variously termed
Luce’s principle (Luce, 1959, 1977), the independence of irrelevant alterna-
tives or the axiom of choice.

Experimental results are sometimes in agreement with Luce’s principle,
but there are some striking exceptions. For example, suppose that the
blocked activity is cating, and one of the remaining activities is drinking. If
our subjects are rats, cating and drinking are loosely linked under free con-
ditions rats typically drink before and after meals so that omission of caling
will usually reduce rather than increase the level of drinking, a clear viola-
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tion of the principle. Luce’s principle also assumes a closed set of activities;
it cannot account for the appearance of a novel activity for example. Yet
without this possibility, little operant learning could ever take place.

What will happen when the blocked activity is restored? Our simple,
model says that the previous distribution of activities will be immediately
reestablished; there will be no aftereffect of the period of deprivation. Once
again, experimental results are very different. If the blocked activity is eating,
for example, then after a period of deprivation the animal will eat a lot more
than normal: the first meal will be very long (Le Magnen, 1985). This result is
typical: a period of deprivation is almost always followed by a compensatory
increase when the blocked activity is restored (sce Mook, 1987, for an excel-
lent review of recent research on motivational systems like this).

This result is reminscient of a well-established property of motivationat
systems most graphically described by the hydraulic model of Konrad Lorenz
(1952). Lorenz proposed that the tendency to engage in any motivated ac-
tivity is not constant but increases so long as it is not occurring (and
decreases when the activity oceurs), If we arc to stick with our general ap-
proach in terms of competing V-values, then the fact of compensatory in-
creasc implies that the V-value for an activity must increase during a period
of deprivation. It seems clear that our stochastic model for behavioral alloca-
tion is too simple.

But now we can begin to sec the outlines of a dynamic basis for be-
havioral allocation and regulation: if activities that are nof occurring in-
crease in strength {(a deprivation effect), and activities that are occurring
decrcase in strength (a satiation effect), we have a polentially sclf-regulat-
ing or homeostatic sysicm. The system is reguiatory because it changes in
such a way as to opposc the effects of any imposed change: if an activity
cannot occuy, its strength (i.e., the tendency for it to oceur) increases; if it
ts forced to occur, its strength decreases. The result in either case is to
diminish the effect of the imposed change. Although the details are still
obscure, it is clear that a dynamic satiation-deprivation process underlies
behavioral regulation.

Behavioral Regulation: The Molar Analysis of Behavior Ailocation

Premack only studied schedules in which an amount of time devoted to the
operant response gave the animal access to an equal amount of the contin-
gent response (i.€., an FR-1 schedule). But our graphical method of analysis
allows us to make predictions about what should happen with other
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schedules. Look apgain at Figure 18. Suppose responses X and Y were to be
related by a ratio schedule chosen so that its feedback function goes through
the point By I'or example, suppose that under pajred-bascline conditions
the animal spends 40% of his time doing Y and 10% doing X. This ratio im-
plics that access to Y should be reinforcing for X. But il now we require 1s of
X for access not to 1s of Y but 45 of ¥, will there be a contingent increase in
X7 Probably not, because by continuing to do X at his paired-baschine level,
the animal continues to get as much access to Y as he nceds to maintain is
paircd-bascline level.

What about the converse possibility: suppose we require the animal to
engage 1n response Y (high probability) for access to response X (low prob-
ability), but make the terms of the exchange so untavorable that the animal
can only maintain X by increasing the level of Y? For example, we require 3
units of Y for access to 1 of X, Even though X is lower probability than Y
(so should not be able to reinforce Y, according to Premack), our analysis
suggests that Y should in fact be reinforced under these conditions, be-
cause the paired-baseline ratio of the two is 4:1, which is less than the 5:1
imposed by our schedule. Experiments have shown that under these condi-
tions the level of Y will usually be increased. These results led William Tim-
berlake and James Allison (1974) to propose a generalized version of the
Premack principle that they called response deprivation: they proposed that
a contingeney between one activity and another should change the level of
the operant response if the animal cannot attain his paired-bascline levels
without changing the level of the operant response. In terms of our
diagram, response deprivation amounts to the asscrtion that the operant
response will increase il the schedule constraint {feedback function) lies
above the free behavior point (as in Figure 18); and will decreasce if the
schedule constraint lics below the free-behavior point.

Response deprivation is a regulatory hypothesis, since the core idea is
that animals act so as to maintain a certain distribution of activitics: If the
imposition of a contingency means.that any activity is pushed below the
animal’s preferred (paired-baseline) level, other activitics will be reallo-
cated so as 1o reduce the discrepancy. If we measure the amount of drink-
ing and bar pressing during a baseline session, for example, we arc likely to
[ind that animals drink at a particular rate and bar press very little. If we
make drinking at the baseline rate contingent upon bar pressing above
bascline rate, bar pressing is likely to increase. But how much will it in
creasc? And what will be the effect on other activities, such as wheel run-
ning and sleeping? Response deprivation is only qualitative: it says when
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there will be a change, and what its direction will be, but it docs not say
how much change there will be. I turn now to regulatory theorics that at-
tempt to answer these questions.

Behavioral Conservation. Bchaviaral conscrvation is a model of be
havioral regulation proposed by James Allison (1980). Conscrvation theory
assumes that animals attempt te conserve some property of the set of ac-
tivities. Allison has tentatively proposed energy expenditure as the con-
served dimension (but I will have an alternative suggestion). If energy is
conserved, then the cnergy expended on all activities in the paired-bascline
session should be same as the cnergy expended when access Lo water is
contingent upon bar pressing. Allison formalized the conservation modcl
by the following equation

KND+NP = kOg+0p, (1)

where Oy and O represent the amounts of drinking and lever pressing that
occur during the paired-baseline session and D and P are the amounts
“traded” during each cycle of the contingency session (for example, 5 s of
drinking for 10 s of lever pressing) and N is the number of cycles. Notice
lhat the quantity ND is just the total amount of D in the contingency ses-
sion, and NP the total amount of P. Notice also that the ripht-hand side of
eq. 1 15 constant, since k is constant and so arc the bascline levels of the
two activities. Thus, €q. 1 says that the total amounts of D and P during the
contingency session are equal to the total amounts during the paired
baseline, with D given a weight of k relative to P in both cases. Constant k
represents how energetic D is relative to P. For example, suppose each in-
stance of D (lick) takes half the cnergy required for each instance of P
(lever press); then conservation says that 2 x number of licks+number of
lever presses will be constant over any fixed time period.

Allison’s notation is cumbersome. It is casier to see what is going on if
we just deal in total amounts of activity and ignore the number of cycles, N,
which is irrelevant to the theory. With this simplification, eq. 1 reduces to
ky+x= constant, where y is the total amount of P (i.c., NP in the contingen
cy sesston, Oy in the baseline session) and x is the total amount of D (i.c,
NI in the contingency scssion and Qg in the bascline scssion). We can
therefore rewrite the conservation modcl as a linear relation between the
total amount of drinking, x, and lever pressing, y:

v= K. xk, 2)
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where K is a constant proportional to session length, and k is a constant
that represents the relative importance of x and y. Equation 2 says that the
amount of Y, the operant response, is related to the amount of X, the con-
tingent response, by a straight line with negative slope -1/k.
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Allison has obtained many experimental results that support this linear
relation. An example is shown in Figurc 19. In this experiment, rats were ex-
posed toeither VI7or VI 14 second schedules where one lever press produced
access to cither 25 or 50 licks of water. As you can see, no matter how much
water the animals received for cach effective lever press. the total number of
lever presses was related to the total pumber of licks by the same straight line
of negative slope. The fit to data looks excellent, and Allison has presented
many other equally compelling results; yet conservation theory is not general-
lyaccepted as avalid model for reinforcement. What mightbe wrong?

An obvious problem is that conscrvation theory says nothing about the
schedule relating the two behaviors, X and Y. It says that the relation be-
tween x (the rate of X) and v is lincar, no matter what the schedule relating
the two. Yet, as we will see, there are numerous experimental results show-
ing that the schedule makes @ great deal of difference. For example,
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animals always respond faster on ratio than on interval schedules, even if
both schedules yield the same rate of reinforcement. If, in a more elaborate
experiment, we measure the rate of lever pressing under a range of ratio
schedules and piot it against the rate of food delivery obtained on each
schedule we usually get a diffcrent function than if we plot lever pressing
against food delivery over a range of variable-interval schedules7(RMscrva-
tion theory must predict the same relation for both. Yet Allison has
presented many data, such as those in Figure 19, that scem to support con-
servation and show the samc function for interval and ratio schedules. How
can this contradiction be resolved?

The conditions under which the data in Figure 18 were gathered pro-
vide a clue to the answer. The variable-interval schedules Allison used to
collect these data are very short-7-15 s compared to typical VI values, which
arc usually in the range of minutes, and the reinforcement 5 or 50 licks was
rather long. His rats were undoubtedly pressing their levers at a very high
rate on such rich schedules, and perhaps had little time for anything but
drinking and pressing. But if his animals were in effect engaging in two
mutually exclusive and exsiausiive activitics then the situation is a familiar
one. It 1s just the case described in Figure 17, in which the relation between
the two behaviors is completely determined by the time constraint. When
the time constraint is dominant, then the schedule indeed makes no dif-
ference and X and Y will be related by a straight line with negative slope,
just as Allison has reported.

We can conclude, therefore, that the conservation model probably
amounts to no more than a time constraint: something is indeed conscrved,
but it may be nothing morc than the total time available. The constant k
then represents the relative durations of the two activities. If a lick (X}
takes only half the time of a lever press (Y), for example, the conservation
relation has 1o be 2x+y = constant, where x and y are the rates (number
per minute) of the two activities. The conservation principle therefore tells
us nothing about the nature of reinforcement, but only something about
the limitations on our methods for studying it. [ turn now 1o more sophisti-
cated regulatory models that can deal with the different molar patterns
generated by different reinforcement schedules.

Optimal Policy on Ratio and Interval Schedules

[.ook aguin at Figure 18. Recall that if a ratio contingency is imposed that
forces behavior away from the free-behavior point, By, animals typically set-
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tle for the sort of compromise represented by point By the contingent
response, Y, decreases somewhat (but not as much as if X had remained at
its paired-baseline level, 1.e., not to By), and the operant response, X, in-
creases (but not as much as necessary to maintain the level of Y at its paired-
baseline level, i.e., not to By). [ first diagrammed reinforcement schedules in
this way in 1976 and the diagram immediately suggested a simple hypothesis:
Suppose that the animals just get as close as possible to the free- behavior
point, which all theories acknowledge as the animal’s preferred state
{economists call points like this bliss points). This prediction is illustrated in
Figure 20: it just amounts to dropping a perpendicular from By to B on the
straight-line ratio-schedule feedback function. By corresponds to the com-
promise position By in Figure 18. The minimum-distance (MD) prediction
(Staddon, 1979) always falls somewhere in between the two extreme pos-
sibilities. Now we can test the model by seeing if an FR 1 produces the
predicted increase in response X.

Figure 20
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Relations between the schedule constraint (line through the origin) and the distribution af activities
under paired-baseline conditions (point Be). In most of the discussion we assume that the schedule is
reciprocal, e.g, on FR 1, one unit of Y is required for access to one unit of X, which must be taken up
before access to Y is possible again. On standard reinfarcement schedules, the constraint is usually only
onc-way: there 1§ a requirement 10 engage in activity X (e.g., lever pressing) for access to activity Y
{eating), but X i always avaijlable. Since Y is always highly preferred, the reciprocal contingency is as-
sumed 1o be unnecessary.
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‘The first results were discouraging. If response X is key pecking and
response Y 1s eating, by a pigeon at 80% of its normal weight, the predicted
increase in the level of key pecking is much too small. But the reasons are
not far to seck. The first problem is one of units. In conventional operant
conditioning experiments key pecking is measured as pecks per unit time
and reinforcement rate as food deliveries per unit time, but there is noth-
ing that makes these two equivalent: a peck does not take up as much time
as a food reinforcement (which is typically three or four seconds access to a
grain hopper). At the very least, the predicted number of pecks needs to be
increased to reflect their shorter duration. But even with this correction in
the vertical scale, the predicted increase in pecking Falls far short of what 1s
observed. On an FR 2 schedule, for example, a hungry pigeon may peck al-
most twice as fast as on an FR 1, yet the uncorrected MD model shows him
responding at about the same rate. Evidently something is still missing.

The Premack principle cquates the reinforcing value of an activity with
its probability-how much time the animal spends in the activity. Yet a little
reflection suggests that this cannot be the whole story. The comic strip cat
Garfield spends most of #is time resting, but we know that food is what he
finds Teinforcing. Under many conditions probability 1s correlated with
reinforcing strength, but anyone can think of counter examples-sexual ac-
tivity, for example, which is relatively infrequent yet highly reinforcing. The
important difference between rest and eating has to do not eith the {ree
levels of each, but with the degree to which those levels arc regulated. Gar-
field can tolerate interruptions of his rest a great deal better than curtail:
ment of his food supply-and you are probably the same. How can we
incorporate this property into the MD model?

Look al the triangle B1BoC in Figure 20. It just makes visible the
separate deviations of behaviors X and Y from their free levels forced by
the FR schedule: distance CBg is the deviation in the level of Y (cating),
distance CB; is the deviation in the level of X (key pecking). With an FR
Ischedule, these deviations are equal. Now which deviation is more upset-
ting to our hungry pigeon, do you suppose? Obviously CBo, the shortfall in
eating rate, is likely to be a great deal more important than CBy, the surplus
of keypecking. It is relatively easy to modify the MD model to take care of
the different costs of deviation (CoD’s) in the levels of the two behaviors.
To see how this is done, I need to explain two new concepts: the concept of
cost, and the concept of an objective function.

Cost and Objective Funciions. The conservation model assumes that
there 1s some property of the set of activities that is conserved (maintained
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constant) in any closed situation. It turns out that the quantity conserved is
probably the total time taken up, but it might just as well have been the
total cnergy expended or something cven more complicated. The MD
modcl takes an important step beyond this and assumes that some quantity
associated with the sct of activities is minimized. This represents a great ad-
vance, because now the propertics of the reinforcement schedule enter in
as constraints on the minimization so that minimization (optimality) maodels
do indecd make different predictions about performance on different
schedules.

Let’s look at the general method for deing an optimality analysis (as
this is called). The method involves four steps:

(a) First decide on what property (or properties) of behavior s free to
vary this is termed the dependent variable (another term is ytrafegy set). In
the present case, the dependent variable is just rate of key pecking.

(b) Then decide what is to be minimized (or maximized). This quantity
is termed the cost function {or value function). The choice of cost [unction
is critical and also difficult, because there are always very many pos-
sihilities. T will begin with the simplest possibility, namely interfood inter-
val, and then look at the effect of modifying it.

(¢} Then identify the constraints in 1he situation. There are just two
here: time (the time taken by all mutually exclusive and exhaustive ac
tivities must add up to the session length), and the fixed-ratio schedule
(which constrains the relation between peck rate and food rate). T will ig-
nore the time constraint in this clementary discussion because its effects
are usually minimal. We will focus on the schedule as our constraint.

(d) Then derive a quantitative expression for the total cost as a func-
tion of the level of the dependent vaniable, subject to the constraints. This
sounds complicated, but in the present case it just mcans deriving an ex
pression for the average interfood interval (cost) as a function of peck rate
(dependent variable) when food rate depends on peck rate according to a
fixed ratio schedule (constraint). This cxpression, which rclates the be-
havior to the total costs, subject to fhe operative constraints, is termed the
vbjective function because it defines the quantity that must be minimized.

On an FR schedule, the time interval between foed deliverics, which we
will call I(x) {to indicatc that it is a function of x), depends on response
rale, x, according to the {ollowing relation

I(x) = Mk, {3)
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where M is the number of responses in the ratio: it the animal responds 10
times a minute and gets food on an FR 5, he will get food at 30 s intcrvals.
Equation 3 is the objective function for interfoed-interval minimization on
FR schedules.

It doesn’t take calculus to see that to minimize this objective function, x
should be as large as possible: the animal should respond as fast as he can.
This is also the commonsense conclusion: if getting food as fast as possible
is what 1s important, then on a ratio schedule you need to respond as fast as
you can. This conclusion is not very helpful because it gives the same
answer for any ratio value: no matter what the value of M, the optimal
policy is to go flat out. But we know that animals go at diffcrent rates on
different ratio schedules. So what’s wrong with our analysis?

Figure 21
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The effect of response rate on cost, where cost is defined as intecfood imterval plus response rate,
weighted by a factor Q: C(x) = M/x t O where M is the rario value, The three curves are for ratio values
of 2 4and 8, and O = G5

Onec answer might be that we have ignored the time constraint, but
since that affects every activity it doesn’t actually alter anything. What
about the cost function? An obvious possibility is that we have nceglected
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the cost of key pecking: food delay may be costly, but surely key pecking,
especially at the high rate characteristic of ratio schedules (the prediction
about this is correct, at least) is also costly. So let’s add the assumption that
pecking incurs a cost proportional to its rate. This just means adding a term
Qx to the objective function, where Q represents the cost of cach peck per
unit time and x is peck rate. Our cost function now has two components:
time (interfood interval) and response, scaled in time-cost units {Q). Thus,
the new delay-plus-response-cost objective function, C(x), is:

Cx) = Mix+0x. (%)

"1l call this the response-cost (RC) model. Now we can casily find the value
of x for which C{x) 1s a minimum. The result is shown graphically in Figure
21, which shows Equation 4 plotted for three values of the ratio value, M:
2, 4 and 8. Notice two things about these curves: (a) The minimum cost oc-
curs at a finite response rate. When each response is costly it doesn’t pay to
go flat out all the time. (b) The response rate that minimizes cost increases
with ratio value. (The reason is that C(x) is made up of two components:
M/x, which declines as x increases, and Qx, which increases with x. The
point where the influence of the Ox component becomes dominant shifts to
the right as M increases.)

Both these features are encouraging. Response rate on ratio schedules
1s high, but usually less than “flat out”. And empirical results from rats,
pigeons and several other species all show that over most of the typical
range of ratio values, responsc rate does indeed increase with ratio value.

Some typical experimenial results with ratio schedules are shown in
Figure 22. The data are from a group of Guinea pigs each pressing a lever
for water reinforcement. The animals had access to the lever all day and
obtained all their water ration via the schedule. The figure shows number
of responses per day plotted against ratio value. As you can sce, response
rate increases with ratio value. The heavy curved line is the prediction of
our response-¢ost (RC) optimality model. It fits the gencral form of the
data quite well, even though it is not in fact a very good model. As we saw
with conservation theory, the fact that a model can gencrate a simple curve
that fits data well is a rather weak kind of support for the model. It is much
more important that a model provide an accurate picture of a pattern of ex-
perimental results. The response-cost model does much better than conser:
vation theory in this respect, but not quite as well as the minimum-distance
model or more elaborate economic models.
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[Daily number of lever presses on an ascending series of ratia schedules of water reinforcement for a
group of Guinea pigs. Filled squares: group that got 10 s access to water as reinforcement; X's: group
that got 20 access (repiotted from Hirsch & Collier, 1974, Fig. 1). The heavy curved line is the optimal

policy predicted from a response-cost model: x =sqri{M/Q}, where M is the ratio value and € the cost
of each response.

Now that you have a good understanding of the idea of an objective
function, we can return to the problems of the minimum-distance model.
Look again at Figure 20. Recall the basic assumption: that the animal mini-
mizes the deviation BgBj. BeBj is just the square root of the sum of the
squares of the two other sides of the triangle, CBg and CBy, ie., (-
xp)?+(y1-yo)?4 where x; and y; are the coordinates of point By and xp and yg
are the coordinates of Bg. If we minimize the square root of something we
also minimize the thing itself. Thus, the objective function for the simple
minimum-distance model is just

C(x)= (Xg-%1 ) +{vg1)".

If we now add a paramcter to reflect the greater importance of regulating
activity Y (say, if Y is eating and X key pecking) we arrive at the formula

Cx)= (xo%p) +c(yo.y1) (5)
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which 1s the objective function for the MD model. Parameter ¢ is termed
the cost-of-deviation (CoD) for activity Y. Notice that there are three fea-
tures about the MD ohjective funclion thatl are different {rom the simple
RC model. First, 1t is a two paramcter model, since cach activity is charac-
terized by two parameters, its paired-baseline level (e.g., yp) and ils cost-of-
deviation (c.g., ¢). The RC model has only one parameter, O, which
represents the relative importance of response cost and reward delay.
Sccond, the MD model is bascd on the rates of activitics, rather than their
delays. And third, it is nonlinear in the sense that it assumes that the cost of
a given devialion increases as the square of the deviation, so that doubling
the deviation increases the cost by a factor of four. The latter makes good
intuitive sense. A drop in feeding rate of 10 gm/hour will obviously be more
costly to the inhabitant of a prison camp, starving on a subsistence diet,
thun to a wcll-fed suburbanite. The further the fceding rate from the bliss
point, the more costly additional deviations become. This idea of positively
accelerated cost (which 1s equivalent to negatively accelerated value) has
mteresting implications for choice behavior, as we will see in a moment.

The objective function with CoD parameter solves the problems with
the MD model that we identified earlier. If the CoD parameter, ¢, Is much
larper than unity, an MD animal will freely incrcasc the rate at which he
makes low CoD response X so as to maintain approximatcly constant the
level of high-CoD response Y. If ¢ is high enough, an MD animal will almost
double his response rate when we increasc the PR value from one to two,
for example, thus maintaining reinforcement rate almost constant. With
these amendments, the MD model makes tolerable predictions of the em-
pirical relations between response and reinforcement rates on variable in-
terval, variable-ratio and many other reinforcement schedules. In most
cases, the predicted relation is an inverted-U: response rate is low at very
low and very high reinforcement rates, highest at intermediate rates. The
tunction for ratio schedules 1s tipped to the right and is everywhere above
the function for variable-interval, which is tipped to the right.

The MD modcl is not particularly simple algebraically, nor docs it make
strikingly betier predictions than somce other optimality and cconomic
maodels. But it is important historically as one of the first attempts to show
how well-known molar patterns of behavior on reinforcement schedules
might be explained by a unitying optimalily analysis. It also brought out an
important difference between strong reinforcers, like food for a hungry
pigeon, and weak reinforeers, like the opportunity to play with a plunger
for a Cebus monkey: feeding is a highly regulated activity, whereas play is
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not. In Premack’s original view, everything of importance about an activity
is containcd in its free, paired-baseline level: point By in Figure 4, coor-
dinates xp and yp in Equation 11.5 (the so-called bliss point). The MD
model showed that activities differ in more than one way: in their {ree
levels, yes, as Premack pointed out; but also in the degree to which they are
regulated, indicated by a puramcter that represents the different costs of
deviation from the bliss point. The higher the CoD parametcer, the better an
activity will be regulated the harder the animal will work to maintain it at
its frec level Strong reinforcers like food may or may not have high
operant levels; they certainly have high costs-of-deviation. Weak reinfor-
cers, like the opportunity to run in a wheel, may or may not have low
operant levels; they will certainly have low CoD parameters.

The details of the MD model may now be largely of historical interest,
but it embodics two fcatures that are likely to be essential to any adequate
molar theory of behaviorat regulation: (a) at least two parameters for each
activity; and (b) the idea that a comprchensive optimality model must as-
sume a nonlinear cost function.

Now we are in a position to sce in detail how an optimality analysis can
be used to make predictions about how animals should behave on different
reinforcement schedules. But because the MD model is algebraically ditficult
we will use our simple response-cost madel which is a bit less accurate than
the MD model, but not as different as it might appcar and much easier to un-
derstand. You have already seen how o derive the prediction that on ratio
schedules response rate should be directly related to ratio value (sce Figure
22). Now let’s tackle a more difficult case: variable-intervai schedules.

Molar Optimal Policy on Variable-Interval Schedules. T will follow the
four steps described above. Luckily, everything is the same as for ratio
schedules, except the schedule constraint. How does interfood interval
depend on response rate on VI schedules? VI schedules are much more
complicated than ratio schedules, surely? Not really. Figure 23 shows that
on a VI schedule the average interfood interval is the sum of two delays:
the average delay set by the VI timer, <I>, plus the average delay between
setup and the reinforced response, which is determined by the animal’s
average responsc rate, if response rate is random in time, this average delay
is equal to the reciprocal of the average responsc rate, i.c., 1/<x>. Putting
thesc two together we arrive at the following expression for the average in-
terfood interval:

I(x) = 1+ Ux. (6)
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Figure 23
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Compunents uf the average interfuod rnterval on variable-interval schedules

To find the optimal policy, we can now just plug this expression into
Fquation 4 in place of M/x, the expression for interfood interval on ratio
schedules. The result is

Cod =11 1x+Qx (7)

We can then go through the same graphical analysis as we did before, but
to cut a long story short the conclusion is exceedingly simple. To minimize
Lhis cost function, our animal should respond at a constant rate: x =1(1/Q)
(as opposed to 1{M/O) for the ratio schedule). How do the molar data from
VI and FR schedules compare with these predictions?

The relevant data for pigeons, key-pecking for food reinforcement on
V1 schedules, are well known: the rate of key pecking is a ncgatively ac-
celerated function of obtained reinforcement rate (Catania & Reynolds,
1968). But the function is indeed approximately constant over quite a wide
range as the RC model implics it should be. The function 1s a very rcliable
finding for both rats and pigeons on VI schedules (when rates are measured
so as to exclude the time spent eating from the time denominator). The
data from ratio schedules arc somewhat more vartiable, depending on cxact-
ly how they are obtained whether in a so-called closed economy, in which
the animal is able to respond throughout the day and must get all his food
via the schedules, or in an open economy, with short, daily experimental
scssions and supplemental feeding after the session to make up any nutri-
tional shorttall (Hursh, 1984). Figurc 22 is typical of closed-cconomy data,
which invariably show that response rate is directly related to ratio value
and, usually, inversely rclated to the rate of reinforcement actually ob-
tained. The data from Figure 22 are replotted in this way responsce rate vs.
obtained food rate in Figurc 24. Data from open-economy experiuments are
often of this form, but sometimes also turn down at very low reinforcement
rates (corresponding to very high ratio values; cf. Timberlake & Peden,
1987). As you can see in Figures 22 and 24, the RC prediction is quite good.
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Figure 24
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Data from Tigure & replotted as response rate vs. rate of reinforcement obtained, for the 10-5 access
condition. The solid line is the oplimal policy according to the response-cost model, as before.

Let's compare directly the predictions of the RC model for V1 and FR
{or VR) schedules. On FR, response rate is determined according to the
relation x= 1(M/Q), where M is ratio value and Q is response cost. The
relation for VI is very similar: x = 1(1/Q); in other words, the RC model
says that the animal should treat a VI schedulc just like FR 1. But notice
what thcse two equations predict about the relative response rates on VI
and VR: for any ratic value greater than one, response rate should always
be highcr on the ratio. This is one of the oldest and most reliable findings
aboul ratio and interval schedules. Several carcful comparisons have been
made (c.g., Catania, Matthews, Silverman & Yohalem, 1977; Lca & Tarpy,
1982). In the yoked-control study by Catania et al.,, for example, the key-
peck rates of a lcader and a follower pigeon were compated. The leader
produced food reinforcement according to-a variable-ratio schedule. Rein-
forccment for the leader constituted schedule “setup” for the follower,
who collected the reinforcement with his next peck. Thus, the leader
received food on a VR schedule, the follower on a VI, approximately
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matched to the VR both for temporal pattern of food deliveries and their
average rate. Catania ¢t al. found that the VR leader birds always
developed faster key-peck rates than their VI followers. Almost any op-
timality model that includes the time between reinforcements in its cost
function will predict this result.

Thus, both the MD and RC optimality models predict the most obvious
difference between intervat and ratio schedules: the fact that animals always
respond faster on ratio schedules. They do so because the different feed.
back functions enter in to the objective functicns as different constraints. |
will be more explicit about how these different constraints give rise to dif-
ferent predictions when i discuss marginal utility in the next section. Both
optimality models also do a reasonable job of predicting other molar
properties, such as the way response rate increases with ratio value, and the
approximate constancy of response rate on variable-interval schedules. You
may have noticed, however, that there are some inconsistencies in the data:
animals in so-called open economies behave rather differently than animals
in closed economics, for example. I return to these issues later when 1 dis-
cuss uptimality in the context of behavioral economics.

Behavioral Allocation: Conclusion

What have we learned from this account of behavioral allocation? The first
step was taken by Premack, who took to heart Thorndike’s conclusion that
reinforcement must be defined in terms of the organism’s own behavior.
Premack saw that at the instant an organism initiates an act, that act is by
definition the most preferred. If reinforcement is defined by preference {as
Thormndike believed) then this act at that moment must be the most rein-
forcing activity in the organism's repertoire. How might this insight be used
to redefine the concept of reinforcement? We can reconstruct Premack’s
rcasoning as follows: At the instant of choice, the act thalt occurs is the
most probable act. Probability cannot be measured instant by instant, but
we can get an idea of what is most probable by looking at the proportion of
time taken up by different activities. Perhaps the most frequent act is also
the most preferred, hence the most reinforcing? And so it proved, in the
situations Premack and his successors chose to study.

But now that the links in this chain of argument are exposed, you can
probably see its weaknesses. The argument blurs the distinction between
molecular (the instant of choice) and molar (the frequency of an activity).
It also blurs the distinction between behavioral dynamics and what we
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might call behavioral stafics. The momentary-probability definition of rein-
forcement is about dynamics and the molecular structure of behavior. The
aclivity-frequency definition is about static, molar properties of behavior.
Once we agree to look at averages, i.¢., at molar behavior, we at once en-
counter the probiem of the averaging window, the time period over which
we are to count activities. The window size makes a preat deal ol dif-
ference. Premack’s intuition about the reinforcing effect of the highest-
probability act implicitly assumed a time window short enough to just
cneompass the instant of choice. But 1o test his theory, he had to average
much longer time intervals. The fact that his predictions were gencrally
confirmed s fortunate and implies that prefercnces may change relatively
slowly. But as we have seen, to extend his theory to “strong” reinforcers
like food and water requires additional assumptions.

The real meaning of the molar-molecular distinction will not be proper
ly clarified until we have a full, dynamic understanding of behavioral alloca-
tion. But historically the weak points in Premack’s original position were
shored up by adding assumptions to the molar theory: first the response-
deprivation hypothesis, that allowed for schedules other than 1:1; and then
the minimum-distance model, which added a parameter, the cost-of-devia
tion, that took account of differences between overall frequency and
momentary priority. MD models allow for activities that are frequent, but
not urgeni, and the converse; whereas for the Premack principle, and
response deprivation, frequency and urgency are the same thing.

Premack set the study of behavioral allocation on a molar path. With a
few isolated exceptions, such as the neglected work of David Birch (¢.g., At-
kinson & Birch, 1970), advances were all in the direction of increasingly
refined molar models. The MD analysis, and the work of Howard Rachlin
and his associates (1978; Rachlin, Battalio, Kagel, & Green, 1981) on
economic models that was going on at the same time, showed the pos-
sibilities of molar optimality analysis as a way of understanding the varied ef-
fects of different reinforcement schedules on hehavior. | have just described
a very simple optimality analysis of interval and ratio schedules, and al-
though the fit to data is not exact in any particular case, the analysis should
impress by the varicty of predictions derivable from an exceedingly simple
model and their approximate correctness. Simple optimality analyses like
this are the pigeon equivalent of the economists’ rational man: no real man,
woman or pigeon behaves like this, but the model provides a rough sketch of
reality that is close enough to be useful. When a mechanistic model comes
along, you may be sure that it will approximate the predictions of the op-

o



1895 SCHEDULE COMBINATIONS AND CHOICE 229

timality model under very many conditions just as our ideal pigeon in the dis-
cussion of concurrent chain schedules frequently approximated the optimal
policy.

There are still a number of situations for which we have no adequate
mechanistic account: choice between rewards of different types or occur-
ring in variable amounts, for example. These are the province of behavioral
economics, to which 1 now turn.

Behavioral economics

A question at the core of cconomics is, what 1s the source of value? Why is
i1, for example, that a 400 carat diamond, too large for & jewel, too small for
a paperweight, may fetch a price of millions of dollars, whercas bread,
without which man cannot live, is priced cheap? One theory had to do with
what we would today call the inputs necessary to produce a commodity,
labor and time. Bread 1s cheap, the labor-time theory has it, because it s
casy to produce; large diamonds are dear because they are hard to find. But
then so are four-leaf clovers, and they have no market price at all. Scottish
scholar Adam Smith, the first modern economist, in his great work An In-
guiry into the Nature and Causes of the Weulth of Nations (1770), solved
this problem. We cannot know anything about value, he argued, we can
only know about price. (Oscar Wilde once remarked that a cynic is a man
who knows the price of everything and the valuc of nothing; perhaps his
cynic was a Smithian economist). About price, Smith came to the same con-
clusion that we have come to about reinforcementi: in the end, it is defined
by people’s behavior we will soon come to the same conclusion about
value. He reasoned as follows:

The market price of every particular commodity is regulated by the
proportion between the quantity which is actually brought to market, and
the demand of those who are willing to pay the..price... When the quantity
of any commodity...falls short of the eflectual demand....the market price
will rise... (1776/1976, p. 73). !

In modern terms. the price of a commodity 18 explained as an equi-
librium between two curves: a tising curve, which says how much will be
produced at a given price, the supply curve; and a falling curve, which says
how much will be bought at a given price, the demand curve. The higher
the price consumers are willing to pay, the more items will be produced;
conversely, the higher the price rises, the fewer the customers willing 1o
pay it. The price at the point the two curves cross is the market clearing
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price, the price at which all who wish to sell are able to sell, and all who
wish to buy are able to buy. The demand curve is at the heart of
microeconomics, the study of how the behavior of individual economic
units determines the state of the economy as a whole.

Figure 25
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Moiar ratio-schedule perfurmance plotied as a demand curve. The data from Figure 6, for the 10-5 con-
dition. are plotted as reinforcements ablained per day vs. “price”. ie., ratio value.

About 10 years ago, several researchers pointed out that behavioral
data from animals working on ratio reinforcement schedules conform to the
law of demand: as the “price” (work requirement) increases, the arhount
“bought” falls (cf. Lea, 1978). Figure 25 shows an example, which is
replotted from a data set we have already seen: it shows the number of rein-
forcements per day obtained (“bought™) under different ratio schedules
("prices™) in the Hirsch and Collier (1974) experiment. The curve is typi-
cal: as the ratio value increases, the amount of food obtained falls. The
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“demand law”, that as price increascs effcctive demand falls, 1s almost as
general in the world of reinforcement schedules as in the cconomic world.
(Even in economics there are a few exceptions, however: so-called Giffen
goodsl, which are bought morc, not less, as their price increases, Staple
foods and prestige items are sometimes Giffen goods).

Demand curves illustrate the essentially regulatory character of respond-
ing on ratio schedules, although not perhaps as directly as the response rate
vs. reinforcement rate plot shown in Figure 18. A horizontal demand curve
indicates a perfectly regulated activity: no matter what the cost, the amount
bought holds constant. If we had to pay for the oxygen we breathe, it would
show highly inelastic demand like this. A downward-sloping demand curve in-
dicates imperfect regulation, elastic demand. Complcte absence of regula-
tion corresponds to a hyperbolic curve.

There is another economic analogy that has been applied to data like
this. A plot of response rate against ratio value {e.g., Figure 22) can be
compared to what is termed the labor-supply curve, which shows how the
amount of labor supplied (responsc rate} depends on the wage rate (ratio
value). The typical labor-supply curve is backward-bending (by the conven-
tion in economics, the x and y axcs are reversed, and the x axis reads from
right-to-left rather than left-to-right; in our coordinates, the curve would
be an inverted U). The idea is that when the wage rate is low, peoplc are
not willing to work much-the supply of labor (by an individual or a group)
will be low. As wage rate rises, the amount of labor supplied rises 1o a maxi-
mum; but when the wage rate is very high, labor is withdrawn, because now
people have cnough money to want to take time off to spend what they
have earned (The labor-supply curve is closely related to another curve
that became notorious as part of the “voodoo ccopomics™ of which the U.
S. Reagan administration was accused during its early years, the Laffer
curve see Box 2).

A reinforcement schedule example that fits the labor-supply analogy is
shown in Figure 26. It shows data from a single pigeon pecking a response
key for food reinforcement on a wide range of random-ratio schedules,
ranging from 12.5 to 400. The data are typical of results from open-
cconomy experiments in which the animals are given many sessions of ex-
posure to cach ratio value. The functions arc inverted-U shaped: the
animals respond-at a low rate when the ratio value is very high or very low,
and at a high rate at intermediate ralio values. Notice that these data are

I Afrer Robert Giffen (1837-1910), British statistician and cconomist.
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different from the monotonically increasing response-rate vs. ratio-value
function in Figurc 26.

Figure 26

| | |
12325 < 100 200 400

RATIO VALUE

Molar ratio-srhedule perfurmance plotied as a labor-supply curve. Response rate vs. random-ratio value
for a single pigeon exposed lor many experimental sessions to each of a series of random-ratio
schedutes (from Green, Kagel, & Battalio, 1982, Figure 18.3).

These two sets of data obviously raise two questions: (a) Which
economic analogy is valid, demand curve, or [abor-supply? And (b) why are
the data in Figure 26 different in form from the data in Figure 22. I'll
answer the second question first. As always when attempting to understand
behavioral data, the first thing 10 look at is the procedure: how, exactly,
were these data obtained? The demand-curve data (Figures 22 and 25)
were obtained from a group of Guinea pigs, in a closed economy (24-hour
access to the reinforcer) and water rcinforcement, The labor-supply data
(Figurc 26) were obtained from a pigcon working for food in an open
economy (short, daily sessions, supplemented by extra food after the ex-
perimcnial session if necessary). We obviously have a lot to choose from in
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deciding which of these many procedural differences species, type of rein-
torcer, length of session, type of economy, individual vs. group was respon-
siblc for the different results obtained. In fact, other data pinpoint the type
of economy as the indirect cause for the ditferent results indirect because
in a closed economy there is a limit to the ratio value that can be tried; if
the ratio is so high that the animal cannot obtain his minimum daily re-
quirement of water (or whatever the reinforcer is) in the experiment, then
he, and the experiment, will soon come to an end. This 1s not 4 problem for
the open-cconomy experiment, because any shortfall during the ex-
perimental session can always be madce up by supplemental feeding or
watering afterwards. Because supplemental feeding is not possible with a
closed economy, the ratio values used in closed-economy cxperiments are
always moderate, and to the left of the peak in the labor supply curve, on
the rising part of the function. Over this range, the pattern in open and
closed cconomies Is the same {comparc Figure 22 with Figure 26 at ratios
of 50 and below). In addition to the range problem, 1t s also possible that
the post-scssion supplemental feedings given in the open-cconomy situa-
tion may have a suppressive cffect on behavior at high ratios, especially if
the teedings are given soon after the end of the experimental session (this
may be another cffect of the proportional timing process discussed earlier).

Notice that we cannot directly comparc the absolute values of the ratios
between open- and closed-economy experiments, because we cannot equatce
either the values of water and food reinforecement for the two species, or the
relative effortfulness of pecking and lever pressing. The forms of the two
curves, not the absolute values, are the features of interest.

If the “truc” function relating response rate and ratio value is an in-
verted-U, does this mean that the labor-supply analogy is true and the
demand law analogy false? The correct answer is that both are just analogies,
and what we are interested in is principles: What common principles underlic
hoth these functions, and do they apply to behavior on these schedules? In
fact the common principles are just the same as the principles behind the op
timality analyscs we have already distusscd, but refined in the particular con-
text of cconumic analysis. I turn now o the concept of preference structure
that economists have uscd to explain both the downward-sloping demand
curve and the backward-bending labor supply curve.
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Preference Structure and Indifference-Curve Analysis

Economics is about value or, as economists term it. uzlity. Psychologists
and philosophers differ on whether it makes sensc to give numbers to
utilities. Some psychologists say you can, most philosophers say you can't,
and cconomists agree. Economists have devised a method that allows them
to make predictions bascd only on valuc relations of “cqual” and “greater
than”. The method works like this. Consider two goods, such as bread and
milk. Even if we can’t give numbers to the utility of a given quantity of milk
or bread, everyone agrees that we can almost always eguate the value of
bundles of goods. For example, 2 quarts of milk and 3 loaves of bread may
be judged cyual to another bundle with 4 quarts of milk and 2 loaves, in the
sense that we are indifterent as to which commodity bundie we get. There
will be a whole set of bundles of this sort, differing in the proportions of
brecad and milk, but the sume in that we are indifferent among them. This
sct defines an individual indifference curve.

Figure 27

x

INCREASING FREFERENCE

QUANTITY OF MILK

QUANTITY OF BRFAD

Conventional indifference curves.
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An inditterence curve represents a set of commaodity bundles that are
equal in value. Figure 27 shows several indifference curves. Any point on
one curve is of equal value to all other points on the same curve. Everyone
agrees that bundles of goods, or of activities, can be rank-ordered, A being
preferred to B, B to C, and 50 on even if we cannot be sure by how rmuch A
is preferred. When bundles of goods are ranked in order of value, they oc-
cupy different indifference curves. For example, if we now compared 5
quarts of milk and 4 loaves of bread with 4 quarts and 2 loaves we would
prefer the first. The 5,4 bundle must occupy a point on a higher indif-
terence curve. Thus, a set of indifference curves is defined by the relation
of valuc-equality among bundles on the same curve and greater than (or
less than) for bundles on different curves.

The point of maximum value is represented by the point in the upper
right corner of Figurc 27. The preference structure tor bread and milk, or
any other pair of goods, can therefore be represented by a sort of contour
map of indifference curves, such as those illustrated in Figure 27. The
arrow indicates the direction of increasing preference which, for most real
commeodities (but not for activities) is generally in the direction of more of
both .goods. The analogy 1o contours is exact: like contours, indifference
curves cannot cross one another. Like coatourss, they represent equal
values on a third dimension: height, or value. A set of indifference curves is
a contour map lacking a vertical scale: we know where the mountains are
and which contour line is above which, but we don’t know hAow much higher
one is than another.

Knowledge of the preference structure is not by itself sufficient to
predict hehavior. We also need to know what constraints the organism is
under. Once a constraint is specified, however, the optimal solution is
clearly 1o scttle on the highest indifference curve consistent with it. For
reinforcement-schedule constraints, this implies an equilibrium at the point
where the feedback function just touches is fangent to the highest indif-
ference curve. This s illustrated m Figure 28 for choice between operant
responding on the vertical axis and reinforcement on the horizontal axis.
The indifference curves are circles centered on point Be. Notice that By is
such that the rate of reinforcement is high, and of operant responding, low.
The constraint lines are simply the feedback functions for different ratio
schedules. The dashed line 15 the Jocus (path) of points traced out by a
series of different ratio schedules in this space; this locus is termed the
ratio-schedule response function.
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Figure 28

R(x)

Indifference curves derived from the minimum-distance model. Rays through the origin are ratio con-
straints. The dashed curve is the expected response locatien.

If you think about it a little, vou will realize that circular indifference
curves correspond to the minimum-distance model shown earlier in Figure
20 because circular curves correspond to the assumption that points cqui-
distant from the free-behavior (bliss) point are all of cqual cost. Since
cqual cost obviouslv corresponds to equal utility, it really makes no dif-
terence whether we do our analysis in terms of cost or utility, the indif-
ference curves, and therefore the predictions, will be the same.

Notice that the response-function traced out in Figure 12 is an in-
verted-U shape. So also is the comparable function relating responsc rate
to ratio value, which is not shown but you can sce that responsc rate
declines at high ratio values (steep feedback lines), rather than continuing
to increcasc. In other words, the minimum-distance model predicts a labor-
supply-type relation between response-rate (labor supply) and ratio value
(wage rate). How doces the response-cost model compare? We can easily
derive indifference curves from the cost function (Equation 6),

Cx)= [+Qx,

where I is the interfood interval, QQ is a cost parameter, and x is the rate of
the operant responsc. Interfood interval is just l/reinforcement rate, ic.,
1/R(x), so that the equation becomes
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C(x)= I/R(X)+Qx. (7
To plot an indifference curve, we just pick a value for the cost, say C, sct

the right hand side of Equation 7 equal to it, and rearrange so as to get x as
a function of R(x). The result is

x= [C-UR(X))/Q, (3

which we can then go ahcad and plot. Each time we change the value of C,
we get another indifference curve. Indifference curves for three values of C
are plotted in Figure 29. The response function goes through the points at
which the three ratio-schedule fecdback functions are tangent to the three
indifference curves. As I showed earlier, the RC response function slopes
downwards 10 the right, like a demand curve.

Figure 29

FRC
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RESPONSE RATE X

Response function

FRA

REINFORCEMENT RATE R(x)

Inditference curves for the response-cost model {(equation 8 in the text with C = 3, 10and 15, Q = 0.5),
Feedback functions for three ratio values are shown. The downward-sloping response function is indi-
cated by the two line segments.
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The nice thing about indifference curve analysis is that it makes it casy
to separate the cost function, which is the essence of the model, from the
constraints. The set of indifference curves represents the cost function; the
constraint [ines then define on which indifference curve, and where on the
curve, behavior will lie. 1 have only described ratio-schedule constraints so
far, but it is almost as easy to derive predictions for other schedules, such as
variable interval. Figure 30 shows two indifference curves for the RC model
that are tangent to two VI feedback functions. Both points of tangency are
at the same response rate, in agreement with the optimal VI policy 1
derived carlier from the RC model.

Figure 30

RESPONSE RATE X

REINFORCEMENT RATE R(x)

{ndifference curves for the rcsp('msc‘cost made! (curves 11 and I2) and two VI molar feedback functions
(V1A and VI B)tangent to them. By and By are two points on the response function.

Notice that the VI feedback functions in Figure 30 have a shape that
makes sense, based on what you know of VI schedules: when response rate is
very low, reinforcement rate is almost proportional to response rate. On a VI
1-min schedule, for example, if an animal ups his response rate from once per
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hour to twice per hour, his reinforcement rate will approximately double. But
as response rate approaches the maximum reinforcement rate specified by
the schedule, reinforcement rate rises more and more slowly, approac hmg as
an asymptote the maximum ratc permitted by the VL

Now we are in a position to see the real diffcrence between the labor-
supply and demand curve analogics. The real diffcrence is in the form of
prefercnce structure they cach imply. The inverted-U labor-supply function
implies indifference curves resembling those of the MD model; the
downward sloping demand curve function implies indiffercnce curves like
those of the response-cost model. As you can sce in Figure 31, the indif-
ference curves for the MD model differ slightly from those of the RC model in
such a way as to produce a VI-schedule responsc function that rises over most
of the range (responsc rate at point B2>B1), rather than being constant, as in
Figure 30. On balance, the MD analysis and related ¢conomic models of
Rachlin and his associates (e.g., Rachlin ct al., 1981) fit experimental results
a bit better than the response-cost maoded.

Figure 31

vin

RATE OF RESPONDING

BO

RATE OF FOOD DELIVERY

Indifference curves fur the minimum -distance model and VI molar feedback functions tangent 10 lwo of
them. B1and Bo are two points on the tesponse function,
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All the optimality analyses we have discussed so far interfood interval min-
imization, response cost, and minimum-distance imply a certain preference
structure. As you have just seen, given the form of the cost function, we can
easily derive the form of indifference curves. So why do we need yet another
method for doing the same thing? What can we do with an indifference-curve
analysis that we can’t do using a cost function?

First, the indifference curve method is potentially experimenzal: it tells us
(at lcast in principle) how to actually measure the organism’s preference
structure by equating commodity bundles. This is known as the method of
revealed preference (Samuclson, 1965), which is the closest that economists
come to being pure behaviorists. Like reinforcement theorists, they are al-
mosl unanimous 1 agreeing that the only way to assess value is through the
individual’s expressed preferences, represented by indifference curves. In
fact, neither economists nor psychologists much use the direct method of as-
king people or ammals to equate commodity bundles. Although there is now
a small school of experimental economists, the majority do no experiments
whatever. And psychologists, for practical reasons, usually do experiments of
the type we have already discussed, and then test economic models indirectly.

Sccond, a set of indifference curves nced not follow any particular math-
ematical form, It can be anything we like, subject to the logical limitation that
indifference curves, like contour lines, cannot cross. While some behavior
theorists (e.g., Battalio, Kagel, Lea, Staddon, mosti bechavioral ecologists)
have favored preference structures derived formally, from assumptions such
as minimum distance or response cost, others (¢.g., Hursh, Rachlin, many
economists) have favored the greater flexibility of a graphical approach in
which indifference curves are simply drawn in a plausible fashion.

Third, because indifference curves represent the cost funcuion directly,
they show the real similarities between models. You can see this easily by com-
paring Figures 30 and 31, The indifference curves derived from minimum-dis-
tance and response-cost, are clearly very similar. even though the equations
that describe the two models do not appear similar at all. Hence, the models
arcin fact quite similar, despite the very different defining assumptions.

[ turn now to a discussion of what different forms of indifference curve
imply for behavioral allocation and choice.

Marginal Value and Substitutability

It 15 no accident that the indifference curves we have been discussing are
all convex, that is, they curve ouilwards from the region of maximum value.
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Convexity represents a very important property of cost, usually expressed
as the law of diminishing marginal utility (or increasing marginal cost).
What it mcans is that the more you have of something, the less cach addi-
tional increment 1s worth (Conversely, the more you lose of somcthing, the
greater the cost of cach additional bit of loss}).

igure 32
A l—
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A negatively accelerated utility function. ¢ and B are successive increments in utility produced by equal
increments in the quantity of a good.

Diminishing marginal utility is illustrated in Figure 32, which shows a
negatively accelerated utility {unction. The vertical lines indicate incre-
ments of the good (c.g., food-rate increments). The two little vertical lines
show you two increments in utility associated with successive equal incre-
ments in the good. As you can sce, the first utility increment, «, is greater
than the next, B, and this pattern continucs across the whole curve. Thus,
going up and to the right from point A (increasing utility), the curve shows
diminishing marginal utility; going down and to the left from A, the same
curve shows increasing marginal cost. Diminishing marginal utility is some-
times termed satiztion and therc is a close relation between this property
and the dynamic property of satiation that we discussed carlicer: both imply
behavioral diversity, as we will see in a moment.



242 J.E.R STADDON Special Issue, Val. 21

The concept of marginal utility is important because it tells us how 1o
allocate resources for maximum satisfaction. For example, given $100 to
spend on any mixture of three commodities, bread, milk and beer, maxi-
mimum satisfaction'is assured if we are indifferent on whether to spend our
last dime on more milk, bread or beer. Indifference means that we have
equated the marginal values of the threc commodities. Thasc familiar with
difterential calculus will recognize that equating marginal value is just the
mathematical operation of equating the partial derivatives of the value (or
cost) function with respect to cach commodity.

Marginal value can be understood without getting into higher mathe-
matics. For example, consider how you should allocate a fixed total amount
of time between two activities whose utilities are each proportional to time
spent not curvihinear, like the utility function in Figure 32, Clearly, the best
strategy is to devote all the time to one activity or the other, depending on
which line has the steeper slope. It is more typical, however, for value func-
tions to be negatively accelerated, as in Figurc 32, in which case, the more onc
does of something, the smaller the marginal benefit. For example, the more
you eat of something the less tasty each additional morscl becomes. Tt is pret-
ty obvious that most goods show diminishing marginal utility: the first ice
cream is wonderful, the next is nice the tenth may make you sick. Moreover,
if twe goods show diminishing marginal utility, then when you must allocate
limited resources among them, your optimal policy is spend some money on
both, L.e., o show a partial preference, rather than exclusive choice of one or
the other. If the goods arce activitics, each of which shows diminishing mar-
ginal utility, then clearly the optimal policy is to spend some time in cach ac-
tivity, to show behavioral diversity, rather than behavioral stereotypy.

The rclation between partial preference, diminishing marginal utility,
and convex indifference curves, is illustrated in Figure 33. The figure shows
an indiffercnce curve [or two goods, A and B, each of which shows dimi-
nishing marginal utility of the form shown in the previous figure. As you
can see, the curve is convex. The diagonal line represents what cconomists
call the budget constraint: a {ixed sum of moncy, which must be spent on A
-and B. The slope of the line represents the relative prices of A and B: (f
both prices are equal, the line will intersect both axes at the same value. If
A and B are activilies, measured as proportions of time spent, the budget
constraint corresponds to the time-allocation constraint we discussed ear-
lier. The optimal altocation of resources is at point By, where the constraint
line is tangent to the indifference curve, By obviously represents a partial
preference.
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[Mgure 33
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Anindifference curve far two parbally substitutable goods.

What will be the form of indifference curve when utilitics do nrotf show
diminishing returns? In the cxample T just gave, the utility of cach activity
was simply proportional to the amount of activity: Uy;=a'ly and Uz=bly,
where Uy and Us; are the utilities of investments, Ty and To are the times in-
vested, and a and b are the ratios of utility to time spent. Now recall how
we denve indifterence curves from utility {or cost) functions. We pick a
total utility (or cost), call it C, and set the combined utilitics cqual to it, so
C=U1+U;—al;+bTy rearranging gives us T;=(C~btz)/a, which 1y a straight
line. There 1s obviously no way that a straight-line budget constraint can he
tangent 1o a straight-line indifference curve. Hence, the optimal policy s to
choosc activity 1 or activity 2 exclusively, as i slready showed.

Note that a straight-line indifference curve need not imply that the
goods it relates are not subject to diminishing marginal utility. It may alsa
mean that the two goods are not independcent, so that consumption of one
causes satiation for both.

Feonomists have names tor these different kinds of indifference curves:
Two goods related by a straight-line indifference curve, where the optimal
palicy is exclusive choice, arce termed perfect substitutes. Examples are two
cquivalent brands of gasolinc: vou just pick the one with the lowest price.
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Two goods related by a convex indifference curve are termed partial sub-
stifutes, because a change in price (slope of the budget line) causes a
change in preference that falls short of a complete switch from one to the
other. Coftee and tea are partial substitutes: if tea becomes more expen-
sive, you may drink more coffee. Two goods related by an extreme convex
indifference curve (i, a corner, made up of a vertical and a horizontal
line) are termed complements. The idea here is that there 1s a preferred
ratio of the two goods (e.g., equal numbers of left and right shoes), so that
we are indifferent to additional quantities of cither good: a bundle of 105
left shoes and 100 right shows has the same value as a 100:100 bundle.

These names are not very helpful for analysing the kind of behavior
under discussion, because the terms say more than they mean. Substitution,
for example, implies functional equivalence (i.e., that consumption of one
good satiates for both), but all it means is a particular form for the indif-
ference curve. As we have scen, a given indifference curve may be
generated in several ways, only some of which correspond to functional
equivalence. But since these terms are in common use, you nced to know
something about them.

Implications for Behavioral Allocation and Choice

I have already pointed out the most obvious implication of imperfect sub-
stitutability for implicit choice: partial substitutability implies behavioral
diversity. These ideas can also help us understand the results of explicit
choice experiments i which the reinforcers are of different types or
delivered in different amounts. Let’s consider first one of the simplest
choice situations, the two-armed bandit, and the effect of different types of
reward.

A two-armed bandit is just a two-choice version of the familiar Las
Vegas one-armed bandit, that is, a situation in which the animal has two
choices (levers, response keys), each of which delivers reward on a pro-
babilistic (1e., random-ratio) schedule. Far example, our subject may be a
rat responding on one lever for Cherry Cola, and on another either for the
same thing (Cherry Cola) or for something different (Tom Collins mix).
Suppose the two random-ratio schedules are the same, e.2., 25, so that the
rat gets access to either reinforcer with probability 0.04 for pressing the ap-
propriate lever. What should he do if both levers produce Cherry Cola?
Well, 1t reaily doesn’t matter, so that the chances are that after much ex
perience, our rat will just develop a position preference and respond ex-
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clusively on one or other lever. This outcome is practically guaranteed if
the two ratio schedules arc unequal, e.g., 15 and 25: most rats will eventual-
ly fixate on the higher-probability lever.

This is just what we would expect with two rewards that are perfect sub-
stitutes. If the animal has a fixed number of responses to expend, then the
constraint linc is just like the budget line in Figure 17: x responses on the
Left means N-x on the Right, where N is the total permitted, and the prices
{ratio values) are equal. If the two rewards are perfect substitutes, then the
indifference curve is also a straight line, so that the prediction will almost
always be exclusive choice of one option or the other.

What will happen if the rewards for the two responses are different
(Cherry Cola and Tom Collins mix}? Now the indiffcrence curve may be
convex-complete satiation on Cherry Cola may leave our rat still with some
appetite for Tom Collins mix, and vice versa. The prediction for equal ratio
schedules is now very different: partial preference, rather than exclusive
choice. Morcover, if the partial preference favors Cherry Cola, say, then
we can increase the ratio on that side without abolishing responding-in-
deed, the change in preference for a given change in “cost”™ allows us to es-
timate the indifference curve directly. It turns out that the behavior of rats
1s consistent with this simple economic analysis (Rachlin et al,. 1981).

Now let’s look at different food-reinforcer amounts for cach choice,
with cqual ratio values for cach. No matter what the form of the atility
curve for food amount, so long as more is preferable to less, our rational
rat should always pick the large-amount option exclusively, and rats (after
sufficient experience) usually do. But we can see the effect of the utility
function if we change the procedure slightly: on the Left, the animal con-
tinues to get & small amount, say a 20 mg food pellet. But on the Right we
give him cither a very small (10 mg}, or a large (30 mg) pellet, with cqual
probabhility. So now 25 responses on the Left on average buys our rat 20 mg
of foad; 25 responses on the Right buys him cither 10 or 30 mg, which
averages oul 1o the same amount. The question is, which should he prefer?
The answer depends on how the utiljty of food depends on its amount.

Look again al the negatively accelerated utility curve in Figure 32
Let’s sec how much utility (as opposed to how much food) our rat gets with
the two options we have described. On the Left, the rat gets amount A in
the Figure, about 0.8 on the utility axis. On the Right he gets either 0.8-a,
or 0.8+8. But since « is plainly always greater than f§ (given a ncgatively
accclerated utility function), then the average of 0.8-« and 0.8+ must be
less than 0.8 so the rat should prefer the side with the fixed food amount to
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the side with variable amounts with the same average. And rats do. This
aversion to variability 1s known to decision theorists as risk aversion, and it
1s a very common result whether the decision agents are people or animals.
This explanation for risk aversion i1s a very old onc, as psychological cx-
planations go, being first offered by the Swiss mathematician Daniel Ber-
noulli in 1738.

Risk aversion can casily be demonstrated with human subjects. For ¢x-
ample, the two psychologists Danicl Kahneman and Amos Tversky (1979)
have become Tamous for a serics of experiments in which they asked col-
lege students deceptively simple questions about dccisions  involving
gambles and got surprising answers. In one experiment, students were
asked to decide between the foliowing two outcomes:

Which of the following would you prefer: $3000 for sure, or a 0.8
chance of $40007?

Since 0.8 x 4000=3200, the gamblc has the higher expected value.
Nevertheless, the great majority of subjects opted for the sure thing.

Risk aversion is evidently a widespread characteristic. It makes goad
adaptive sense, for at least two reasons. First, the future is uncertain: “a
bird in the hand is worth two in the bush”. Second, the value of reinforce-
menis such as food depends not just on their amount but also on their dis-
tribution in time. An individual may consume 100 kg of food per year, say,
but he is unlikely 1o trade a regimen of 0.3 kg/day (total: 109.5 kg), for 200
kg delivered at year's end. A large food reward should be less valuable than
two hall-size rewards delivered twice as often, although the difference
might well be small if the amounts and delays -are also small. Since any
repeated gamble involves a change in lemporal distribution, as well as dis-
tribution ol amounts, risk aversion will often be adaptive.

The Matching Law. Convex indifference curves, and linear constraints,
vicld partial preference. Let’s look again at variable-interval schedules and
sce how this rule might apply when an animal has to choose between two
independent VI schedules. Figure 30 shows how the reintforcement rate ob-
tained on VI depends on the response rate. If you can imagine the axcs
reversed, with response rate on the x-axis and reinforcement rate on the y-
axis, you can sce thatl the VI feedback function has cxactly the same form as
the negatively accelerated utility function in Figure 32. As responding in-
creases {rom zero, reinforcement rate at first riscs rapidly, but then more
slowly as it approachcs the maximum prescribed by the VI schedule. Let’s
sce if we can figure out what an animal should do when confronted with
two concurrent variable-interval schedules. We'll assume the simplest pos-
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sible utility function: average reinforcement rate. The animal is Lo allocate
his responding to get as many reinforcements as possible within a fixed
time. Given a fixed total number of responses to “spend”, the animal
should spend them so that the marginal reinforcement-rate gain on cach of
the twa schedules is equal. Since the two feedback functions are both nega-
tively accelerated, this must yield a partial preference: some respanding on
both VI schedules, more on the richer one. In fact, with the molar VI feed-
back function we have been using, reinforcement-rate maximizatjon of this
sort predicts that the animal should match the ratio of responses made 10
reinforcements obtained: x/y = R{x)}/R(y), where x and y are the total num

ber of responses to Left and Right, and R(x) and R{y) arc the total number
of reinforcements obtained (Staddon & Motheral, 1978). In other words, if
we {ind that our rational pigeon got 40 reinforcements for pecking on the
Right and 20 for pecking on the Left, we expect that he will have made
twice as many pecks on the Right as on the Left. Rewritten in terms of
proportions, this is the well-known matching law for responding on concur-
rent VI VI schedules

xx4v) = R{)AR(x) « Ry)]. (93

The maiching law was discovered by Richard Herrnstein (1961), and his
original data, taken from pigeons pecking two keys tor food reinforcement
delivered on VI schedules, are shown in Figure 34, Each data point plots
the proportion of Left and Right key pecks against the proportion of rein-
forcements obtamed after several weeks of daily exposure to a given pair of
Vi values. To minimize changes-in overall response rate, the total rate of
food delivery for Leflt and Right pecks combined was held approximately
constant. The diagonal line indicates perfect matching, and as you can sce
the data from the three pigeons conform closely to it

The matching law has been the focus for an extraordinary amount of
experimental and theoretical work in the more than 25 years since it was
first discovered. The law itsclf, originally just an empirical {inding, has been
uscd as the basis for a molar Lhco‘ry for reinforcement-schedule perfor-
mance in general, as we will see in @ moment.
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Figure 34
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The denvation of matching from simple reinforcement-rate maximiza-
tion gave a great boost 10 the optimality approach. It turns out that a great
many maxtmization modcls predict matching, because of the negatively ac-
celerated form of the VI molar feedback function. Closer study soon
revealed difficulties. however. As we have scen in all our carlier discus-
sions, optimality models always fail under some conditions because they are
functional nol mechanistic,” models. Molar reinforcement-rate maximiza-
uon fails to predict matching in a situation ctosely refated to concurrent V1
Vi concurrent VI VR. When one alternative is a VI but the other is a vari-
able-ratio, pigeons spend too much time on the ratio alternative: maximiza-
tion predicts more responding on the ratio (where responses count more)
than on the VI (where they count less). Nevertheless, pigeons, blindly
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obedient (apparently) to the matching principle, continue to match
response ratios to ratios of obtained reinforcements, though with a slight
bias in favor of the ratio: xfy = kR(x)/R(y), where k is greater than one, and
X Is the ratio-reinforeed response (Herrnstein & Heyman, 1979).

Stephen l.ea (1978) has investigated matching and maximizing in a
morc subtle way. His pigcons could respond on either of two keys: on the
Left (say) they got food according to a random-ratio schedule with constant
probability, p. On the Right, they got food according to an adjusting ratio:
with cach foad delivery on the Right, the ratio increascd; with cach food
delivery on the Left, the ratio on the Right decrcased. This 18 termed a
titration procedurc (we have alrecady encountered a titration schedule in an
experiment by Mazur, discussed carlier). The point is that the optimal
strategy here is for the animal to work for some time on the Left, unatil the
ratio on the Right has rcached a low value; then to switch and collect a few
“cheap” reinforcements before switching back to the Right and repeating
the process. Instead of maximizing in this way, Lea’s pigeons alternated
back and forth in such a way that the nct payoff probability on the Right
(adjusting) side matched the probability on the Left (constant). B we
denote payotfl probability on the Right by g and on the Left by p, then p =
q represents the birds” steady-state hehavior. But p is just equal to the ratio
of reinforcements to responses on the Left, R(x)/x, and similarly for g, so
that Lea’s result is just another example of the matching law: x/R(x) =
v/R{y). or xy — R(X)/R{y).

Although Lea’s data disprove molar maximizing as an account of
choice, they arc perfectly consistent with what has been termed local or
maolecular maximizing. If the pigeon just allocates his pecking on a moment-
by-moment basis to the alternative that offers the highest probability of
reinforcement, then the titration schedule ensures that the average payoff
probability will be the same on both sides, which implics matching. This
very same molecular maximizing process was suggested many years ago as
the basis for matching on concurrent VI VI schedules (Shimp, 1966). We
will return to molecular processes ina moment. But first, let’s see if there is
any good evidence that marginal changes in molar variables such as reinfor
cement rate have direct effects on behavior.

s Behavior Directly Sensitive to Marginal Molar Changes?

The fundamental assumption of molar optimality is that bchavior is sensi-
tive to marpinal quantities, measurcd at the molar level, How valid is this
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assumption? Ettinger, Reid and Staddon (1987) recently carned out a
direct test. They chose a schedule that has lincar molar feedback functions,
heeause many optimality modcels predict a particularly simple adaptation to
such schedules: a straight-line response function. Thesc models all predict
that a change in the slope of the molar feedback function (i.c., a change in
its marginal rate of return) should always cause some change in the slope of
the response function.

Ettinger at al. used what are called inferlocking schedules. An inter-
locking schedule is a combination interval-ratio schedule. If the animal
does nothing, the schedule is cffectively a fixed-interval. But the inter
food time is reduced by every response, as 1t is on a ratio schedule. For
example, if the animal does nothing, food becomes available for the {irst
response after 60 s, say. But il the animal makes one response before the
60 s mark, then food becomes available after 55 s; if he makes two, food
is available after 30 s, and so on. Thus, the interfood interval is deter-
mined according to the formula I = T-am, where m is the number of res-
ponses that arc actually made, (excluding the response that actually
procures the reinforcer), T is the minimum interfood interval if no res-
ponses are made, and a 1s a parameter that says how much each response
reduces the time to food.

The results of one of the experiments by Ettinger ¢t al. are shown
graphically in Figure 35, The figure shows feedback functions for two sets
of interlocking schedules that differed in the slope parameter, T (two sets
of positive-slope lines). Within cach group, the slopes were the same but
the intercepts (paramcter a) differed. Response. functions predicted from
the MD maodel arce sketched o as dashed lines. Other optimality models
predict different changes in the slope of response function. The point is
that all molar optimality models predict seme change 1n slope between the
two conditions. Yet the results are clear: (a) the obtained response func-
tons arce indeed approximately linear, but () there scems in fact to be only
one linear function, which is the same for both scts of schedules. All the
data points scem to lie on the same straight line with negative slope. The
difference in molar marginal rate of reinforcement between the two series
evidently had no ctiect on response-function slope. These data provide a
very sirong hint that here, as with the chain schedules discussed carlier and
Lea’s titration schedule, we need to look at the local, molecular level to un-
derstand how reinforcement schedules actually affect behavior.
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Figure 35
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Maolar Optimality: Conclusion

What can we conclude about the status of molar optimality as « valid model
for implicit and explicit choice? We must Orst acknowledge the gencral
conclusion that no optimality model works in every situation. Animals are
rarcly, i ever, “literal optimizers™: they don’t remember the average payoll
assoclated with a given pattern of responding and compare It with the
payoffs tor other patterns (from a well-defined set of possibilitics) and then
pick the best pattern, as some views of optimal responding scem often to
mmply. Under most conditions, pcople don’t behave in this way either.
Morcover, the data [rom the Ettinger et al. experiment strongly suggest
that the real causal retations are not at the molar level at all. Nevertheless,
the simple local rules animals often use perform remarkably well in a wide
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range of situations. Hence, molar optimality analyses also do rather well.
Optimality analyses have also revealed unsuspected relationships between
implicit and explicit choice, and they still provide the simplest account for
choice between partially substitutable reinforcers and for the analysis of
choice behavior under risk. Optimality models show unequivocally that
reward value is a negatively accelerated function of reward amount, so that
doubling amount increases value by a factor less than two. Recall that we
needed to assume a less-than-proportional relation between reward size
and reward cffect in order to get correct predictions of self control results
from the proportional timing model. In short, optimality models provide
tolerably good picture of what animals manage to achicve, but a poor pic-
ture of how they actually do it. Animals often behave optimally they almost
never optimize in any literal sense (Staddon & Hinson, 1983).

Behavioral cconomics is just optimality theory by another name, and
with a slightly different bag of theoretical tricks: inditference curves instcad
of objective and cost functions. But the rationale, the results, and the
limitations of behavioral economics are exactly the samc as those of op:
timality. Only the names and connotations are ditferent. “Labor supply”
and “demand curve” suggest different things than “response cost”™ and
“minimum distance” but the principles behind them are the same.

We turn now to a different kind of molar approach, which we term
maolar descriptive theories of behuvioral allocation and choice. The final sce-
tion of the chapter deals with molecular and dynamic analyses.

Generalized Matching: The Relative Law of Effect

The simplicity and rehability of the matching law suggested to Richard Her-
rnstein and his students that it might well form the basis for a genceral
theory of behavior on reinforcement schedules. Recall the form of law,
stated in terms of proportions {Equation 9): x/(x+y) = R{x}/[R(x}+R(y)}].
Supposc we replace the denominator on the left hand side with a term rep-
rescnting all behavior in a given situation, and the denominator on the
right with a term representing a/l sources of reinforcement:

/0 = R )/OR(xy),

where xq 1s once response, Ox; is the sum of all responses and OR(x;) Is the
sum of all reinforcements. If we add the single assumption that the sum of
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all responsces is constant, then bring the constant over to the other side, the
tquation reduces to

x; = kR{x1 Y OR([x;), (10

where k is now a constant of proportionality. In words, it says that the rate
of a given response, x|, is proportional to its rate of reinforcement relative
to the reinforcement for all other responses. Herrnstein (1970} called this
the relative law of effect.

Herrnstein had to make two assumptions 1o get from the simple match-
ing result to the relative law. The first is to assumc the constancy of the
term Oxi, the sum of all responses. The second is to assume that all sources
of competition are also sources of reinforcement. Activities such as groom-
ing or slceping, which take away time {rom the operant responsc, must
therefore be treated as sources of reinforcement. The latter assumption is
hard to verify, and probably unnecessary to the theory as a formal descrip-
tion of results. The first assumption 1s wrong unless each activity 1s scaled
in terms of the time it takes up. The constant, k, in Equation 10 therefore
does double duty: it represents the total peried of observation, divided by
the duration of one instance of activity X;.

The simplicity of the relative law of effect has proven very attractive,
and strenuous atlempts have been made to extend it to a wide variety of
schedules, Here we will just consider its extension to responding on single-
response (i.e., not concurrent) VI schedules. In this case the term OR(x;)
simplifics to R(x) + Rg, where Ry is just the sum of reinforcers for activities
other than response X, so that Equation 10 for a single response is

X = KR(X}/[R({x) +Rg), (11)

where x is responsc rate and R(x) reinforcement rate, as usual.

Let’s look a little more closcly at Equation 11, which somctimes known
as Herrnstein's hyperbola. When R(x) is low relative to Ry (i.e., a very low
reinforcement rate for X), the cquation reduces to x = kR(x)/Rg, ie.,
response rate 1s proportional to reinforcement rate. Conversely, when R(x)
is large relative to Ry, the equation reduces to x = k. These two properties
should by now bhe very familiar. They correspond to the ncgatively ac-
celerated paltern of response rate vs. reinforcement rate we have already
scen for pigeons and rats on VI schedules. You have already seen examples
in Figurcs 18 and 19. Tt seems that the quantitative law of eftect provides
an accurate account of response rate vs. reinforcement rate functions not
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only for concurrent VI VI schedules, but also for simple VI How far can
this idca be extended?

Herrnstein has proposed extensions to explain behavioral contrast on
multipic schedules, but these extensions have not been well supported by
cxperimental work. The principle also fails on simple ratio schedules and
mntertocking schedules. As we saw carbier, response rate on ratio schedules
is cither a declining function of reinforcement rate, or an inverted-U;
response functions on intertocking schedules follow the lincar declining
form shown in Figurc 35. The problem is that Equation 11 has no provision
for the reinforcement schedule like Allison’s conscrvation theory. it
predicts the same thing for any reinforcement schedule. So the relative law
of effect has failed to provide us with a general principle of reinforcement.
Nevertheless, the function it predicts for simple VIschedules (Equation 11)
is aceurate. In a moment I will suggest a basis for Bq. 11 that is different
from Herrnstein’s.

Molecular mechanisms of behavioral atlocation

Matching of responsc ratios to reinforcement ratios is a very robust finding
on concurrent VI VI and concurrent VI VR schedules. That's why the
matching law was proposcd as a general reinforcement principle. Yet the
attempt failed. Can there be other reasons why matching is such a reliable
result? We have two places to look: in the animal. and in the procedure.
Perhaps the animal is following some simple local rule that results in
matching? Perhaps the procedure is such that many patterns of behavior
inevitably result in matching? Let’s look at the procedure first.

One of the basic properties of behavior is variation. Variation serves
many adaptive functions, but one of the most important is that it helps
animals to detect regularities. Pigeons in choice experiments show some
moment-by-moment variation in both their overall rate of responding and
their allocation of responscs to each key. What effects might this variation
have, given the known propertics of VI schedules? To answer this question,
we need to go back to the feedback function for VI schedules. The V1 feed-
back function has two general propertics: when response rate is very fow,
the schedule is in cffect a fixed-ratio 1 schedule (i.c., every response is rein-
forced), and when responsc rate is high, reinforcement rate 1s almost con-
stant. Conscquently, when our pigeon responds very slowly on each key, he
will get food for almost every response. If he gets food for every response
on cach key, then he must match response ratios to (obtained-) reinforce-
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ment ratios. We can safely conclude, therefore, that when response rate is
low, matching is an artifact of the properties of the VI schedule.

This possibility has been well known for many years. Proponents of
matching as a general principle have thercfore focused on the second pos-
sibility offcred by V1 schedules, namely that when response rate is high, rein-
forcement rate is almost constant and therefore independent of response
rate. But the reality of behavioral variation means that we cannol assume a
constant, high response rate. We must assume a range of rates, as well as
some bias in favor of the higher reinforcement-rate alternative. The issue is
guantilative and involves at least two properties of bebavior: its amount
{how fast does the pigcon peck?), and its bias (how much does he prefer the
better key?). It is not something easily settled by verbal arguments. But we
can gct some insights inlo what is going on with the aid of simulation: writing
a computer program to “respond” at various rates with different biases and
deliver “reinlorcers” at random times. Simulations (e.g., Hinson & Staddon,
1983b} have shown that on concurrent VI VI schedulcs, at least, almost any
pattern of responding that satisflies (wo conditions will result in matching.
The two conditions are (a) that response rate on a given side is some positive
function of the rate of reinforcement obtained, and (b) that if no rcinforce-
ment1s oblained, response rate is zero. Both these propertics of operant be-
havior wcre well established long before the matching result was obtained.
Hence. the matching law has been valuable more for the research it has
stimulated than for what it 15 has revealed about the actual mechanisms of
reinforcement. It is a law about the behavior of a system animal plus
schedule rather than about the animal itself.

If animals are not molar matchers, then what are they? In this final sec-
tion we discuss the molecular mechanisms of choice that may underlie all
the molar patterns we have been discussing. The first two, momentary ma-
ximizing and melioration, are examples of hill-climbing processes, that is,
processes that move behavior in the direction of the better alternative. The
last, linear waiting, is a slight extension of the proportional timing process
discussed earlier.

Momentary Maximizing

We have already seen that animals will usually settle for the high-pro-
bability alternative in the two-armed-bandit situation. Given one key that
pays off with probability 1/10 and another that pays off with probability
1/20, pigeons will eventually learn to peck only the high-probability key
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(e.g., Herrnsten & Loveland, 1973). Charles Shimp in 1966 proposed that
pigeons follow this rule consistently, even on VI schedules where it does
not seem to apply in any obvious way. He called his hypothesis momentary
maximizing (MM). How does momentary maximizing work? The simplest
way to understand MM is to begin with a procedure very similar to the con-
current VI VI schedule: concurrent FI FIL I discussed concurrent FI FI ear-
lier (see Figure 6).

Recall that the corcurrent FI FI could be programmed in two ways,
either the two programming timers both reset with reinforcement for cither
response, or they are independent, the timer on the Left only resetting fol-
lowing reinforcement for a Left response, and similarly tor the Right.
Recall also that the latter method, independent timers, favors responding
to both keys partial preference whereas the other method favors exclusive
choice. Now it’s time 1o consider why. Let’s take a simple example. a con-
current FI 3-muin Fl i-min schedule. Assume that our pigeon is imitially
naive and knows nothing about either allernative, other than being willing
to peck both with no preference. This behavior gets him food after 1 min
on the Right, which may cause him to shift his preference a little to the
Right. So he gets a sccond reinforcement on the Right after 2 min. But
presumably two food deliveries are insufficient to produce an exclusive
preference, so he will still peck Left once in a while. After 3 min, he gets a
third reinforcement on the Right, but now his next peck on the Left also
procures food, because the FI 3-min timer has been running right along,
and has just now “timed out”. Now if we were to continue to watch the
pigeon, we might begin to see more complex patterns develop. If he can
kecp both sides “in synch”, then he can learn that a peck on the Left is only
reinforced some time after two reinforcements on the Right, so we might
sce the development of a sequential pattern. But even without such a pat-
tern, it should be obvious that our bird will continue to peck on both kcys.

Now let’s complicate the situation a bit further. Instead of concurrent
F1 FL, let’s ook at concurrent VI VI. The general argument still applies. The
pigeon should clearly sample both alternatives, but now there is absolutely
no possibility of learning any kind of response sequence like “peck on the
Right until you get two reinforcements, then try the Left”, because reinfor-
cers occur at unpredictable times on both sides, so that two Left reinforcers
may somctimes occur in close succession. What information might the
pigeon usc to help him?

Shimp’s insight was to scc that although rcinforcement is always uncer-
tain on a V1 schedule, the probability of reinforcement changes in a predict-
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able way. As Staddon, Hinson and Kram (1981) showed many years later,
the critical thing (on VI schedules with truly random distributions of rein-
forcers) is the time since the last response an each side. The longer the ime
since the animal last responded on a given side, the higher the probability
that a response will be reinforced. You can see the truth of this in the con-
current F1 FI case: on both sides, the longer the postreinforcement time,
the more likely a response will be reinforced. Postreinforcement time is the
critical thing here, because the FI timers run from one {ood delivery to the
next. But postresponse time is the critical thing on random-interval (RI)
schedules because of a curious property of randomness.

People get confused about this point, because of something called the
gambler’s fallacy. Suppose someone is tossing a coin, and you have been as-
sured that it is a truly unbiased coin. Nevertheless, you have just wetnessed §
Heads in a row: what is the probability the next toss will be Tails? Obviously
the answer depends in part on how much you trust the person who assured
you the coin is unbiased. But trust us: it is unbiased. So what is the pro-
bability of a Tails on the next toss? Many people (probably not you, gentle
reader) will guess that the probability of Tails is now greater than one-half,
because of the prior preponderance of Heads. This is the gambler’s fallacy,
because (of course) the probability of Tails really is one half, just as you
were told.

The counterpart to the gambler’s fallacy with random-interval sche-
dules 15 to believe that reinforcement 1s more likely the longer the time
that has elapsed without reinforcement. This is not true, so long as the
animal continues to respond. It is true, so long as he does not respond. Let’s
seec why. On a random-interval schedule, reinforcement availability is deter-
mined by a process very like a sequence of coin tosses. The difference is
that the tosses are much more likely to turn up Tails (no food) than Heads
(food) and they are made very rapidly by a computer. And, most important
of all, on inlerval schedules of all kinds, once the timer has timed out it
does not start again until a response occurs: once a Head turns up, reinfor
cement is available for the next response, whenever it occurs.

Let’s suppose the scheduling computer tosses its imaginary coin once
per secend, and the probability of Heads is 1/10. Then, 5o long as the animal
responds at least once per second, he will get food on the average once
every 1{} seconds, i.e., a random-interval (RT) 10-s schedule. Moreover, if he
responds exactly once every second, the probability each peck will result in
food is a constant 1/10. But suppose he is interrupled, and doesn’t respond,
how will the probability of payotf change? Well, even if you're not a student
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of probability theory, you can see what will happen: The first second, the
payoff probability is 1/10, but if he doesn’t respond, then after two seconds,
the payoff probability has gone up because Heads could have comce up in
the first second (he doesn’t know, because he didn’t respond), or the second
second. The situation is like tossing a coin twice and asking: What is the
probability of getting Heads at least once?

The algebra is very simple. The probability of at least one Head, in two
tosses, 1s just one minus the probability of fwo Tails. For our RIschedule, the
probability of a Tail is 9/10; the probability of getting a Tail on the second
toss 1s also 9/10. Hence the probability of getting two Tails 1s (9/10), = (.81,
Thus, the probability of at least one Head 15 1 - 0.81 = (1,19, a considerable in-
creasc over (.1, The increment in p(Head) as a function of postresponse time
is shown graphically in Figure 36. As you can see, after 2() scconds have gone
by without a response, the probability of payoff is quite high, almost 0.9.

Figure 36
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On a concurrent random-interval schedule we have two schedules like
the one shown in Figure 36. On cach key, therefore, the probability of rein-
forcement is rising, so long as the animal does not respond. As soon as he
does, the probability goes back to zero and starts up the same function
again. The difference between a rich RI schedule and a poor one is in the
probability setting of the “coin tosser”: the higher the probability of a Head,
the faster the curve rises to its maximum value of one. If p(Head) = 172, [or
example, then p(Head) after one, two, three, elc. seconds of nonresponding
15 0.5, 0.75, 0.875, ctc,

The hypothesis of momentary maximizing says that whenever Lthe or-
ganism decides to respond, it will always pick the alternative with the
highest momentary probability of payoff, where probability of payolf is
determined by a nising function like the one shown in Figure 36. Notice that
the hypothesis is incomplete in an important way: it says which key will be
chosen, once the animal decides to respond. But it does not say when that
will be. That is, it doesn’t say how fast the animal will respond or how its
responses will be spaced in time. Nevertheless, it turns out that there is a
simple way to sce whether an animal is responding according to this rule.
Suppose the two VI (really R/, random-interval) schedules are 1-min (on
the Right) and 3-min (on the Left), for example. Then when he responds on
the Left (the bad side), the time since his previous Left response should be
at least three times as long as the time since his previous Right response.
Conversely, when he responds on the Right, the time since his last Right
response should be at least one third the time since his last Left response.
Under most conditions following this rule implies that the animal will make
three times as many responses on the Right as op the Left. This relationship
should sound familiar: it is the ubiquitous matching result once again. In
other words, MM, like essentially every other reinforcement rule, predicts
matching in the concurrent RI RI situation.

What do the data say? We know that pigeons and rats match: do they
match because they are also momentary maximizing? The answer seems to
be “sometimes, but perhaps not every time”. Hinson and Staddon (1983a &
b) did a scries of experiments in which they measured the times of every
key peck in a concurrent RI RI situation. They found that pigeons follow
the MM rule, but not terribly well. In their study, as in many others, the
animals tend to undermaich, that is, the proportion of Left and Right pecks
is closer 10 50:50 (indifference) than the proportion of reinforcers.
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Melioration

Howard Rachlin (1973) and Richard Herrnstein (Herrnstein & Vaughan,
1980) have suggested an allernative mechanism for matching that is some-
where in between the purely molecular mechanism of momentary maximiz-
ing and the purcly molar relative law of cffect (sce Staddon, 1988, for a
formal statement of the theory). Herrnstein calls this 1dea melioration,
meaning “to make better”. The closest analogy, tor those of you familiar
with clementary chemistry, is to the idea of diffusion, You may remember
that il you have a concentrated solution on one side of a semipermeable
membrane and a dilute solution on the other, water will diffuse from the
more dilute into the more concentrated, because of osmotic pressurc. The
concentrated solution is for Herrnstein and Rachlin like the richer of two
recinforcement schedules, and the flow of solute is like the shift of respond-
ing. Thus, melioration is a shift in preference towards the alternative in
which the "cost” of reinforcement, e, responses made divided by reinfor-
cements obtained, 1s less.

Note that this theory is similar to MM, i that the driving factor, the
“eost” of reinforcement, is just the reciprocal of reinforcement probability.
But 1t 1s different in that it does not specify over what time period the shift
in preference should take place. In short, it is really a molar theory, be-
cause it contains unspecified assumptions about an averaging window over
which reinforcement probability and response proportions are assessed (To
he fair, MM is also silent about the averaging window within which payolf
probability 1s measured).

What 1s the cvidence for melioration? The strongest evidence is Just
that it so obviously gives the right answer: if preterence shifts so that the
cosl of reinforcement 1s equal on both sides, i.e., R(X)/x = R{y)/x, then we
automatically have matching. But of course it cannot explain systematic
deviations, like the ubiquitous undermatching that is found (n most experi-
ments unless explicit steps are taken to prevent it (we discuss those steps in
a moment). It is supported by the results of Lea’s titratiop experiment,
which 1 described earlier. But it has failed in one direct test.

'The test used what is called a frequency-dependent (FD) schedule (Stad-
don, 1988). The FD schedule is ke the two-armed bandit T have just dis
cussed. The pipeon has two keys to peck, and payoffs for each choice are
delivered probabilistically. The difference is that the payoft probabilities
depend on the animal's current preference. Current preference is measured
by the controlling computer, which keeps a record of the last 32 (say)
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choices. The FD schedule used by Horner and Staddon (1987) worked in
the following way. Payoff probability on the Lett varied from close to zero,
to 0.2 (say). It was zero if the animal’s current preference was 100% tor the
Left; it was 0.2 il s current preference was 100% for the Right, and
proportionately less for intermediate valucs. Payotl probahility for the
Right followed a similar, linear function: zero if preference was 100% for
the Left, but 0.1 1f preference was 1009 for the Right, so that no matter
what the animal’s current preference, payoff probability was always twice as
high on the T.eft

Notice that this FD schedule poses a particularly acute problem for a
hill-climbing animal. If such an animal always picks the alternative with the
higher payoff probability, then he must always pick the Left. But by doing
sv, he drives down the payoff probability ever lower. Indeed, when
preference 1s exclusively Left, payoff probability is zero for bath responses.
A mcliorating animal should therefore extinguish completely. A momen
tary maximizing animal 15 doomed to the same fate.

The brute fact 1s that Horner and Staddon’s pigeons did #ot extinguish.
They showed some preference tor the Left, but it fell far short of the ex-
clusive choice predicted by the two hill-climbing theories. Evidently, the
birds were not blindly following cither melioration or momentary maximiz-
ing. Horner and Staddon proposed an alternative, a probabilistic learning
rule they call ratio invariance, that 1s consistent with their resulls but it is
too technical to pursue here. For the moment, it is sufficient to say that
neither melioration nor momentary maximizing are adequate to account
for probabiistic choice.

Linear Waiting

Earlier 1 showed how proportional timing seems 1o underlic a wide variety
of effects on chain reinforeement schedules. Since this is such a ubiquitous
process, we need to see what it predicts for the situations now under dis-
cussion. What does proportional tithing imply for molar measures of per-
formance on RI and PR schedules, for example? What does 1t imply for the
allocation of behavior on concurrent RIRI? Is it consistent with the match-
ing law? [ will take these cases in turn.

Simple RI Sehedules. Behavior on RI schedules is the easiest 1o under-
stand 1n terms of proportional timing. The first thing we need 1o do s to
decide on the time marker. In the discussion of momentary maximizing i
showed that postresponse time {8 the critical variable on RI schedules.
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Proportional timing then just says that pigeons (and rats) will set their
average interresponse time (o be a fixed proportion ol the expecied time
between a response and reinforcement. If reinforcement is delivered on a
random basis, then the expected time to reinforcement will just be 1/rein-
forcement rate. Thus, proportional timing implies that response rate should
be proportional to reinforcement rate on RI schedules. This is close to the
truth when reinforcement rate is low; it is not true when reinforcement
rate 1s high. What have we forgotten?

We have forgotten that there is an upper limit on response rate, a
lower limit on the time between responses. When typical waiting times arc
long, on FI schedules for example, we can ignore this constraint. But when
they are short, on RI schedules for example, we need to mclude it. If we
add in a term for the mimimum time between responses, we have a modified
version of proportional timing that Wynne and Staddon (1988) have called
linear waiting. 11 we denote the expected time to reinforcement by I and the
(ime between responses by t, linear waiting is just

t= Al+B, (12)

where A is the proportion of the expected time to food that the animal
waits, as belore, and B is the shortest possible interresponse time. Thus,
even if 11s zero, the animal will wait at least time B between successive
FESPONSES.

Now let's Jook at what Equation 12 predicts for simple RI schedules. t is
just l/response rate, x; 11s just lreinforcement rate, R(x). Making these
substitutions yields

1% = A/R(x)+ B, or x = R A+BR(x)|
= (I/B)R(x)/AB+R(x)]. (13

F:quation 13 should be very tamiliar: it is Just Herrnstein’s hyperbola,
the maiching law prediction for simpie VI schedules (Equation 11), with
I/B =k, and A/B = Ry. As we have seen, this equation gives a good descrip-
tion of molar responding on V1 schedules (cf. Figure 18). Moreover, the
paramcters 1/B and A/B have the same significance as Herrnstein's
parameters k and Ro. Recall that Ry was supposed to represent the effect of
“other” reinforcers. Hence. increasing the magnitude of the reinforcer for
response X should in ¢ffect reduce Ry. Increasing reinforcement magnitude
reduces the waiting proportion, A, as we saw earlier, hence reduces A/B.
Parameter k 1s assumed to represent the maximum possible response rale;



1995 SCHEDULE COMBINATIONS AND CHOICE 263

the linear-waiting parameter B represents the shortest possible inter
response time, so that 1/B has the same significance as k.

Fixed-Ratio Schedules. One of the main problems with the single-
response matching equation (Equation 11) is that it does not give an accurate
prediction of how response rate varies with reinforcement rate on fixed-ratio
schedules (cf. Timberlake, 1977). And since it has no term for the schedule it
self, it obviously cannot describe the relation between response rate and ratio
value. It is possibie to derive these predictions from linear waiting, however.

Earfier 1 argued that fixed-ratio schedules are treated by animals in a
fashion very similar to two-link chain schedules. We can use this analysis to
work out how overall response rate should depend on ratio value, and how
it should be rclated to obtained reinforcement rate as the ratio vatue is
varied (L.e., the response function). The algebra involved is too lengthy to
go over here, but the conclusions are quite simple: (a) Lincar wailing
predicts a positive relation between ratio value and response rate. (b)
Lincar waiting predicts a linear rclation, with negative slope, between
response rate and obtained reinforcement rate. The validity of these predic-
tions depends on conditions being such that the parameters A and B are
constant. They will notl be constant if the animal’s motivational state is al-
lowed to vary i the experimental session is so lang, or the reinforcement
rate so high, that he is more or less hungry at the end of the session than at
the beginning, for example,

You have already seen data consistent with the first prediction in Fig-
ure 22: the results of the Hirsch and Collicr experiment, as well as
numerous others reviewed by Hogan and Roper (1978), show that response
rate increases with ratio value over most of the range in most experiments
with food or water reinforcement. The second prediction, a lincar response
function of negative slope, has also been repeatedly confirmed: in ratio-
schedule experiments by Allison that are not apen to the artifactual objec-
tion we discussed earlier (see Allison. 1983), and by Ettinger and Staddon
(1983), using a novel procedure in which rats working for food reinforee-
ment were repeatedly exposed to an ascending and descending cycle of six
ratio values, (2,4,8,16,32 and 64). Rats adapt quickly to this procedure, and
respond at a rate and with a postreinforcement pause approprnate 1o the
prevailing ratio. The virtue of the cyclic procedure, therefore, is that it al-
lows us to measure the effect of ratio value on responding under conditions
where everything else is held constant this is not always possible when com-
parisons must be made between one block of daily experimental sessions
and another. By comparing cycles early and lale in the session we can make
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surc that performance is the same at the beginning as at the end, permit-
ting the six cycles/session to be averaged.

I'igure 37
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Fach point is the average lever press rate for a group of four rats'trained on a cyclic- ralio schedule.
Fach point is for a different ratio value' the poents at the ottom of the graph, for example. are fur FR 2,
the puints at the tap for FR 63 The straght hines are fitted to the data. The rightmest line is for rats at
BO%. of their free-feeding werghes, the inrer Line paralle] to it is for the same rats gewting food adul-
terated with quimine. The hne of shallow slape s for the rats at Y55% of their free-feeding weights (from
Ettinger & Staddon. 19830,

The results are shown in Figure 37. The fipure shows three straight-line
response functions. The one to the right was obtained with very hungry rats
(B0% of free-feeding weight), the parallel one to the left was obtained with
the same rats eating food adulterated with bad-tasting quinine. The third
function, with lower slope, was obtained when the rats were less hungry
(95% of free-feeding weight). What will be the effect of hunger, in terms of
the lincar waiting maodel? Recall that carlier I used the fact that the waiting
fraction, A, 1s smaller for large reinforeements to explain some propertics
of self control on chain schedules. We can do something similar here, be-
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cause the reinforcer must change in cffective value as the animal becomes
satiatcd. Hence, parameter A should be larger for a satiated animal than
for a hungry one. The algebra shows that an increase in A means a shal-
lower response-function line which is just what we see in the Figure. Now
what about the y-intercept? It also changes when A changes, and Ettinger
and Staddon found that as well {sce their Figure 8). But notice that any-
thing that affects only parameter B affects only the y-intercept, and not the
slope. Apparently a noxtous taste, such as quinine, docs just that, as shown
by the Icftmost parallcl responsce function in Figure 37, Linear waiting can-
not be the whole story here, however, because it predicts a too-shallow
stope for the typical FR responsc function. Regulatory processcs, such as
the one suggested by Ettinger & Staddon seem also to be involved.

Concurrent RI RI Schedules. We have already scen that any reinforee-
ment rule that satisites two not-very-restrictive conditions that response rate
be positively related to reinforcement rate, with zero intercept is sufficient
to produce matching on concurrent Rl Rl schedules. Clearly, lincar waiting
satistics these conditions: interresponse time is positively refated to reinfor-
cement delay, and infinite delay (zero reinforcement rate) should produce
infinite waiting (no responses). Hence, linear waiting, like numerous other
reinforcement rules, predicts matching of rsponse ratios to ratios of ob-
tained reinforcement on concurrent RIRL

We have also seen that behavior on concurrent RI RI often conforms
quite well 1o momentary maximizing: docs this result contlict with the
linear-waiting hypothesis? Not at all, because an animal that follows the
lincar-waiting rule will also show momentary maximizing. For example, sup-
pose the RI schedule on the Left is 3-min and on the Right 1-min. Lincar
waiting imphes that the time between interresponse times on the Left will
be on average about three times longer than IRTs on the Right. Such # pat-
tern is not required by MM recall that the actual times when a “decision” to
respond is made are not prescribed by MM -but it is perfectly consistent with
MM. becausc the response that actually occurs will satisfy the MM condi-
tion, that it is made to the allernative with highest payofl probability.

Undermatching is a frequent deviation from simple maiching. Under-
maiching means that the ratio of responses, x/y, is closer to indifference
(30:50) than the ratio of reinforcements. For example, an animal that shows
x’y = 2.5 and R{x)/R{y) = 3 is said to undermatch. What is the reason for
this deviation? Lincar waiting depends on the animal’s ability to remember
the time marker, that s, to remember where he responded last, and to
remember which responsce he was making when reinforcement occurred.
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Anything that impairs recencey discrimination will cause confusions between
one choice alternative and the other, hence will make the aiternatives morc
similar, hence will favor undermatehing. Converscly, anything that makes
the two alternatives more distinct should shift preference in the opposite
direction, towards (but not beyond) matching.

Sheer lapse of time impairs memory. Hence, a concurrent schedule in
which reinforcement is infrequent, which implies long waiting times, should
causc more memory confusions. Are animals more likely to show under-
matching on lean concurrent schedules? The answer scems to be “yes”, For
example, Fantino, Squires, Delbriick and Peterson (1972) looked at match-
ing in pigeons responding for food reinforcement on different pairs of VI
schedules ranging from 6 s vs. 12 5 to 600 5 to 1200 s. They found responding
to each key was almost cqual at the longest values, whercas choice was al-
most exciusive at the shortest. The undermatching was also greater at the
longer values, but the effect was relatively small. Because of the propertics
of the VI feedback function I discussed earlier. even close-to-exclusive
choice nevertheless produces pretty good matching, so a tendency to con-
fuse the two keys is partially compensated for by comparable changes in the
refative frequency of reinforcements obtained: as responding declines in ab-
solute level, as preference approaches indifference there is a strang tenden-
cy for obtained reinforcement rates to equalize as well. Memory for an
cvent is also impaired if it occurs close in time to ather, similar events. If
animals switch frequently between choice alternatives, they may have dif-
ficulty remembering which choice they made last. A procedure known ay
the chiangeover delay (COD) was devised early on as a way to guarantee
matching on concurrent RI R1 schedules. The COD also discourages animals
from switching frequently between alternatives. It works by imposing a
“dead time” of a second or two after cach switch; during this COD lime, no
reinforcement can be obtained, even if the RI timer has set one up. Animals
trained in this way soon learn not to switch frequently between alternatives,
and of course when reinforcement does occur it is scparated by at least the
COD time from responding to the nonrcinforced allernative. Both the
lowered swilching rate and the separation in time of reinforcement for the
two choices aid memory and so should favor matching over undermatching.

Molecuiar Mechanisms: Conclusion

1 have discussed three molccular mechanisms for behavioral allocation:
momentary maximizing, melioration, and linear waiting. The first two are
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hill-climbing processcs; they act to shift preference in the direction of the
locaily better alternative. Both therefore predict fixation on the richer ai-
ternative in the two-armed bandit situation. There is also some evidence
for MM on concurrent RI RI schedules. Melioration explains matching on
concurrent RI R1 and RI RR reasonably well, but must bring in auxiliary as-
sumptions to explain undermatching, @ common deviation {rom matching.
Melioration, in the form of the relative law of effect, can account for motar
behavior on simple RI schedules, but {ails to account for behavior on
simplc FR schedules becausce it treats all schedules alike. Momentary maxi-
mizing is alsc unable to account for performance on simple schedules.
Neither mehoration nor matching can explain performance on a frequency-
dependent schedule in which the probability of payoff on the onc side 18 al-
ways higher than on the other, and increasing preference for the richer side
reduces the absolute valucs of both payof! probabilitics.

The timing process calied lincar waiting is able to account for molar pat-
terns on simple schedules. It cxplains why the hyperbolic ecquation relating
response and reinforcement rates on RI schedules works so well, and it can
also explain the very different response function on FR schedules. On con-
current RI RI schedules, linear waiting is very similar to momentary maxi-
mizing and makes similar predictions. It can also account for the effects of
the changeover delay, which tends to produce good matching, and the ef-
tfeets of low absolute reinforcement rates. which tend to produce under-
matching. We do not know (it is pot easy to solve the problem analytically)
whether lincar waiting can account for the complex patterns of behavior
produced by some frequency-dependent schedules, however, nor is it clear
whether it can account for biased matching on concurrent VI VR schedules.
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Box 1: Proportional Timing and Optimal Policy
in Self-Control Experiments

We assume that the animal trecats cach key independently, and that the ini-
tial-key VI can be treated as an FI, but with a smaller proportional-waiting
constant, a. Thus, for the procedure in Figure 12:

pausc on the LEF: a) (1+T) (89.2.1A)

on the RIGHT: ap(t+ KT), (39.2.1R)

where K is the ratio of Long/Short second links. We also assume that the
pause constants a; and ag will be inversely related to the reward mag-
nitudes on the Left and Right. If the ratio aj/ag = A, and we rewrite ag as
just a, for simplicity, eq. B9.2.1 reduces to

pause on the LEFT: aa(t +71) {(B2.2.24)

on the RIGHT: a(t +KT), {(B39.2.25}

Response rate, by our assumption (and ignoring competition) 1n the first
link is proportional to the time spent responding on each side, which is just
t minus pause time. The ratio of responding is just the ratio of these quan-
tities:

LEFIRIGHT = [L-Aa(t+1))/[t1-ait + K1)] = [1{1-Aa)-aAT)/[t{1-a)-aTK]|. (B92.3)
(Competition will just tend to make preferences more extreme, because it
favors the side with the shorter pause, but affects both sides equally when
pauses are equal). Equation B9.2.3, with the indicated parameter values,
generated the curves in Figures 9.13-9.15. Note that if T = 0, eq. B9.2.3
reduces to L/R = (1-Aa)/(1-a), which is unity if the two rewards are equal,
and shows a bias towards the large-reward side if A>1.

Optimal policy in the self-control procedure, There are three possible
strategies here: impulsive (always pick the short-delay side), self-conirof (al-
ways pick the long-delay side) and sample pick both. The sample strategy is
only a possibility with VI initial links. For the simple FI casc the comparison
between impulsive and control is straightforward. The food rates are
inpulsive: B+ T)
congrol: Af(LFKT), A K> = 1,
where A 13 the ratio of large/small reward magnitude and K the ratio of
longfshort second-link length. These two yield the switching condition,
choose impulsive if

L < T(K-A)/(A-1), or t/T < (K~A}[A-1). (89.24)



274 J.E.A. STADDON Special issue, Val. 21

Note that the choice here does nol depend on the absolute values of T and
t, but only on their ratio, which is different both from the data and the
proportional-timing prediction. Moreover, if K<=A, the animal should
never choose impulsive, and if A< =1, he should always choose impulsive.

The prediction with VI first links is too complicated to go into here.
The food rate for sample is given by a generalized version of the argument
we gave earlier for chain VI FI with identical rewards on both sides. In the
present case it yields A/(t+2KT)+ 1/(t+27T) for the sample food rate, which
in turn gives rise to quadratic expressions when compared with the food
rates for the other two strategies.

Box 2: The Laffer Curve

The “Laffer curve” was reportedly sketched by California economist Ar-
thur Laffer on a paper napkin as he vigorously argued the case ftor lower
tax rates to a colleague over lunch. He justified his propaosal by the follow-
ing argument. Suppose that people’s willingness to do productive work
depends upon the effective wage rate in the backward-bending fashion of
the standard labor-supply curve. The effective wage rate depends on the
tax rate, since we can only spend what is left after income tax has been ex-
tracted. Tax rates are (nominally) highly progressive, so that the higher the
wage rate the higher the proportion that is lost (to the earner) in taxes.
Hence, there must be a point at which higher taxes begin to depress the
total amount of productive work that is done. If the total amount of work
done decreases enough, then the total 1ax “take” will begin o decrease.
¢ven though the tax raie is high.

The key question is: When is the tax rate too high? That is, when is it 5o
high that the depressive elfect on total amount of labor supplied exceeds
the added revenue brought in by virtue of the high rate? Laffer argued that
timc is #ow, so that taxes ought to be reduced.

Laffer’s argument appears to be an economic one, but it clearly has a
very large. and crucial, psychological component, because it hinges on the
siz¢ of the reduction (n work associated with loss of income to taxes. If
people remain willing to work hard, even though a large chunk of their
ncome goes to taxes, then Laffer's argument fails. The current consensus
seems to be thal people are more willing to work than Laffer expected.
Yet major legislation was enacted based on little more than a collective
conjecture about how people would react to a small increase in take-
home pay.



