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ABSTRACT

The standard method of statistical inference involves testing a null hypothesis
that the researcher usually hopes to reject in order to accept a specific alternative
hypothesis. The methed is problematic in some ways; for example, consistency with a
stringent underlying mathematical model and random sampling are needed, in principle,
and decisions need to be based on not only objective outcomes of tests but also
subjective evaluation of effect sizes. Some other problems have been wrongly attributed
to it, for example, that it often involves null hypotheses that are preposterous or
obviously false, permits only a decision to accept or to reject the null hypothesis, is
misdirected because the real issue is not accept/reject but degree of belief, is an
unfortunate hybridizatien, involves faulty syllogistic reasoning, and is inferior to the
Bayesian approach. These criticisms are answered in this article: the conclusion is that
the standard method is sound and, unless misused, it is valuable.

Keywords: Bayesian approach, Fisherian approach, inferential statistics,
meta-analysis, methodology, null-hypothesis testing, research design, statistical
inference, Type | and |l errors

RESUMEN

El método estandard de la estadistica inferencial involucra probar una hipctesis
nula, que el investigador usualmente desea rechazar para aceptar una hipétesis alterna
especifica. El método es problematico en algunos respectos; por ejemplo, es necesario,
en principio, tanto la consistencia estricta con el modelo matematico subyacente, como
contar con un muestreo aleatorio vy las decisiones necesitan basarse, no sélo en pruebas
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con resultados objetivos, sino también en evaluaciones subjetivas de los efectos debidos
al tamario de la muestra. Algunos otros problemas se han atribuido erréneamente adicho
método. Por ejemplo, que el método generalmente involucra hipdtesis nulas que son
totalmente absurdas o obviamente falsas, o que sdélo permite una decisidn respecto ala
aceptacién o rechazo de la hipétesis nula; éstas son criticas erréneas puesto que el
problema real no es aceptar/rechazar, sino el grado de creencia. Este razonamiento estd
mal dirigido porque es un hibrido desafortunado, que involucra razonamiento silogistico
falso y que es inferior a la aproximacion Bayesiana. En este trabajo se responde a estas
criticas; la conclusion es gue el método estandard es sélido y que, a menos gue sea mal
utilizado, tiene valor.

Palabras clave: Aproximacion Bayesiana, aproximacién Fisheriana, estadistica
inferencial, meta-analisis, metodologia, prueba de la hipdtesis nula, diseno experimental,
inferencia estadistica, erores tipo | y tipo |l

In this article, | summarize the standard method of statistical inference
and discuss criticisms of this method. My goal is to allay doubts about the
logic of statistical inference that the criticisms might have engendered in group
researchers and, especially, behavior analysts. | have argued in a companion
article {Reese, 1998) that group research methodology is legitimate for behavior
analysis. Statistical inference is traditionally an essential component of this
methodology, and unless doubts about statistical inference are allayed, behavior
analysts who otherwise might lean toward using group research methodology
might for the wrong reasons decide against using it. Actually, group research
methodology can be used without statistical inference, as some critics have
noted (the point is discussed later), and statistical inference can be used in
single- subject research, as others have argued (references cited by Hopkins,
Cole, & Mason, 1998). | agree with the latter argument, and thus | disagree
with the conclusion of Hopkins et al. {1998} that at best, statistical inference
is not useful to behavior analysts. Empirical demonstrations that visual
inspection of graphs is only moderately reliable (DeProspero & Cohen, 1979;
Fisch, 1998) are highly relevant to this disagreement; | address some other
relevant issues elsewhere {(Reese, 19938, in press a).

The Standard Method of Statistical Inference

The Role of Probabhility

The standard method of statistical inference is not arcane, not occult,
not inherently dangerous, and in principle not difficult, even though many
behavior analysts, some group researchers, and some statisticians seem to
believe that it is. The mistaken belief is bolstered by an embarrassingly large
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number of errors made by many proponents of the method in statistics
textbooks and articles and in research reports (documented by, e.g., Cohen,
1994; Hagen, 1997, 1998; Schmidt, 1996; Tryon, 1998; and references they
cited). However, the topics are not complex and most of the errors seem to
reflect carelessness rather than misunderstanding {Schlesinger, 1991, p. 16).
An analogy is a very large number of errors in descriptions of the Watson and
Rayner (1920) "Little Albert" study in psychology textbooks and articles
{documented by, e.g., Cornwell & Hobbs, 1976: B. Harris, 1979; Prytula,
Oster, & Davis, 1977; Reese, in press b). Watson and Rayner’s report was
much more straightforward and simple than the error rate might imply (Reese,
in press b).

Probability as relative frequency. The standard method of statistical
inference is based on the refative-frequency, or "frequentist” {e.g., Savage,
1961/1964), concept of probability. Probability in this sense is defined as the
number of events of a specified kind in a population of events, relative to the
number of all events in this population (e.g., Hays, 1963, chap. 2). Relative
frequency can be determined empirically a posteriori or hypothetically a priori.
For example, if the target events are ones and fives on a die thrown 80 times,
the population of events is the specitic 80 throws and the empirical probability
of obtaining ones and fives is the actually obtained number of ones and fives,
divided by 80. The hypothetical probability of ones and fives refers to an
hypothetical population consisting of an infinite number of throws; it is one
third if the die is unbiased.

Analogously, a researcher could determine the empirical probability of
obtaining a particular class of treatment effects by replicating the study, as
Cohen {1994} and Hubbard {1995) recommended and Fisher {1958, e.g., pp.
77-78) opposed. The class could be defined qualitatively as a particular
direction of effects or quantitatively as a particular numerical range of effects.
In either case, a fairly large number of replications would be needed to get a
useful measure of the probability of the class. The measure would be
meaningless unless the replications constituted a single population, which
would require using the same procedures and random samples of research
participants in all of the replications. More simply, a researcher could determine
the hypothetical probabiltity ot the outcome of a single study, using the
procedure outlined later.

Probability as degree of belief. An alternative to the relative-frequency
concept is "nonfrequency” or "personal” probability, defined as a person’s
degree of belief in the truth of a statement {e.g., Bakan, 1967, p. 60; Hagen,
1997; Kyburg & Smokler, 1961/1964). Itis the basis of the Bayesian approach
(discussed later), which is favored by many critics of the standard method.
Degree of belief is sometimes called "level of confidence,” but the latter phrase
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is used in the standard method as a synonym of "level of significance,” which
is a relative-frequency probability (level of significance is discussed later, under
Step 2}. Degree of belief is also called "subjective probability” (e.g., Kyburg &
Smokler, 1961/1964) and "opinion” (Savage, 1961/1964), though it is usually
understood to refer to beliefs based on evidence (Kyburg & Smokler,
1961/19264).

For example, if a die is thrown six times and a five is obtained on four
of the throws, the empirical relative frequency of fives (4/6) is so much larger
than the hypothetical relative frequency (1/6) that an observer might suspect
that the die is biased to yield fives. The observer's suspicion is interpretable
as his or her degree of belief that the die is biased to yield fives. If a specific
numerical value can be assigned to this degree of belief, the Bayesian approach
can be used. The complement of this numerical value is the degree of belief
that the die is not biased to yield fives. If subsequent throws of the die yield
an empirical relative frequency of fives that is more likely to be obtained, given
the specified numerical degree of belief than given its complement, the
observer’'s degree of belief that the die is biased for fives increases, Otherwise,
the degree of belief decreases (Hays, 1963, pp. 297-299).

Steps in the Standard Method

The standard method of statistical inference is formulated in the
present subsection in terms of seven distinct steps, based on a summary by
Lindquist {1956, p. 49 and other pages cited below). Criticisms of the steps
are discussed in later sections.

Step 1. Formulate a null hypothesis to be tested. Unless the research
is entirely exploratory, this step should also include farmulating an alternative
hypothesis (Fisher, 1966, pp. 12, 21; Hays, 1963, p. 250). The alternative
hypothesis, which is often called an "experimental hypothesis™ when it is
explicitly formulated, may refer to an outcome hoped for on the basis of a
theoretical prediction, or an expectation based on previous research, or merely
an intuition. Implicit in Step 1 is prior formulation of a problem to be solved or
a topic to be studied, which also includes selection of effects or behaviors to
be observed.

Step 2. Select an acceptable "level of significance,” or "alpha.”
Alpha is the risk of a Type | error, which is rejecting a true null hypothesis.
This step should also include selecting an acceptable leve! of risk {("beta") of a
Type Il error, which is failing to reject a false null hypothesis {Lindquist, pp.
66-68). Fisher (19686, p. 17) said that this concept is meaningful only when the
test involves a series of hypotheses about a population value. However, he
was only partially correct, as shown below, and although this substep is often



PROBLEMS OF STATISTICAL INFERENCE 43

omitted in practice, it should be taken.

Alpha is arbitrarily selected a priori, but in psychology it is
conventionally set at 0.05. A minimum value of beta can alsc be arbitrarily
selected a priori: Researchers can estimate the standard deviation of the
measure to be used, arbitrarily select a minimum value of beta and a sample
size, and on the basis of these values compute the minimum magnitude of
effect that should be statistically significant. Alternatively, researchers can
estimate the standard deviation, arbitrarily select a minimum value of beta and
the minimum magnitude of effect that they would want to be identified as
statistically significant, and compute the sample size that is needed to attain the
preselected minimum value of beta (e.g., Walker & Lev, 1953, pp. 72-76,
163-167). The same formulas can be used to estimate beta after the data have
been collected; for this purpose, the sample size is known and the standard
deviation and magnitude of the effect are estimated from the data.

Based on a review of published research, Sedimeier and Gigerenzer
{1989} concluded that the average actual risk of a Type |l error is extremely
large, about 0.60. Many critics of the standard method have accepted this
conclusion {e.g., Cohen, 1994; Hopkins et al., 1998; Hunter, 1997). Indeed,
Hunter {1997) cited the figure as universal rather than an average: The standard
method "has been shown to have a 60% error rate” and "the error rate for the
significance test is 12 times larger than researchers think it is” (p. 3). Actually,
however, the risk of a Type Il error depends on the magnitude of the true effect
{e.g., Abelson, 1997; Estes, 1997; Hays, 1963, p. 270; Winer, 1962, p. 12)
and although the magnitudes of true effects can be estimated or, as indicated
in the preceding paragraph, set at an a priori minimum value, the true
magnitudes are indeterminable. Therefore, the actual risk of a Type Il error is
also indeterminable {Estes, 1997; Lindquist, 1956, p. 72). This point provides
the justification for Fisher's statement mentioned above; but despite this
justification, selecting a desired value of beta is possible and, as shown later,
can be useful,

Step 3. Select a way to quantify (measure) the observations. If the
observations are categorical and not otherwise quantifiable, use number of
cases per category as the quantification. Use the measure of deviation selected
in the next step to compute the deviation of the observations from the null
hypothesis.

Step 4. Select a measure of the extent to which observations deviate
from the null hypothesis, using a measure that has a determinable sampling
distribution. Determine the sampling distribution of the measure on the
assumption that the null hypothesis is true.

Step 5. Use the selected alpha to separate a "region of acceptance”
from a "region of rejection” in the hypothetical sampling distribution
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determined in Step 4. The region of acceptance is sometimes called the "region
of nonrejection” {e.g., Hays, 1963, p. 271; Winer, 1962, p. 12} to indicate that
the null hypothesis may be retained as tenable rather than accepted when the
obtained deviation falls in this region.

The region of rejection can be located entirely in one tail of the
hypothetical sampling distribution or partly in both tails, depending on the
nature of the hypothesis being tested. For example, if the experimental
hypothesis is that a particular kind of training vields stimulus equivalence, the
null hypothesis can be that it does not yield stimulus equivalence and a
one-tailed test can be used. The best procedure, however, is usually to divide
the region of rejection equally between the two tails. Even when the stated
experimental hypothesis can be supported only by deviations in one of the tails,
a two-tailed test should be used if deviations opposite to the experimental
hypothesis would be interpretable. In the example, the training might yield
reversal of the expected responses--if equivalence would be indicated by 5,--R,
and 5,--R,, reversal would be S,--R, and S,~R,. If the test is one-tailed, the
reversal is not detectable; the statistically justified conclusion is not that
reversal occurred, but only that stimulus equivalence was not obtained.

Step 6. Obtain a random sample of relevant observations from a
relevant population.

Step 7. |If the obtained measure of deviation falls in the region of
acceptance, the outcome of the study is statistically nonsignificant and the null
hypothesis is retained {or accepted). If the obtained measure of deviation falls
in the region of rejection, the outcome of the study is statistically significant,
the null hypothesis is rejected, and a plausible alternative hypothesis is
accepted.

Real and Fancied Problems in the Steps
Step 1: Meaningfuiness of Null Hypotheses

Alleged implausibility of null hypotheses. Ward Edwards {1965}
objected to null hypothesis testing on the following argument: "Many null
hypotheses tested by classical procedures [i.e., the standard method] are
scientifically preposterous, not worthy of a moment’'s credence even as
approximations. If a hypothesis is preposterous to start with, . . . why testit?”
(pp. 401-402). Edwards did not specify how null hypotheses might be
scientifically preposterous and he did not give any examples; but in any case,
the answer to his question is that the standard method usually involves the
hope that the null hypothesis will be rejected, thus permitting acceptance of
an experimental hypothesis that has been theoretically predicted, empirically
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expected, or intuited.

A related argument is that the "nil" hypothesis--the null hypothesis that
populations de not differ (Cohen, 1994)--is not true unless it is true for an
infinite number of decimal places (Loftus, 1996} or at least for a large number
of decimal places (Cohen, 1994}, This argument is misleading because it cannot
legitimately be limited to "nil" hypotheses {which actually are not usefully
distinguished from other null hypotheses and therefore do not deserve a
separate name). The argument must encompass any hypothesized relation
among populations; for example, if the hypothesis is that the difference
between two population means is 10 units, the argument implies that this
hypothesis is true only if the difference is 10.0 followed by zeros to an
indefinitely large number of decimal places. The argument therefore implies that
no hypothesis in physics, chemistry, psychology, or any other science can be
true because the degree of precision required by the argument has not been
attained in any science and in principle cannot be attained (Popper, 1974, p.
280). Given that the required degree of precision cannot be attained, the
argument implies that no scientific hypothesis is falsifiable and therefore either
{a) science is actually pseudoscience because it cannot conform to Popper's
(1983, passim) "falsifiability” criterion for the designation science or (b) the
argument under consideration is irrelevant to science. | think the latter
alternative is obviously the more reasonable one.

A null hypothesis will not be rejected if it is false only in a decimal place
beyond detectability by available instruments. In fact, even if psychologists had
instruments that could detect almost infinitesimai differences, group research
methodology would make testing the null hypothesis worth while because the
variability of the measurements would almost surely be so large that the
obtained effect would not be statistically significant. The concept of power is
relevant to this point; it is discussed later.

Argument by Paul Meehl. Meehl (1967) argued against testing the null
hypothesis because it is "[quasi-] always false” in biological, socia!, and
behavioral sciences {pp. 108, 110; his brackets). His premise was that "it is
highly unlikely that any psychologically discriminable stimulation which we
apply to an experimental subject would exert literally zero effect upon any
aspect of his performance” {p. 109). His argument is undermined by three
problematic phrases in the premise and by irrelevance of nonzero effects that
are theoretically or practically negligible, but it is not problematic under certain
conditions.

{a) Meehl’'s phrase "highly uniikely" presumably accounts for the
bracketed "quasi,” which in Latin means "as if" but in Meehl's use fits the
standard English meaning "almost™ or "nearly” (Oxford, 1989, pp. 1001-
1002}. However, just as Watson {1913} failed to see the contradiction (noted
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by Bergmann, 1956) between denying the existence of mental images and, in
a footnote on the same page, admitting the possibility of "a sporadic few,"
Meehi failed to see that his own argument was undermined by the phrase
"highly unlikely.” The phrase undermines his argument because it admits the
possibility that any given null hypothesis may be true and therefore requires
that all null hypotheses be tested.

{b} Meehl’s phrase "psychologically discriminable stimulation” excludes
subthreshold magnitudes of stimulation, but the only evidence that stimulation
is subthreshold is that no aspect of performance is affected. Consequently,
Meehl’s argument is tautological: Psychologically discriminable stimulation has
by definition an effect on some aspect of performance; therefore, if the
stimulation is psychologically discriminable, the null hypothesis referring to the
affected aspect is false by this definition. Conversely, stimulation that is not
psychologically discriminable has by definition no effect on any aspect of
performance; therefore, if the stimulation is not psychologically discriminable,
the null hypothesis is true by this definition.

A premise used by W. Edwards, Lindman, and Savage {1963) is subject
to this criticism although they used "real” instead of "psychologically
discriminable.” They said: "Convention asks, ‘Do these two programs differ at
all in effectiveness?’ Of course they do. Could any real difference in the
programs fail to induce at least some slight difference in their effectiveness?"
{pp. 215-216).

(c) Meehi’s phrase "any aspect” is ambiguous because in the context
of his premise it could mean either "every aspect" of performance or "some
aspect” of performance. The first meaning makes the premise obviously false
because of empirical evidence that stimulation which is psychologically
discriminable with respect to some aspects of performance can be subthreshold
with respect to other aspects. For example, a stimulus that has been previously
experienced may be superthreshold with respect to affective responses but
subthreshold with respect to verbal indicants of recognition (e.g., Kunst-Wilson
& Zajonc, 1980). The second possible meaning of "any aspect” is no better
because it undermines the relevance of the premise: Any given researcher is
interested in selected aspects of performance, and even if Meeh!’s premise
were correct, it would be irrelevant whenever the affected aspects were not the
aspects selected for study (Hagen, 1997).

(d) Even if Meehl’s premise were correct with respect to aspects of
performance that were being studied, it would be irrelevant whenever the
effects were theoretically or practically negligible or so small that they were
not detectable--a point that W. Edwards et al. {1963) acknowledged with
respect to their own premise. An analogy is that the trajectory of a bullet fired
from a gun on the earth is influenced by gravitational attraction of not only the
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earth but also all other bodies in the universe, yet predictions of the trajectory
will not be measurably wrong if the other bodies are ignored (Nagel, 1961,
footnote 8, pp. 560-661). Also, the shooter's body may react measurably to
the firing of the gun, but the vast majority of the bodies in the universe will not
react in any measurable way.

{e} Meehl's premise is not problematic under three conditions: (i} The
efficacy of a treatment is being tested; (i} Meehl’s premise is correct with
respect to aspects of performance that are relevant to treatment efficacy; and
(iii} the effects are large enough to warrant rejecting the null hypothesis. In this
case, the researcher finds {with a two-tailed test) either that the treatment has
the desired effect or that it has the opposite effect.

Step 2: Interpretation of Alpha and Beta

Several authors have misinterpreted alpha and beta. For example: (a)
Cortina and Dunlap (1997, p. 166) said that alpha "is the Type | error rate,
regardless of whether or not the null is true"; {b} Rosnow and Rosenthal
{1996b, p. 254} said that the obtained probability is "the obtained probability
of a Type | error in a test of statistical significance”; (c) Walker and Lev (1953,
p. 62} said, "The probability of rejecting a hypothesis is called the power of the
test” (italicized in original); and {d) several authors said that power should be
maximized {e.qg., Fisher, 1966, p. 22; Hays, 1963, p. 287; Walker & Lev, 1953,
p. 62). For other examples, see Pollard and Richardson (1987). The first three
misinterpretations result from neglecting to mention that alpha and beta are
conditional probabilities: Alpha is the Type | error rate, conditional on a true null
hypothesis; and beta is the Type |l error rate, conditional on a false null
hypothesis. The complement of beta (1 - beta} is also a conditional probability;
it is the power of the test, that is, the probability of rejecting the null
hypothesis, conditional on its being false {e.g., Cortina & Dunlap, 1997; Pollard
& Richardson, 1987; Walker & Lev, 1953, p. 60}.

The crucial points are: {a) The Type | error is refecting a true null
hypothesis and therefore it cannot occur if the null hypothesis is retained,
regardless of whether the null hypothesis is true or false, and it cannot occur
if the nuli hypothesis is false, regardiess of whether the null hypothesis is
retained or rejected. Consequently, if the null hypothesis is true, the probability
of a Type | error is alpha and the concepts of Type Il error and power are
irrelevant. (b) Conversely, the Type |l error is retaining a false null hypothesis
and therefore it cannot occur if the null hypothesis is rejected, regardless of
whether the null hypothesis is true or false, and it cannot occur if the null
hypothesis is true, regardless of whether the null hypothesis is retained or
rejected. Consequently, if the null hypothesis is false, the probability of a Type
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Il error is beta, power is equal to one minus beta, and the concept of Type |
error is irrelevant. (c} A test has too much power if it identifies a trivial effect
as statistically significant; the aim should therefore be to optimize power rather
than to maximize it. (Each aof the following authors, among others, discussed
some of these points, but none discussed all of them: Bakan, 1967, chap. 1;
Cortina & Dunlap, 1997; Fisher, 1956, pp. 41-46; Frick, 1996; Hays, 1963, pp.
280-281; Hopkins et al., 1998; Neyman & Pearson, 1928: Pollard &
Richardson, 1987; Schmidt, 1996; Walker & Lev, 1953, pp. 60-63, 163;
Winer, 1962, p. 11).

Frick {1996) summarized recommendations to minimize "the total
probability of making an error,” that is, alpha plus beta (p. 387); but the
foregoing considerations cast some doubt on these recommendations. Of
course, aresearcher does not know in advance whether the null hypothesis is
true or false and therefore needs to guard against both kinds of error.
However, only one kind of error can be made about any one null hypothesis
(Schmidt, 1996). Consequently, although reducing the probability preselected
as alpha increases beta when the null hypothesis is false, it cannot affect beta
when the null hypothesis is true.

Therefore, researchers should use the degree of rigor with respect to
Type | errors that has become standard, which is the conventional alpha of
0.05, or they should explicitly argue for a different alpha persuasively enough
to convince readers that a different degree of rigor is needed. They should also
try to use a beta commensurate with the smallest meaningful deviation of
sample observations from the null hypothesis. Experiments are conducted for
many different reasons, as Sidman (1960, pp. 4-40) showed, and different
reasons might well entail different definitions of a meaningful deviation. For
example, theoretical meaningfulness might be consistent with a smaller
deviation than practical meaningfulness.

Step 3: Measurement

Step 3 is problematic because humans tend to make errors in observing,
measuring, scoring, transcribing, and the like (e.g., Fisch, 1998). These
problems are not discussed herein, not because they are unimportant, but
because they are not unique to the standard method of statistical inference and
because careful training of the observers, scorers, and so on should minimize
these errors whether the standard method or some other method is used.

Step 4: Hypothetical Sampling Distribution

In Step 4, the sampling distribution of the measure of deviation is
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determined on the basis of a mathematical model. A problem is that the sample
of observations obtained in Step 6 is often discrepant from this model, thus
implying that the population from which the sample was obtained is also
discrepant from the model. For example, if two treatments are being compared
and the null hypothesis is that their effects are the same, and if the measure of
deviation is, say, F in an analysis of variance, then the mathematical model
requires assuming that the samples of observations were drawn {a) at random
from two populations of treatment effects that (b) have identical means, (c) are
normally distributed, and (d} have identical variances.

The first assumption is discussed later, in the subsection on Step 6.
The assumption of identical means is usually tested because it is usually the
null hypothesis, but the distribution and variance assumptions are usually not
tested even though tests are available. A rationale for not testing the latter
assumptions is that Monte Carlo research has demonstrated that for many
measures of deviation used in psychological research, even fairly large
discrepancies from normal distributions and equal variances can be ignored
because the actual sampling distributions are acceptably close to the
hypeothetical sampling distributions (e.g., Hays, 1963, pp. 321-322, 378-379;
Lindquist, 1956, pp. 73-86). However, when repeated-measures {within-groups)
designs are used, as in most behavior analytic research, the actual sampling
distributions are sensitive to smaller discrepancies from the underlying model,
especially with respect to homogeneity of covariances, which is assumed in the
model underlying repeated-measures designs with more than two conditions
repeated (Hertzog & Rovine, 198%; McCall & Appelbaum, 1973; Winer, 1962,
pp. 363-374). Analysis of covariance is also sensitive to relatively smali
discrepancies from the underlying model, and one assumption that is often
viclated is homogeneity of regression (Lindquist, 1956, pp. 328-330).

Step 5: Regions of Acceptance and Rejection

Ward Edwards (1965) argued that the standard method is "always
violently biased against the null hypothesis” (p. 400} and that researchers
should avoid this bias by foermulating their predictions such that retaining the
null kypothesis confirms the predictions. This argument is flawed: {a) The
alleged bias against the null hypothesis occurs only in highly constrained
situations (Wilson, Miller, & Lower, 1967). (b} Rejecting the null hypothesis
implicates the logically valid argument of denying the consequent, but accepting
the null hypothesis implicates the logical fallacy of affirming the consequent
{these logical arguments are discussed later}). (c) The standard method does
not by itself permit acceptance of the null hypothesis when the measure of
deviation falls in the region of acceptance {(e.g., Fisher, 1966, p. 16).
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Rozeboom (1960} arrived at the same recommendation as W. Edwards from a
different argument, but he also overlooked this point. It is discussed later.

(Wilson et al., 1967, gave additional arguments against W. Edwards’s
recommendation.)

Step 6: Sampling

In Step 6 of the standard method, the nature of the topic or the
population under investigation may make obtaining a truly random sample of
observations difficult or even impossible. Two problems arise. One problem
is that some statistics, such as F and ¢, are based on a mathematical model in
which the sample means and variances are independent. The means and
variances are necessarily independent if samples are drawn at random from a
normally distributed population {Lindquist, 1956, chap. 2), but they are not
necessarily independent if the samples are not actually random. In the latter
case, the means and variances may still be independent, but the assumption of
independence needs to be supported by empirical evidence that the means and
variances are not significantly correlated in a reasonably large set of samples.

The other problem is that generalization of findings from a sample to
a population is justified only if the sample is a good representation of the
population. Most of the random samples in a sampling distribution are good
representations; therefore, any given random sample is likely to be a good
representation. Consequently, if a sample is not actually random, generalization
is strictly justifiable only to an hypothetical population defined as "the
population from which the obtained sample is a random sample.” Few
researchers give serious thought to how this population might differ from the
population of real interest.

The problem of generalization also arises in single-subject research. On
the one hand, single-subject researchers usually include several subjects in
order to demonstrate generality {e.g., Perone, 1994); but on the other hand,
these researchers usually want to generalize their findings beyond these
specific subjects. They want to generalize their findings to a population of
similar individuals, but this generalization is justified only if the behavior of the
sample of subjects is indeed similar to behavior in the population. Put another
way, the generalization requires that the behavior of the sample is a good
representation of the behavior of the population; this requirement is met, in
principle, if the sample is a random sample from the population.

Step 7: Testing Null Hypotheses

Loftus (1996) said that "carefully crafted” objections to reliance on
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testing the null hypothesis have been published periodically, and he lamented
that they "just kind of dissolve away in the vast acid bath of existing
methodological orthodoxy" (p. 162). Actually, regardless of how carefully
crafted they were, many of the objections were either flawed or irrelevant and,
as Cohen (1995) and Hagen (1997, 1998) said, others referred not to the
method as such but to misuse of the method. For example, a commen criticism
is that the standard method of statistical inference is illogical, but the alleged
logical flaws in the method are actually psychological flaws in some users of
the method. Another common comment is that the method has been
"discredited,” but this word is unwarranted; the warranted word is "criticized."
Several alleged flaws are discussed in the present subsection. Another
commoaon criticism refers to the availability of better metheds; this criticism is
discussed in a later section,

Direction of effect. Kaiser {1960) said that the standard method is
flawed because when a two-tailed test of the nuil hypothesis is used, "we
cannot logically make a directional statistical decision or statement when the
null hypothesis is rejected on the basis of the difference in the observed sample
means” (p. 160; italicized in original). Meehl (1967} enthusiastically endorsed
this position, R. 4. Harris {1997) found it entirely reasonable, and Schmidt
{19986, p. 122) implicitly endorsed it in commenting that the standard method
involves the null hypothesis but no alternative hypothesis.

Kaiser's point reminds me of an episode in the movie No Time for
Sergeants: Ben Whitledge and Will Stockdale are Air Force recruits and Ben
has chided Will for reacting to a female captain as a female rather than as an
officer; later, Will sees her across a room and says to the sergeant, "l don’t
notice whether it's a man or a woman or what. All | see is a captain, and
that’s all." The sergeant infers that Will has bad eyesight. {This episode in the
movie is a bowdlerization of the episode in the original nove!, by Hyman, 1954,
pp. 114-119.) Analogously, anyone who denies seeing the direction of the
obtained means seems likely to be feigning ignorance or to have bad eyesight.

The flaw in Kaiser's argument is revealed by considering the rationale
underlying tests of the null hypothesis. These tests are implicitly based on the
commonsense expectation that uncommaon things--things which rarely
happen--do not happen to us {Bakan, 1967, p. 5; Fisher, 1966, p. 14}. This
expectation justifies the commonsense assumption that if we know that an
event actually occurred and we know nothing else about it, we are justified in
believing that the event was not a rare event. Of course, if we do know
something else about the event, we may be justified in believing that a rare
event actually occurred; if our lottery ticket wins the jackpot, our prior
knowledge about lotteries will lead us to believe that a rare event happened to
us. (If the prior knowledge can be quantified as a personal probsbility, the
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Bayesian approach can be used to quantify the belief that a rare event actually
happened.} However, if we observe a snowfall in Death Valley in July and
know nothing else about Death Valley in July, we are justified in believing that
this snowfall was not a rare event.

In tests of the null hypothesis, rare is given a precise definition--for a
two-tailed test, an obtained two-tailed probability equal to or less than alpha.
Despite this refinement, the commonsense assumption is still used in the
standard method because prior knowledge is ignored: Any obtained effect is
assumed not to be rare {i.e., not to have a true probability of alpha or less).
Based on the commonsense assumption, whenever an event would be rare if
the null hypothesis were true, we conclude that the null hypothesis is false.
Furthermore, the logic of this decision not only permits but demands a
conclusion about the direction of the true effect--the obtained effect would be
even rarer if the true effect lies in one of the two possible directions away from
the null value, but it would be less rare if it lies in the other possible direction.
Based on the commonsense assumption that obtained events are not rare
events, the conclusion must be that the true effect lies in the direction in which
it is less rare (i.e., has a probability greater than alpha).

Truth of the null hypothesis. Several authors argued that testing null
hypotheses is useless because the null hypothesis is usually or always false,
even if only to the "tiny" degree (Cohen, 1994, p. 1000} discussed above in
connection with Step 1 {Bakan, 1967, pp. 6-8, 29; Baril & Cannon, 1995;
Cohen, 1994, 1995; W. Edwards et al.,, 1963; Loftus, 1993, 1996; Meehl,
1967; Thompson, 1998). The argument is flawed in two major ways.

The argument is flawed because, as Hagen {1997, 1998) commented,
it assumes that everything is related to everything else and therefore it requires
that "all measurable human characteristics--indeed, temperament, intelligence,
health, and even age at marriage and length of life--would have to be related,
at least to some degree, to the position of the planets when one was born and
the distribution of leaves in one's teacup” (Hagen, 1998, p. 801). He added
that unless the assumption has this cosmic scope, it does not support the
conclusion that testing null hypotheses is useless.

The argument is also flawed because in the standard method of
statistical inference the issue is not whether the null hypothesis is true but
whether it can be rejected on the basis of a statistical test. Rejecting it on the
argument that it is false because of some true but negligible deviation from the
null value or because it cannot be true for an indefinitely large number of
decimal places is trivial. Furthermore, if a one-tailed test is being used and the
deviation from the null value falls in the region of acceptance, then regardless
of the magnitude of the deviation, the null hypothesis is retained. Evidently,
Bakan, Baril, and Cannon, and the others cited above assumed a two-tailed
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test. The point that should be made is that if the null hypothesis is false
because of some small true effect, two-tailed statistical tests will lead to
rejecting the null hypothesis at a rate somewhat higher than one-half of alpha
and consequently at the same rate will lead to accepting a false alternative
hypothesis that refers to a large effect.

A related argument is that the null hypothesis is not worth testing
because it will always be rejected if the sample size is large enough (e.g.,
Cohen, 1984; Thompson, 1998). However, this argument is implicitly based
on the assumption that the null hypothesis is false; if the null hypothesis is true,
it will be rejected at the rate determined by alpha regardless of the sample size
{Hagen, 1997).

Acceptance/rejection versus believability. Another objection to the
standard method is that the goal of research is not to make an accept/reject
decision about the null hypothesis but to effect a change in the believability of
a proposition {e.g., Cohen, 1994; Rozeboom, 1960). This objection is correct
but misleading. Effecting a change in the believability of a proposition is indeed
a goal of most research, and the standard method does not yield a personal
probability {degree of belief). The standard method nevertheless deals with this
goal, but in the Discussion section rather than in the Results section.

The accept/reject {or retain/reject} decision about the null hypothesis
has only an ancillary role, which is subservient to the goal of describing
observed phenomena. The actual findings of a study are tHe descriptive
statistics, not the inferential statistics (Cohen, 1994; Fisher, 1956, p. 4;
Michael, 1974}. The findings are the obtained means or other descriptive
summaries of the observations, such as confidence interval estimates, error
bars, and estimated effect sizes {e.g., Loftus, 19893; Rosenthal, 1993)%
Theretfore, decisions about the tindings should be based on more than the
outcome of the statistical test. This point is discussed in the next subsection.

Other Real and Fancied Problems in the Standard Method
Statistical Conclusion Validity
Definition. The issue raised at the end of the preceding subsection is
about the “statistical conclusion validity” of the findings {Cook & Campbell,

1979, chap. 2). Statistical conclusion validity means that a given instance of
accepting or retaining the null hypothesis is nat a Type Il error and a given

? Confidence interval estimates, error bars, and estimated effect sizes are considered to

be descriptive statistics even though they involve assumptions about the population, such as
symmetrical distribution.



54 HAYNE W. REESE

instance of rejecting the null hypothesis is not a Type | error. Statistical tests
indicate whether an outcome is statistically nonsignificant or significant, but
they do not provide the required evidence about statistical conclusion validity.
Rather, the researcher must provide this evidence by argument, which shoutd
take into account the magnitude of the obtained effects. Unfortunately, few
researchers provide these arguments except when they are disputing the
nonsignificance of a desired effect or the significance of an undesired effect.
Consequently, the use of statistical inference has probably put a lot of
erroneous decisions into the journals (e.g., Hopkins et al., 1998), but the fault
is in the users, not in the method.

Plausible arguments. Many commentators (e.g., Malgady, 1998;
Schmidt, 1996} have pointed out that obtaining a nonsignificant effect is not
sufficient evidence that the null hypothesis is true. The reason is that in the null
sampling distribution, the measure of deviation falls in the region of acceptance
all but alpha proportion of the time {1 - alpha} if the null hypothesis is true, but
it also falls in this region some large proportion of the time (but iess than 1-
alpha} if the null hypothesis is false and the true effect falls in a wide range
within the region of acceptance (e.g., A. L. Edwards, 1967, pp. 212-213;
Lindquist, 19586, p. 67).

Nevertheless, a nonsignificant effect can be used as one premise in an
argument that the null hypothesis is true. To be plausible, the argument should
include at least the first two of the following points and preferably more: {a}
The obtained effect is very small; for example, the differences among the
obtained means are so small that even if the differences were real they would
be negligible. Put another way, the estimated effect size is very small. Schmidt
(1996, p. 120) commented errocneously that the size of an obtained effect is not
reported in a "truly traditional analysis,” but even a cursory examination of
Fisher’'s works shows that his examples include descriptions of effects. (b} The
obtained effect is statistically nonsignificant. (¢} The obtained effect would
have been statistically nonsignificant even if alpha had been larger; that is, the
obtained effect does not "approach significance.” {d) Power was sufficient to
detect any nonnegligible effect. {e) The obtained effect would be theoretically
or empirically anomalous if it were real.

Converse pdints would provide a plausible argument that the null
hypothesis is indeed false and that an alternative hypothesis is true: (a') The
obtained effect is large, or the null value is far outside the confidence interval
estimate of the effect. (b") The obtained effect is statistically significant. {c"}
The obtained effect would have been statistically significant even if alpha had
been smaller; that is, the obtained effect is "highly significant.” (d’) Power was
not excessive (this point would be supported by Point a’). (e} The obtained
effect was predicted or is plausibly explainable or is consistent with other
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empirical evidence. (Cook and Campbell, 1979, chap. 2, discussed additional
arguments.)

If an obtained effect falls in the region of acceptance, the null
hypothesis cannot legitimately be rejected even "marginally” or “weakly”
because an obtained effect is either nonsignificant or significant. The phrase
“marginally significant” is meaningful only if it is used to indicate that the
obtained probability is precisely equal to alpha, which designates the margin
between the regions of acceptance and rejection. As Rosnow and Rosenthal
(1996b} commented, Abelson (1996) slipped in saying that an obtained
probability of 0.08 "weakly"” supported rejecting the null hypothesis. However,
if the obtained effect falls in the region of acceptance but is nevertheless large,
the null hypothesis should be retained rather than accepted because in this case
the power of the test was evidently too low to constitute an adequate test.

Conversely, if the obtained effect is small but nevertheless falls in the
region of rejection, the logic of the standard method requires that the null
hypothesis be rejected. However, in this situation the finding could be held to
need replication on the argument that the test evidently had too much power,
resulting in acceptance of an effect that is (or seems to be) theoretically or
practically negligible. In this situation, using a sufficiently smaller alpha would
make the obtained effect nonsignificant, but alpha cannot be changed
legitimately after the fact and the obtained effect must therefore be reported to
be significant. A good approach is to report an estimate of the effect size
(always a good idea, as noted by Cohen, 1994; Hagen, 1998; Rosenthal,
1993). Ifitis small enough, the researcher can justifiably argue that although
the effect is statistically significant, it can be ignored because itis so small. Of
course, readers may disagree about effects that are "small enough” to justify
the argument. In any case, however, the argument is not that the effect is not
real, which would require arguing that a rare event actually occurred, but that
the researcher explicitly or implicitly overestimated the sample size needed to
obtain a desirable level of power of the test.

A fictitious example. A fictitious experiment described by Loftus
(1996} is relevant to the foregoing points. In the fictitious experiment the
obtained means in two conditions, each with 20 subjects, were 5.05 and 5.03
on a 10-point scale and the ¢ for this difference was "practically zero" {p. 167).
Loftus argued that the null hypothesis should not be accepted unless the power
of the test was large, and he said, "[1] it can be shown easily that, given a
particular mean difference, the smaller the ¢ value, the lower is power--and
hence, {2] the less appropriate it is to accept the null hypothesis” (p. 167;
bracketed index numbers added). Part [1] is accurate, but it does not justify
Part [2] because the concept of power is relevant only if the null hypothesis is
false in a nontrivial sense. The best point estimate of a true méan is the
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obtained mean because the obtained mean is "unbiased," "consistent,”
"efficient,” and "sufficient" (Hays, 1963, pp. 197-201). Therefore, the best
point estimate of the true mean difference in Loftus’s fictitious experiment is
the obtained mean difference of 0.02. A difference of 0.02 on a 10-point scale
is almost surely meaningless and therefore raising the issue of power in this
case is almost surely trivial.

Alleged Hybridization

Cohen (1994) and Loftus (1996), among other critics of the standard
method (e.g., Gigerenzer, 1993; Sedimeier & Gigerenzer, 1989), said that the
standard method is an unfortunate hybridization of methods developed by
Fisher and by Neyman and Pearson. Neither Cohen nor Loftus cited a specific
work by Neyman and Pearson, but the method Neyman and Pearson described
in 1928 is actually the same as Fisher’s {1966} method and both are consistent
with the now standard method. Granted, Fisher and Neyman and Pearson
criticized each other quite severely, but the criticisms were actually niggling, as
are the differences between the approaches. Examples are given in the
following paragraphs.

1. Fisher {1956, pp. 41-42) rejected the Neyman and Pearson concept
of Type | and [ error rates as relative frequencies in replications of a study, but
he (p. 82) inadvertently resclved the disagreement by distinguishing between
an actual series of replications from a real population and an hypothetical series
of replications from an hypothetical population. That is, the disagreement
disappears when a given actual sample is "regarded by an act of imagination”
as drawn from an hypothetical population of samples. These considerations also
indicate the sense in which statistical significance is sometimes said {e.g., by
Hagen, 1997; Melton, 1962} to indicate that a finding is probably replicable.
This interpretation does not mean that the same value of the statistic used will
be obtained; it means that if a Type Il error did not occur, the findings obtained
in replications are likely to be in the same tail of the region of rejection--that is,
statistically significant and in the same direction as the original finding (e.g.,
Bakan, 1987, p. 15). Put another way, it means that 95% of the 95%
confidence intervals calculated in replications can be expected to include the
true population value (Cohen, 1995}, provided that a Type Il error did not
occur. This proviso is needed because the confidence interval is centered on
the obtained value, but if a Type Il error occurred, the confidence interval
should be centered on the null value.

2. Loftus (1996}, Gigerenzer (1993}, and Sedimeier and Gigerenzer
{1989} said that Fisher used the phrase "level of significance” to mean
"obtained probdbility” and Neyman and Pearson used this phrase in the now
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standard sense of a preselected alpha. Actually, Fisher usually used "level of
significance" and "significance" to mean alpha (1956, e.g., pp. 42, 60, 62, 66,
81; 1966, e.g., pp. 13-14, 25, 57, 187-189, 196-197), but he indeed
sometimes used these terms to mean "obtained probability” {(e.g., 1956, p. 49
and perhaps p. 39}. Therefore, this difference dissolves into carelessness on
Fisher's part.

3. Schmidt {19986} said, "[1] The concept of statistical power does
not exist in Fisherian statistics. [2] In Fisherian statistics, the focus of attention
is solely on the null hypothesis. [3] No alternative hypothesis is introduced"
{p. 122; bracketed index numbers added). Sentences [1] and [3] are incorrect
{see Fisher, 1968, pp. 12, 21-22) and Sentence [2] is correct but misleading
because of the adverb "solely." Fisher {1968, e.g., p. 16) emphasized the Type
| error rate and Neyman and Pearson {1928} emphasized the Type Il error rate,
but both Fisher (1966, p. 17} and Neyman and Pearson (1228} acknowledged
both kinds of error. Fisher’'s (1968, p. 17) rationale was that the Type |l error
rate cannot be specified unless the experimental hypothesis specifies a precise
value of the parameter being tested.

4. Bakan (1967, pp. 25-27) pointed out that Fisher’'s approach leads
formally to a decision to reject versus inconclusiveness and Neyman and
Pearson’s approach leads to a decision to reject versus a decision to accept.
The reason is that Fisher's approach is implicitly based on deductive logic, in
which the null hypothesis can be validly rejected if it is inconsistent with the
obtained effect and no logically valid conclusion about the null hypothesis is
possible if it is consistent with the obtained effect {this logic is discussed in the
next subsection). In contrast, the Neyman and Pearson approach is based on
decision theory, in which samples from a batch of products are tested as a way
to decide whether the batch should be rejected as flawed or accepted as
unflawed. However, as Bakan commented, the basic ideas are the same in
both approaches {p. 26) and Neyman and Pearson only "explicated what was
already implicit is the work of the Fisher school” (p. 27).

Deductive Logic in Null-Hypothesis Testing

Several commentators have argued that deductive legic is not involved
in the standard method of statistical inference (e.g., Cohen, 1994; Falk, 1998;
Hagen, 1997, 1998; Tryon, 1998). Actually, however, deductive logic
provides the basic rationale of the standard method--the rationaie for testing the
null hypothesis rather than the experimental hypothesis that the researcher
hopes to confirm. The standard method is consistent with syllogistic reasoning,
as shown helow. Syllogistic reasoning provides no valid way to confirm the
antecedent clause in a conditional (if-then} proposition but it provides one valid
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way to falsify that clause. Therefore, the standard method puts the null
hypothesis rather than the experimental hypothesis in the antecedent clause.
The issues are discussed in the following paragraphs.

Cohen’s argument. Cohen (1994} argued that the logic of the standard
method of statistical inference is flawed because the reasoning is probabilistic.
He presented the following syllogism as a model of this reasoning.

[Syllogism 1] If the null hypothesis is correct [i.e., true), then these data
are highly unlikely.

These data have occurred.

Therefore, the null hypothesis is highly unlikely. {Cohen, 1994, p. 998)
Cohen used the following syllogism as an analogy to show the flaw in
Syllogism 1;

[Syllogism 2] If a person is an American, then he is probably not a
member of Congress.

This person is a member of Congress.

Therefore, he is probably not an American. (ibid.)

Baril and Cannon {1995) and Cortina and Dunlap {1997) criticized
Cohen’s syllogisms but overlooked the fatal flaws, which are that {a} both
syllogisms are logically invalid and (b) Syllogism 1 has a valid form but
Syllogism 2 does not and therefore the valid form of Syllogism 1 is not
challenged by any form of Syllogism 2. Both syllogisms are logically invalid
because both violate the logical principle of the excluded middle. In bivalued
logic, which is used in syllogistic reasoning, a proposition is either true or false
and these truth values are mutually exclusive and exhaustive. Thus, the truth
values represented by phrases such as "probably true" and "probably false" {or
"highly unlikely,” "probably not,” etc.) are not legitimately assignable to the
conclusions of syllagisms.

In the following revision of Syliogism 1 the conclusion is reworded to
be consistent with bivalued logic and the premises are rewritten to conform to
the wording actually used in the standard method of statistical inference--the
premises refer to "rare event” rather than likelihood. The latter change does
not affect the validity of the syllogism.

[Syllogism 11 If the null hypothesis is true, then the obtained event is
a rare event.

The obtained event is not a rare event.

Therefore, the null hypothesis is false,

The minor change from "highly unlikeiy” in the conclusion of Syllogism
1 to "false" in the conclusion of Syllogism 1’ changes the argument from invalid
to valid. Syllogism 1’ is an instance of the valid argument of denying the
consequent ("modus tollens"}.

The excluded middle in the conclusion of Syllogism 2 can be eliminated
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by making the conclusion a negation--"Therefore, he is not an American”-- but
this change does not make the syllogism valid and the syllogism has no valid
form {compare Werkmeister, 1948, chap. 9, 11, 12). The reason is that the
reference to probability in the consequent of the major premise cannot be
eliminated without changing the meaning of this premise. The predicate term
of the syllogism--"American"--is undistributed in the major premise because the
word "probably” allows the possibility that some Americans are members of
Congress. However, the conclusion stated in Syllogism 2 and the revised
conclusion suggested above are illicit unless "American” is distributed in the
major premise. The point may be more obvious if the major premise is changed
to the following lagically equivalent proposition: "Most Americans are not
members of Congress.” (The reference to probability is carried by "Most" in
this version; it would be carried by "Some" in strictly formal logic, but the flaw
would be the same.)

Logic in the standard method. As indicated above, rejection of the null
hypothesis is valid when the obtained outcome would be a rare event if the null
hypothesis were true. Falk {1998, p. 798) said that the standard method of
statistical inference is "a probabilistic imitation of modus tollens,” but in fact
the reasoning is not probabilistic even though probabilities are implicit in each
of the three statements in Syllogism 1°. In the major premise, "rare event"
refers to an empirical outcome, that is, finding that the obtained discrepancy
is "an event with a probability of alpha or less"; but the premise is "If A, then
rare event,” not "if A, then probably rare event.” The minor premise is a denial
of the consequent in the major premise, and the denial is based on the
commonsense assumption that cbtained events are not rare events. However,
the minor premise is not probabilistic; it is "Not rare event" rather than
"Probably not rare event.” Finally, the conclusion is "Therefore not A," which
is not probabilistic even though it is implicitly accepted with the proviso
"within limits of the risk of a Type | error.”

Syllagism 17 is therefore an accurate representation of the logic implicit
in the standard method of statistical inference. However, in practice the
researcher does not stop with the conclusion that the null hypothesis is false
but rather proceeds to another syllogism:

[Syllogism 3] If alternative hypothesis x is true, then the obtained event
is not a rare event.

The obtained event is not a rare event.

Therefore, alternative hypothesis x is true.

As in Syllogism 1’, the consequent in the major premise of Syllogism
3 refers to the empirical outcome and the minor premise is based on the
commonsense assumption that obtained events are not rare events. However,
Syllogism 3 is invalid in deductive logic—-it is the fallacy of affirming the
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consequent. Nevertheless, it is the basis of inductive reasoning (e.g., Cohen,
1984). Unless a study is entirely exploratory, it is intended to test a
theoretically based prediction, an empirically based expectation, or an intuition
and this test has the form of Syllogism 3. This test is therefore interpretable
as based on the deductive fallacy of affirming the consequent or on valid
inductive reasoning.

Alternative Approaches

As mentioned earlier, the standard method of statistical inference has
been criticized as less useful than alternative approaches that are available. The
most commonly cited alternatives are discussed in the present section.

Model Fitting

Nesselroade and McArdle (1997} and Granaas {1998} criticized the
standard method because more precise approaches are often available. These
approaches involve fitting the data to precisely specified mathematical-
statistical models. These approaches are indeed precise, but they also involve
testing a null hypothesis--the goodness-of-fit hypothesis that the data fit the
model {Granaas, 1998; McArdle & Nesselroade, 1994). A persisting problem
in this approach is that in practice the goodness-of-fit tests usually have too
much power, that is, unless a very small alpha is adopted, the tests detect
trivial discrepancies as statistically significant.

Meta-Analysis

Another alternative approach is meta-analysis, which involves
aggregating effect sizes obtained in studies that are related to a selected topic.
Several authors (e.g., Lipsey & Wilson, 1993; Schmidt, 1996} argued that
individual studies are inconclusive and that only meta-analysis can integrate
results across studies. Failure to realize that any one study is inconclusive has
probably sometimes led researchers to abandon a topic prematurely on the
basis of one persuasive study (e.g., Hopkins et al., 1998}, but meta-analysis
may not be the solution. | have argued elsewhere {Reese, in press a) that many
meta-analyses are problematic. One reasonis that most of the studies that are
integrated were published and therefore usually had effects large enough to be
statistically significant. Another reason is that the studies are usually
heterogeneous in potentially important ways, including populations sampled,
procedures and manipulations or tests used, and interactions assessed {(e.g.,
main effects and interactions of race and sex of participants are often not
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analyzed). Another reason, noted by Abelson {1997), is that "cause sizes™ are
ignored but need to be analyzed.

| would add still ancther reason: An effect revealed by meta-analysis
is arguably real, but it can be trivial. Schmidt {1996} gave two examples to
ilustrate the usefulness of meta-analysis. in one, the assumed true effect of
a drug was 0.50 in z units (i.e., half a standard deviation above the null value)
and in the other the estimated true correlation of a clerical aptitude test with job
performance was 0.22. | question whether these effects are meaningful. For
example, if a drug had an effect of half a standard deviation on Stanford-Binet
1Q, the control group mean would be 8 |Q points less than the experimental
group mean {e.g., 102 vs. 110); an effect this small is unlikely to have any
practical implications. In Schmidt’'s second example, the correlation of 0.22
means that the clerical aptitude test accounted for only about 5% of the
variance in job performance.

In short, meta-analysis usually has the same problems that traditionally
made the phrase "cross-study comparison” a pejorative epithet. In order to deal
with such problems the meta-analyst needs to use the traditional, somewhat
subjective approach to reviewing the literature--identifying possible moderator
variables and looking for relevant evidence in the studies reviewed. Lipsey and
Wilson (1993) used this approach.

Parameter Estimation

A third alternative approach is to report confidence interval estimates
and point estimates of population parameters. These estimates have been
argued to be more informative--and more useful for later meta-analysis--than are
the outcomes of statistical tests (e.g., Cohen, 1994; Schmidt, 1996).
However, parameter estimates and statistical tests are informative in different
ways because they have different functions, as noted earlier (compare Fisher,
1956, p. 57-60). Many research reports include confidence interval estimates,
as Schmidt {1996} commented, and most include the obtained means, which
as noted earlier are the best point estimates of the true (population} means.
Estimates are indeed useful for later meta-analysis, but until enough reports are
available to make a meta-analysis worthwhile and informative, the outcomes of
statistical tests provide information that is useful. This information is especially
useful, as Abelson (1997} pointed out, when it is surprising.

Effect sizes should be estimated and reported whether or not the null
hypothesis is tested and if it is tested, whether it is retained, accepted, or
rejected. One reason is to facilitate later meta-analyses, another is to let
readers apply their own criteria for determining whether an obtained effect is
"large" or "small." Effect sizes can be estimated in many different ways,
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summarized by, for example, Rosenthal (1993}, Rosnow and Rosenthal
(1996a), and Tatsucka {1993). A method recommended by Rosnow and
Rosenthal {1996a} involves computing a "counternuil” value and using it as
one end of a confidence interval estimate of the true effect size and using the
hypothetical null value as the other end. The counternull value is the value that
would have vyielded the same probability for the obtained effect if the
counternult value had been used instead of the null value; that is, the obtained
effect has the same probability in the null and counternull distributions. A
problem is that the null-counternull interva! overestimates the true effect size
because it capitalizes on chance--it is a one-tailed interval in the direction of the
obtained effect. Another problem is that the level of confidence in the interval
is determined by the obtained two-tailed probability; if the obtained two-tailed
probability is p, the percentage confidence is 100 x {1 - p}. For example, if the
obtained prabability is 0.20, the calculations yield an 80% confidence interval.
Although 80% may seem to be a high level of confidence, standard practice is
to use a 95% confidence interval, based on the use of 0.05 as a two-tailed
alpha. Whenever this alpha is used and the obtained effect falls in the region
of acceptance--as it does when computation of the null-counternull interval is
useful--the 95% confidence interval computed in the standard way (e.g., Hays,
1963, pp. 287-291) will always include values on both sides of the null value.
Another recommended method of estimating effect sizes is to use the
Pearson correlation between treatments and treatment effects {e.g., Rosnow
& Rosenthal, 1996a). A problem that might arise is that the Pearson correlation
assesses the magnitude of linear regression but not the magnitude of nonlinear
regression. The problem does not arise in studies with only two treatments
because regression is necessarily linear when only two data points are invelved.
However, if more than two treatments are involved, the researcher should test
the linearity of the regression. If the test was not done and cannot be inferred
from the reported data, the meta-analyst should not pool the outcome with the
ocutcomes of studies in which regression was shown to be linear.
Another estimate, the final example herein, is based on the obtained value
of Student’s t and the sample size per group. Assuming equal N:
t
d - —_
V2IN

where d is the estimated effect size. In Schmidt (1996, footnote 4, p. 125},
this estimate was misprinted as 2t/ V'N.
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The Bayesian Approach

According to Cohen {1994}, many researchers believe that when the
null hypothesis is rejected, the probability that it is actually true is alpha. This
belief is mistaken even though it may seem reasonable because alpha is the
probability that rejecting the null hypothesis is a Type | error if the null
hypothesis is true. Cohen said that researchers want to know the "inverse
probability" p(H, | D}, which is the conditional probability that the null hypothesis
is true, given the data obtained. The standard method does not yield this
inverse probability (e.qg., Cohen, 1994; Fisher, 1956, pp. 37, 43-46; Hagen,
1997; Winkler, 1993). Rather, as Cohen noted, it yields p{D|H,), which is the
conditional probability of obtaining the actually obtained data if the null
hypothesis is true. Therefore, researchers who want to know the inverse
probability should not use the standard method or, if they use it, they should
not misinterpret it as indicating the inverse probability.

Many critics of the standard method have favored the Bayesian
approach, based on the work of an early 18th century clergyman and
mathematician, Thomas Bayes, which he declined to publish during his
lifetime--it was published posthumously by his friend Richard Price (Fisher,
19586, pp. 8-9, 1966, p. 6). The critics seem to favor this approach because
unlike the standard method, it assigns a vaiue to the inverse probability
piH,| D). This probability is based in part on an a posteriori probability derived
from the cutcome of the research and in part on an a priori probability that the
theory, prediction, or intuition is true--the researcher’s prior degree of belief.
At one extreme--absolute prior certainty--no empirical test is needed, and at the
other extreme--no prior belief--the Bayesian approach cannot be used.

The central problem with the Bayesian approach is that the degree of
beliet is usually determined by each researcher who holds a prior belief and is
therefore usually at least subjective {e.g., Frick, 1996; Hays, 1963, p. 299;
McGraw, 1995; Wilson et al., 1967) and possibly also arbitrary and biased
(Frick, 1996) and "in the nature of mathematical slight-of-hand" (Fisher, 1966,
p. 198). The standard method does not have this problem because degrees of
belief are not considered; in fact, taking the subjective personal element out of
hypothesis testing is the major goal of the standard method. Nevertheless, as
Fisher (1966, pp. 194, 198} said, if legitimate a priori probabilities are available,
the Bayesian approach should be used. These probabilities might be degrees
of belief, as Hagen {1997) said, or they might necessarily be relative-frequency
probabilities, as Hays {1963, p. 116) implied. In any case, as Hays (p. 299
said, if an objective way to assess degrees of belief were developed, the
Bayesian approach could be useful and might come to be used routinely.
Unfortunately, more than three decades after Hays's statement, no objective
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way to assess degrees of belief has been developed.

CONCLUSION

My arguments in this article indicate that many of the flaws attributed
to the standard method of statistical inference are actually flaws in researchers
who use the method in unthinking, reflex ways. All the criticisms of the
standard method can be challenged, and none should be accepted without deep
study. They are best interpreted as warnings about how this method can be
misused rather than as indications of inherent flaws in the method. Group
researchers and behavior analysts who use the method and who have
responded appropriately to the warnings can obtain highly useful information
about the findings of a study. A major point, however, is that the findings of
a study are the obtained means or other descriptive statistics, not the outcomes
of the statistical tests. A comment by Nesselroade and McArdle (1997, p. 25)
about mathematical modeling procedures is also relevant to the standard
method of statistical inference, so much so that | quote it here as /’envor:

[Statistical methods] are the tools and not the craftsmen; they are the

instruments and not the musicians. As with quality tools and fine

musical instruments, full realization of the premise of these analytic
devices requires a high level of familiarity and knowledge on the part
of users. The more skillfully these instruments are used, the more
impressive and valuable are the outcomes that they help to produce,
and the greater will be the gains from applying them to substantive
problems and issues. (p. 25; bracketed phrase added)

Neyman and Pearson (1928, p. 232) made exactly the same point.
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