
NÚMERO 2 (septiembre)
NUMBER 2 (september)

154

2014
Vol. 40, 154-191

REVISTA MEXICANA DE ANÁLISIS DE LA CONDUCTA
MEXICAN JOURNAL OF BEHAVIOR ANALYSIS

Computer Programming for Research and
Application: LiveCode Development Environment

Programación de computadoras para investigación
y aplicación: Entorno de desarrollo LiveCode

Bill Potter, Rosanne Roy and Shannon Bianchi
California State University, Stanislaus

Abstract

This paper provides an overview of the advantages that a behavior analyst might ob-
tain from learning to program computers. A powerful, yet relatively easy to learn
programming platform called LiveCode is reviewed and a tutorial is provided on the
basics of the platform. A variety of Behavior Analytic applications created using Live-
Code are discussed and a sample receptive identification program is provided as an
illustration of the efficiency LiveCode offers in developing such prototypes quickly for
application or research.

Keywords: behavior analysis, computers, programming, LiveCode, research

Resumen

El presente trabajo proporciona una visión general de las ventajas que un analista de
la conducta podría obtener de aprender a programar computadoras. Una plataforma
de programación potente, pero relativamente fácil de aprender llamada LiveCode se
revisa y se proporciona un tutorial con los fundamentos de la plataforma. Una varie-
dad de aplicaciones enfocadas en el análisis de la conducta, creadas usando LiveCo-
de, son discutidas y se describe la programación de un programa de igualación a la

Bill Potter, Rosanne Roy, and Shannon Bianchi, Department of Psychology/Child Development, California
State University, Stanislaus.

Thanks to Patrick Williams for his help on this manuscript. In addition, thanks to the reviewers Hirofumi
Shimizu and Carlos A. Pérez-Herrera for their thoughtful improvements to this manuscript. Address correspon-
dence to Bill Potter, Department of Psychology/Child Development, CSU Stanislaus, One University Way,
Turlock, CA 95380. Email: wpotter@csustan.edu.

155

computer programming for research and application

muestra como una ilustración de la eficiencia que ofrece LiveCode en el desarrollo
de este tipo de prototipos de forma rápida para la aplicación o la investigación.

Palabras clave: análisis de la conducta, computadoras, programación, LiveCode,
investigación

An interesting relationship exists between the behavior of scientists and the ap-
plication of technology. Many technologies have emerged from the behavior of scien-
tists, but scientists tend to employ technology to enhance the reach and scope of their
scientific activities. Thus some researchers have noted that a “coevolution” (Lattal,
2008) has developed between science and technology. From a behavioral perspective
this seems logical – as new repertoires are added to an individual’s skill set, or new
stimulus control developed, those repertoires/stimuli interact with existing repertoires
to sometimes generate new behaviors (Catania, Ono & de Souza, 2000; Donahoe &
Palmer, 1994; Shahan & Chase, 2002). In this article we will provide some arguments
as to why learning to program computers is important for behavior analysts and intro-
duce a relatively easy, yet powerful computer programming platform called LiveCode
(http://livecode.com/).

As noted elsewhere in this Journal (Escobar, 2014), electro-mechanical technology
has been incorporated into behavior analysis for many years. An argument could be
made that Skinner (1938) and Ferster and Skinner’s (1957) research with basic operant
technology, established the foundation for the use of technology in the science of
behavior analysis. Others have expanded on their research, publishing in journals
such as the Journal of the Experimental Analysis of Behavior, The Journal of Applied
Behavior Analysis and the very journal you are reading now. Over the years, electro-
mechanical technology has developed to the point where computers are more than
capable of controlling experimental operant devices as well as other devices that have
proven to be useful for research and application in behavior analysis (Dallery &
Glenn, 2005).

Behavior analysts have recognized the utility of computers, and other technology
in the field. A recent review of the Special Interest Groups (SIGs) (ABAI, 2014) for the
International Association for Behavior Analysis reveals that of the 36 SIGs listed, two
(5.5%) are directly related to the merging of behavior analysis and technology (Behav-
ior Analysis and Selectionist Robotics and Behavior Analysis and Technology) and
another three (a total of 13.8%) are heavily dependent on technology (Experimental
Analysis of Human Behavior, Gambling, and Neuroscience). Of course many other
areas of behavior analysis have incorporated technology to differing degrees.

Behavior analysts have slowly merged behavioral technology with computer tech-
nology. To name a few, Headsprout (Layng, Twyman & Stikeleather, 2003) and Teach-
town (Whalen, Liden, Ingersoll, Dallaire, & Liden, 2006; Whalen, et al., 2010) have
fairly well established market shares for teaching basic language skills to typically
developing children and with children diagnosed with autism. Sniffy the rat (Jakubow,

156

Bill Potter et al.

2007) has been used in behavioral classrooms for many years. The Center for Autism
and Related Disorders (CARD) has developed a number of computer-based tools for
practitioners (Granpeesheh et al., 2010; Jang et al., 2012; Persicke, et al., 2014; Tar-
box et al., 2013). While these are commercial successes, other researchers and prac-
titioners have been using computers for many years for similar purposes – in late 1980
the first author of this paper visited Los Horcones in Sonora, Mexico and witnessed a
computer program written in HyperCard that taught many of the children there at that
time to read.

Technology offers many advantages to researchers and practitioners. Data gathered
by a computer often have better reliability than with human observers especially with
high rates of behavior. The computer also never gets bored, distracted or fatigued – if
arranged correctly one can rest assured that the experimental conditions were applied
when, and how the experimenter meant for them to be applied (Max, 2010). Of
course computers and other technology also have limitations, one of the more sig-
nificant is that computers often force researchers to examine selection-based respons-
es versus topography-based responses (Michael, 1985). In essence, it is much easier
for a computer (and human) to record and analyze responses that consist of clicking
on an object on the screen versus analyzing the form (topography) of a response. In-
terestingly this has also been seen in operant chambers – pigeons and rats are often
pressing on levers or pecking at keys. Studies exist that use technology and analyze
topography-based responding (Jenkins, 1973; LaMon & Zeigler, 1988), but they are
relatively infrequent. As exogenous technology (Lattal, 2008) develops, topography-
based research is likely to increase as those technologies are adopted in behavioral
research. The relatively recent development of the Kinect (Microsoft Kinect, 2011) and
other devices will likely promote such research. Indeed some researchers have al-
ready been using such technology (Beleboni, 2014). Cell phones, which function as
computers, also provide unique opportunities due to their prevalence, portability and
different types of sensors they incorporate. Researchers have also looked at games
from a behavioral perspective and examined the utility of using gamification to
change behavior (Morford, Witts, Killingsworth & Alavosius, 2014). A good portion of
gamification involves computer technology.

While many behavior analysts do not have the technical skills to design the hard-
ware behind computers, they likely have the necessary prerequisite skills to create
rudimentary software (generally for research or personal use). Such skills include
breaking tasks down to component parts, problem solving, and logical thinking –
which, although not operationally defined, are skills needed for creating effective
behavior change plans.

For the remainder of this paper we will introduce you to a programming platform
called LiveCode. LiveCode was modeled after HyperCard and, in essence, was de-
signed to tap into existing repertoires to allow people to learn programming faster. That
is, the syntax and vocabulary used in LiveCode is similar to a natural language. With
recent advances in hardware, easy to learn programming languages like LiveCode can

157

computer programming for research and application

easily control external devices, record responses and, of course, create software that
can utilize now readily accessible sensors (GPS, WIFI, accelerometers, etc.).

Some Uses of LiveCode

Over the years one of the authors has used LiveCode (formerly called Revolution)
software in a number of applications related to basic and applied research. A few are
briefly described below.

Operant Chambers

At California State University, Stanislaus we have a fully operational operant lab,
with a colony of pigeons. As with many state funded universities, funding for research
is slim. A typical operant chamber consists of three round disks (keys) for pigeons to
peck, which are backlighted using projectors to display stimuli on the disks. These
projectors cost upwards of $500, with one per disk – thus a minimum of $1500 per
chamber for typically only 12 different stimulus lights per disk. Using older, donated
laptops, we created a simple Plexiglas cover with 8 transparent disks hooked into our
Med-PC system (see Figure 1). Each disk was designated as an input to our Med-PC
computer – that is, each disk was simply a switch which let our main computer know
which disk the pigeon pecked. With a laptop overhanging the operant chamber, we
wired the main computer to relays (see Escobar 2014, in this issue for a description of
relays) which were attached to an external keyboard connected to the laptop. The
main computer communicated with the laptop through these keyboard “presses” (the
Med-PC computer was programmed to generate the key presses). We used LiveCode
to control the laptops, that is, to display images behind our Plexiglas disks. In Live-
Code, it is a simple matter to create a program that does some action based on which
keyboard letters were pressed. For example, here is some sample code (we will ex-
plain the LiveCode scripting language in more detail below):

on keydown whichkey
if whichkey = “K” then beep

end keydown

In this case only when the “K” key is pressed will the computer issue a beep. “on
keydown” is an event that is caused whenever a keyboard letter is pressed, “which-
Key” is what is typically called a variable in programming languages – you can think
of them as containers – in this case whichkey contains the letter that is pressed, and if
that letter happens to be a K, then the computer will beep. The “end keydown” tells
the computer you are done giving instructions. This may not make complete sense at
this point, but suffice it to say, it is a simple matter to create this program once you
become somewhat acquainted with LiveCode.

158

Bill Potter et al.

Figure 1. Operant chamber equipped with laptop used to display stimuli. See text for
details.

159

computer programming for research and application

For our operant lab, the programming (or code, or scripting as LiveCode calls it)
was more extensive – the computer program would wait for six keyboard presses – for
instance “ABCDEF” and in the if-then part of script above, would put a particular im-
age behind the first disk. If “ABCDDD” was received, a different image might be
placed behind the second disk – that is, the key six-letter sequence functioned as a
code to determine what image was placed behind which disk.

Notice that in such a set-up, the number of visual stimuli that one can present is
nearly unlimited – anything you can present on a computer screen. In addition, mo-
tion, videos, and sound can be presented through the computer’s speakers or via an
external speaker. A number of second and third-order conditional-discrimination stud-
ies were conducted using this equipment and software (Duroy, 2005; Redner, 2009).

Tactile Stimulators

As Escobar (2014, this issue) has pointed out, it is relatively easy to attach boards to
computers via USB or other ports. These can contain relays to operate other devices. In
2010 we conducted tactile discrimination research by using 16 micro push action so-
lenoids (you know them as electronic door locks), mounted on Velcro, to tap partici-
pants. Basically the participants had these door locks on various parts of their body
(arms, legs, abdomen, etc.) and when the computer activated a relay one of the door
locks would spring up (as if unlocking the door) and tap the participant. We would then
turn it off quickly so the participants experienced a brief tap. The study was examining
participant’s ability to learn to respond to each tap (or two taps) as a single letter. In es-
sence we were creating a device to aid a person who was deaf and blind. If a com-
puter translated vocal verbal behavior to text - standard speech to text programs – for
instance SIRI on the iPhone, or Dragon NaturallySpeaking (http://www.apple.com/ios/
siri/ & http://www.nuance.com/) then this program would tap out the letters for the
person to “read” in a tactile manner. This device, coupled with behaviorally designed
training resulted in participants learning at a much faster rate than with commercially
available devices. However, it is bulky and clearly a prototype (Stanton, 2010). Notice
that in this application the laptop computer used was controlling external relays – there
are a number of ready-made relay boards designed for this purpose – at a cost of $50-
$100 for about 16 relays. Once we were able to activate the relays (turn them on and
off) it was a simple matter to program the training – have the computer tap the partici-
pant at a randomly selected location and ask them to type in the letter that location tap
was assigned (we used discrete-trial training along with fluency). Externally controlled
relays (as in this research) can be coupled with using a keyboard for inputs (as in the
operant chamber research) to have an inexpensive method for recording responses
(keyboard inputs – we dissected the keyboards to facilitate this) and for having environ-
mental events to occur (the relays can trigger devices that can deliver reinforcers – turn
on videos, provide access to food, open doors, etc.). In essence, one can use these
techniques to create a low cost operant chamber, or other research related devices.

160

Bill Potter et al.

Computer-Based Tact Training versus Staff Training

Computers have long been used to provide training – with mixed results. In the-
ory, the computer is an ideal teaching machine – Skinner described an effective one
in 1958. The problems with computer-based training (CBT) are not with the machine,
but rather the lack of behavioral technology instilled into the lessons. Working with
a local agency which had a specific method of training tacts, we created a computer
program, using LiveCode that followed their training protocol exactly (the lead re-
searcher was an employee of the site). We also used a touchscreen that covered the
laptop screen (inexpensive and seamless integration with LiveCode – the software
treated touches as mouse clicks). While it was a fairly complex computer program,
the software worked well demonstrating the utility of CBT – the students learned just
as quickly in the computer format and the training integrity (presentation of stimuli,
reinforcers, etc.) was superior via the program (errors were made by the staff, but not
the computer). One can see how such technology could drive down the cost of
early intervention training using automation, although the effect on social skills for
these children would need to be investigated (Max, 2010). These computer pro-
grams/applications are only a few of many (see Appendix A for a list and directions
to download). The remainder of the paper will be a gentle and brief introduction to
LiveCode.

LiveCode

Overview

LiveCode emerged along with MetaCard (LiveCode bought out MetaCard), and
SuperCard from Apple-created HyperCard (Apple Computer, Inc., 1998). While dif-
ferent platforms, if you are familiar with any of these software development programs
you will find LiveCode relatively simple to use. You can obtain LiveCode from this
website: http://livecode.com/download/. The community version is free – you can
create programs and use them for research, but selling them may be limited. The
various licenses for LiveCode are specified here: http://livecode.com/livecode-licens-
es/ . LiveCode is quite powerful – you can create a program on your Macintosh, or on
your PC, then save it in a manner in which it will work on either platform (this is
called Cross Platform). In fact, if you create a program with LiveCode and take into
account some minor considerations, it will run on the Mac OS, Windows, Unix/Linus,
Android operating system and iPhone (IOS) operating system. LiveCode supports
many of the functions that an advanced (lower level – meaning more control and thus
more powerful) programming language has – such as arrays, associative arrays (hash
tables), interfaces for databases, etc. For the remainder of the article, it might be useful
if you read the article with LiveCode running on your computer.

161

computer programming for research and application

The Structure of LiveCode

The analogy that LiveCode uses was borrowed from HyperCard – each program is
called a stack. When you create a mainstack (menu item “File”, “New Mainstack”) a
window appears, usually with the label “Untitled” on the top of it. It has the standard
minimize, maximize and close buttons found on the left for the Mac and on the right
for the PC. As soon as you create the mainstack you have also created the first card
(there are also substacks – wait until you have learned more about LiveCode to ex-
plore them). Think of your stack as similar to a PowerPoint presentation - it is a single
file that contains many slides. In LiveCode, the stack is like the entire PowerPoint
presentation and a card is equivalent to one of the slides. After you create a stack in
LiveCode you have a single file that may contain multiple cards (as many as you
make, but at least one – card 1). When you start LiveCode (click on the LiveCode icon
after you have installed it – generally it is on your desktop) a tools “palette” is likely to
appear in addition to the menu bar. The tools palette is really just a smaller window
with lots of objects on it – see Figure 2. You can drag items off of the palette onto your
stack – in Figure 2 the first card has a number of objects on it – button, text field, im-
age area (picture), and a player (for videos). Thus in a LiveCode program, a stack,
contains cards, and those cards can contain a variety of objects such as text fields,
buttons, media players, images and other objects which we will not discuss in this
paper. Everything in LiveCode is considered an object – the stack, the cards, and the
different items you can put on cards (note that LiveCode will sometimes refer to ob-
jects as controls). LiveCode has two different modes – run, and edit. If you are in edit
mode (Menu item “Tools”, “Pointer tool”) or the arrow and “+” icon from the tools
palette (see Figure 2) and you double click on an object you can view that object’s
properties (see Figure 2). Each object has properties like size, position, coloring, text
size, etc. You can modify these properties from the Property Inspector. For instance, if
you examine a text field with the Property Inspector you can “lock text” of that field
preventing end users from typing in that field. Perhaps more importantly, this allows
that field to act like a button that will do things other than allow the user to enter text
(see below). An important part of any object is its script – this is where the code the
programmer writes resides in an object (see Figure 3). Finally, if you would like to get
an overview of your stack (program), you can bring up the Application Browser (Menu
Item “Tools”, “Application Browser”). As depicted in the bottom of Figure 2, this pro-
vides you with an overview of the program you have created.

Learning LiveCode Scripting

Programming, or scripting as LiveCode calls it, requires the programmer to care-
fully analyze all the steps involved in a task, and then write the instructions that will do
these steps. Since the first author has extensive experience with LiveCode, he recruited
two other researchers to aid in evaluating and informing the reader as to the experi-

162

Bill Potter et al.

Figure 2. The LiveCode Environment showing the Tools Palette, the Application Browser,
the Mainstack and the Property Inspector.

163

computer programming for research and application

Figure 3. This window is displaying the script of a button named “ClickMe”. The script is
the programming code – the mouseUp through mouseDown is called a handler – it handles
the message “mouseUp” by performing the steps between the On and End. You can have
multiple handlers in a script.

164

Bill Potter et al.

ences they are likely to encounter while learning to program in LiveCode. Each of these
researchers have an advanced degree (one a MS in Behavior Analysis the other a
Ph.D. in Developmental Psychology) and each have no programming experience. The
task assigned to them was to use the free online help resources available with the free
community version of LiveCode and spend a minimum of 10 hours learning to pro-
gram. During this time they were asked to write down their observations as to the ef-
fectiveness of the available materials, problems encountered and potential projects they
could envision as they learned more about the software. Overall these researchers both
noted that the help files available from the LiveCode program (Menu Item “Help” –
“Start Center”, or “Beginners Guide” or “Tutorials”) were not very effective for novices
and caused frustrations (but see some of the advice from these researchers in Appendix
B). Please note however, both of the researchers were able to create rudimentary pro-
grams. The notes from the researchers were analyzed with each scoring her own and
the other researcher’s comments summing the positive and negative statements as well
as ideas for future computer programs they might create. The operational definition of
a negative statement was any comment related to the inability to complete a task or
instructions that resulted in nonfunctioning code or where the instructions were unable
to be followed (for any reason – ill defined, using terminology unfamiliar to the re-
searcher, etc.) . The operational definition of a positive statement, was any comment
about successfully completing a task or a comment expressing some other positive
aspect of the learning experience: speed of learning, clarity of instructions, etc. Multi-
ple comments about the same positive or negative experience were scored only once.
An interobserver agreement (IOA) was calculated with the smaller of the two ob-
server’s scores divided by the larger. Over all of the observations the IOA was 93%;
for positives the IOA was 96% across the two observers and for negatives the IOA was
91%. For both sets of notes, the first researcher found a total of 54 positive comments,
and 81 negatives (50% more negatives than positives), the second researcher found a
total of 56 positive comments and 89 negatives (58% more negatives than positives -
see Table 1 for the data). Together they generated six ideas for future programs.

Based on the researchers’ feedback we purchased a copy of LiveCode University
($50: https://livecode.com/store/training/livecode-university/) and both researchers
found that to be much better – targeted to first time programmers and easier to under-
stand. However, they both noted that it was unclear if the previous 10 hours contrib-
uted to their understanding.

LiveCode programming is similar to stimulus-response relationships, that is, the
user may click a mouse (stimulus) and the computer responds. As a programmer, you
attempt to anticipate these stimuli. The software developers call the LiveCode environ-
ment “Event Driven” programming (derived from McMenamin & Palmer, 1984).This
means the software reacts to events (called messages in LiveCode – you can think of
them as stimuli) which usually are caused by the person interacting with the program.
For instance, when you use the mouse to click on a button created in LiveCode, three
messages are sent to that button: mouseDown, mouseStillDown, and mouseUp (italics

165

computer programming for research and application

are used to indicate LiveCode script; upper and lowercase text is to facilitate read-
ability - LiveCode does not discriminate between upper and lower case text). In a
single click each of these messages is sent to the button – in the logical order, mouse-
Down first, then mouseStillDown, then mouseUp. What the programmer does is ei-
ther handle any or all of these messages (one of the reasons why LiveCode calls the
code that reacts to an event a “handler”) or ignore them (not write a handler for them
and they disappear). Below is a simple handler (bit of LiveCode script):

on mouseUp
 Put “Hello World” into field 1
 Beep 3

end mouseUp

(Please note that if you copy and paste this text the quotes may need to be replaced in
LiveCode and you might have to add a return after field 1. If the “on mouseUp” and
“end mouseUp” are already in the button do not copy those.)

You could drag a button and field onto a card from the tools palette and put this
“handler” in the button script (recall from above, it is where the instructions to the
computer [code or scripting] goes). When the user clicked on that button, upon release
of the mouse button “Hello World” would appear in the first text field placed on a card
and then the computer would beep three times. The relevant parts of this handler are
the message that activates it (the “on mouseUp”), the instructions to the computer (the
“Put” and “Beep” lines) and notifying the computer that all is completed (“end mouse-
Up”). Notice that the code is very English-like (thus maybe “code” is the wrong word
to use). This mouseUp handler would reside in the script of a button – you can access

Table 1

Interobserver Frequency Counts

Points assigned by each researcher

Researcher Researcher

Scored notes #1 #2 IOA

 #1 experience positive 28 29 96.6

 #2 experience positive 26 27 96.3

 #1 experience negative 39 46 84.8

 #2 experience negative 42 43 97.7
Note: Each researcher summed positive and negative points from their notes taken during the first 10 hours
of learning LiveCode using only the free, online resources available. The overall calculated IOA was 93%. See
text for operational definitions.

166

Bill Potter et al.

the script of any object by right clicking the object while in edit mode (see Figure 2) and
selecting “Edit Script” or (also in edit mode) selecting the object and clicking on the
code icon (see Figure 2), or finally, selecting the object then holding down the control
key and pressing the E key (on the Mac it is the command key that you hold down).
There are often multiple ways of accomplishing something in LiveCode – and that is
particularly true when it comes to getting the computer to do some task.

As you become more capable with using LiveCode, you will want to investigate
what is called the Message Path – that is where the message goes from when it is first
created – for instance the mouse click – to when it disappears. For now it suffices to
say it is sent to the object that is clicked on, then if not handled, passes to the card that
object is placed on, and then to the stack the card is part of. At any point in this mes-
sage path the programmer can handle that message. But take note – once you handle
a message, for instance a mouseUp sent to a button (using the handler above), it will
stop there unless you pass it along – with a single line of code: “Pass mouseUp”. Then
it continues along the message path where you can “handle” it again if you like (at the
card or stack level for instance).

Any object (card, graphic, image, field, etc.) can contain handlers in its scripting
area – thus, you can put a picture of B. F. Skinner on a card and when the user clicks
on it, you handle the mouseUp and have the computer play the National Public Radio
(NPR) interview with B.F. Skinner from 1990 (Trudeau, 1990). You could do the same
of a transcript of that interview – typed into a text field. To do so with a text field all
you have to do is “lock” the field first (found by examining the properties of that field
– in edit mode double click on the field to bring up the Property Inspector) – otherwise
you will be set to type text into the field.

Finally, each script can contain multiple handlers. For instance, you could place a
button on a card, then edit the script of that button and have these three handlers in
that button: (see Figure 4)

on mouseDown
 RevSpeak “Mouse Down!”
 wait until revIsSpeaking() is false

end mouseDown

on mouseStillDown
 RevSpeak “Mouse Still Down!”
 wait until revIsSpeaking() is false

end mouseStillDown

on mouseUp
 RevSpeak “Finally! Mouse is up”
 wait until revIsSpeaking() is false

end mouseUp

167

computer programming for research and application

Figure 4. An example of three handlers in the script of a button.

168

Bill Potter et al.

RevSpeak is a useful command to know – it will speak text that you specify – it can
be in a text field – “RevSpeak field 1” or it can be as the above quoted text or as de-
scribed below in a variable. For the script above, with three handlers, when the user
clicks the button they should hear “Mouse Down” then “Mouse Still Down” then
“Finally! Mouse is up”. If the user clicks very fast the mouseStillDown message may
not be sent. If they click very slowly, the mouseStillDown message may be sent many
times (roughly it is sent once every 60th of a second – called a tick in LiveCode) where-
upon the user will hear the computer voice speak “Mouse Still Down” many times,
then lastly hear “Finally! Mouse is up”. Since the computer is very fast, the “wait until
revIsSpeaking() is false” tells the computer to wait until the speaking is completed
before executing any more instructions. At this point you might be thinking to yourself
that you could have the transcript of B.F. Skinner’s 1990 NPR interview in a field, lock
the field (as mentioned above) then add a line of code to that field’s script:

on mouseUp
 RevSpeak field 1 -- Assuming it is the first field
end mouseUp
(the text after the “--” is a comment; you can put them in your handlers to explain
what your code does – it comes in handy when you have to go back and modify your
code).

Alternatively, when you are scripting within an object and referring to that object – for
instance you put the mouseUp script above in the field that contains the interview
with B.F. Skinner- you can write instead: “RevSpeak Me” (me instead of field 1). Ob-
jects can be referred to in a number of ways – by name, ID, or number. To learn more
about what messages exist (hundreds!), explore LiveCode menu item “Help”, “Dic-
tionary”, then on the left hand side – “Language” and “Message”. You will be given a
list of nearly all the LiveCode messages along with a description of each when you
click on it. For most purposes, the mouse messages along with openStack, openCard
and closeCard messages will be sufficient for many programs you write. OpenStack
is sent when you open the stack – your program. OpenCard is sent when you visit a
card - including card 1 when you open the stack and closeCard when you leave a
card to go to another card. You can also investigate the hundreds of commands in
LiveCode by exploring menu item: “Help”, “Dictionary”, “Language”, “Command”.

One final area we will cover before showing several behavior analytic relevant
programs is the area of containers. For the rest of the programming world these are
typically referred to as variables. HyperCard, and later LiveCode have referred to them
as containers and it is an apt description. In practice, when you create one of these
containers LiveCode reserves some space in the computer memory to stash in it what-
ever you want to put in the container. Typically it is some text, or numbers. Creating a
variable is very easy – just put something into to. For instance you can write this
mouseUp handler:

169

computer programming for research and application

on mouseUp
 Put “Julie Vargas is B. F. Skinners Daughter” into WhatIwantTheComputerToSay
 RevSpeak WhatIwantTheComputerToSay
end mouseUp

If this handler is in a button and a user clicks on it, when the mouse comes up the
computer will speak what is in the variable (container) WhatIwantTheComputerToSay.
Of course you had the computer put “Julie Vargas is B. F. Skinners Daughter” into that
container, so that is what is spoken. We could have written the simpler: revSpeak
“Julie Vargas is B. F. Skinners Daughter” but we wanted to explore variables. Variables
can be quite long, cannot contain spaces, cannot start with a number and should not
be a word used in LiveCode - reserved words (i.e., commands, messages, etc.). Inter-
estingly, a field is also a container – you can use it in the same manner as a variable.
From a speed perspective however, variables are faster containers than fields – when
you put something into a field, LiveCode makes sure to save it to your hard disk (per-
manent memory on your computer) which takes time, LiveCode does not do that for
variables like “whatIwantTheComputerToSay”. Variables are limited however – they
have what is called a “scope”. That is, not all of your handlers will be able to access
that variable (container) – you have to be aware of this. For beginners, two simple
rules are enough. First, if you specify a variable as global, you can access it on any
handler as long as you specify that it is global for that handler. An example to clarify
– in the script area of a button on card 1 you put this handler:

on mouseUp
 Global TestingVariable --- we made TestingVariable a global variable
 Put “Skinners Birthday is March 20th” into TestingVariable
end mouseUp

You can create a second card by clicking on menu item “Object”, then selecting
“New card”. On card 2, you create another button and put this handler in the script
area of that button:

on mouseUp
 Global TestingVariable
 revSpeak TestingVariable
end mouseUp

If you open your stack and go immediately to card 2 first and click on the button,
your computer will not say anything - since you have not put anything into that con-
tainer (and since it is specified as global it does not say the word “TestingVariable” but
instead looks into the container and finds nothing). If you go to card 1 and click on
the button, then go back to card 2 and re-click that second button, your computer will

170

Bill Potter et al.

say “Skinner’s Birthday is March 20th”. If you were to delete the “Global TestingVaria-
ble” line from the card 2 button, click on the ‘Apply’ button to incorporate the change
to the handler, then click on the button, the computer would say “TestingVariable” – it
does so as there is no “global” statement to let it know that TestingVariable is a con-
tainer, and since you did not put anything into it, it treats it simply as text and says it.
In essence, if you put something into a variable name you created (e.g. “TestingVaria-
ble” or “CorrectAnswerCount”) or specify it as global, then LiveCode will look inside
that container. If you do not do either of those things, then LiveCode will assume you
are just writing text and if you are using the RevSpeak command, it will say those
words (e.g. “TestingVariable” or “CorrectAnswerCount”).

The second rule is that if you do not put the global label on a variable that you
create, it disappears when the handler script is finished. Here is an example in which
you want to count the number of times a user clicks on a button.

on mouseUp
 Add 1 to myCounter
 Put myCounter into field 1 --- presumably you put the field on the card!
end mouseUp

Every time the user clicks the button, a 1 will be put into field 1; it replaces the 1
that is already in the field (the computer is so fast that you will think nothing hap-
pened), but clearly the code is not counting the number of clicks. Clicks are not being
counted because MyCounter became nonexistent when the handler ended (comes to
the “end mouseUp”). When you click on the button a second time the variable is
recreated for a moment, and then disappears again. To make it persist – add in the
global designation as below:

on mouseUp
 Global myCounter
 Add 1 to myCounter
 Put myCounter into field 1
end mouseUp

Now it works great. Once the handler ends, the variable (container) myCounter
remains and its contents are intact – due to the “global” statement. Of course you might
be thinking – can’t I just use the field as the container and simply write: Add 1 to field
1? Definitely – as mentioned earlier in the paper there are many ways to accomplish the
same thing and your methods will depend on what you need to present to the end user
– do they need to see the field with the number in it (points earned perhaps?). If not, you
might use a variable, or hide the field (coded as: hide field 1 - you can still put things
into it however). If you need to see it again, just as simple: show field 1. Professional
programmers will be adept at making the code very fast and very efficient – especially

171

computer programming for research and application

adapted to whatever computer platform they are targeting. As behavior analysts - likely
amateur programmers - we will be adept at making the software the most effective for
the user – this seems to us to be an important and critical distinction.

Example Program

Ok, now that you hopefully have a rough idea of how LiveCode works, we have de-
signed a program below that is very simple, but hopefully demonstrates the utility of Li-
veCode for behavior analytic research or application. It is a simple program to train
receptive identification of objects. An overview of what we want the program to do is
very useful for designing the software – sitting down with a pad and drafting some notes
will make creating the program easier. Here are a few ideas on what the program will do:

1.	Present four images on the screen and then ask the student to select one of
them – receptive identification or what has been called manded stimulus selec-
tion (Michael, 1985).

2.	If the student clicks on the correct picture they should get feedback such as
“Good Job!” If the student clicks on an incorrect comparison they should hear
“Incorrect, try again”.

3.	The student should be able to start the next trial which will randomly select
another picture to test/train them on.

We started this program by creating a new mainstack, then added a card by click-
ing on menu item “Object”, then selecting “New card”. Thus we had a stack with two
cards. We like to save regularly – to do so, select menu item “File” then select “Save”
or “Save As”.

To navigate from card to card you can do any of the following:

1.	Bring up the Application Browser – Menu item “Tools”, “Application Browser”.
You can click on each card in the “name” window and see the contents of that
card (the objects you put on the card) and your stack window will switch to
that card (see Figure 2).

2.	You can use Menu item “View” to “go first”, “go Prev”, “go next”, etc.
3.	You can click on the Message Box icon (see Figure 2) and in the line at the top

of the box type “go to card X” – replace the X with the card number you want
to go to, for instance “go to card 2”. The message box is a way to tell LiveCode
to do things – for instance, if you have a text field on a card and type Put
“hello” into field 1 the word hello will appear in field 1. It is a convenient way
to test out some code you have written.

Working on card 1 first, add a button then double-click on it in edit mode, then
change its name to “Start” (see Figure 2 to identify the Property Inspector). Edit the

172

Bill Potter et al.

script of the button (click the code icon, or right click the button while in edit mode)
and create a handler that will make the program go to card 2. Here is the handler:

on mouseUp
 go to card 2 --- takes user to card 2 where training occurs
end mouseUp

When the user clicks on the button, card 2 will be immediately presented (it
should be blank to start with). Click the button while in run mode – the button should
disappear – it really did not, you are now on card 2 – and since there is nothing on it,
it looks exactly like card 1, minus the button. On card 2, drag over 4 image objects
from the tools palette (see Figures 2 & 5 for image objects). Make them to be about
equal size, position them on the screen where you would like them, then make sure
to lock the size and position. If you do not, when you specify an image for that object
to display, it will be at the size of the original image, which with modern digital cam-
eras usually is really large – as large as or larger than your screen. See Figures 5 and 6
for the sizing we chose (ours has pictures in them; newly created images will only
display a box in outline form). To lock the location and position of an object (in this case
the images), double click on one of them to bring up the Property Inspector. Be careful
not to click on another object at this point – if you do, the Property Inspector will give
you details about the object you just clicked on. You can check which object you are
inspecting by looking at the top menu bar of the Property Inspector (see Figure 6). In the
top pull down menu which likely reads “Basic Properties” change that to “Size and
Position”. On that new screen (looks like Figure 6 panel A) put a check mark in the
“Lock size and position” box. This will prevent a large photo from making the image
object grow larger, but note, it will also prevent you from moving the images around
the screen (unless you uncheck that box). Once you have done that, use the Property
Inspector - top pull down menu - again to change back to “Basic Properties”. Click on
the folder icon alongside the “Source” (See Figure 6, panel B) – when you do, Live-
Code will prompt you to find an image you want to display. We put all the images we
were going to use in the same folder as the LiveCode stack – you can just create one
on your desktop to find it easily. It is important to know that when you use the source
button, that image is not in the stack (source means you have specified the external
picture file to use for that image object to display) – if you want to give your stack to
someone to use, you need to give them the images and preferably all located in the
same folder (otherwise that image may not display – look for DefaultFolder in the
dictionary if you run into problems with this issue). If all goes well, when you locate
the image you want, it should display in the image box you put on the screen, similar
to the four images in Figure 5. Before you go on to the next image, give this image the
name you want your student to call it. For instance in Figure 6, panel B, we named
that image “Pigeon” as it was a picture of a pigeon that we selected. Repeat these
steps for each image object: locking the size and position, setting the source to an

173

computer programming for research and application

Figure 5. The second card of the receptive identification stack – the 4 pictures are image
objects that were dragged on the screen and assigned an image. The next button arranges
the next trial by sending an “openCard” message that triggers the handler in the card script
(see text for more details).

174

Bill Potter et al.

Figure 6. The Property Inspector after double-clicking on one of the image objects. This one
is named Pigeon and will be set to display a picture of a pigeon. In panel A the inspector is
set to examine the “Size and position” of the object via the pull down menu (see top of
image in panel A). Notice the check mark used to lock the size and position of the image.
The second dotted box shows the X & Y coordinates of the center point of the pigeon
image. In panel B the Source (the file from which the picture will come from) is indicated
by an arrow. Clicking on the folder icon allows an image file to be selected.

175

computer programming for research and application

image on your computer, and finally naming the image the name of whatever image
you selected. Now the coding part comes in.

In edit mode, right click on the card (on the card itself, don’t click on any objects)
– you should be on card 2. Select “Edit Card Script”. You will enter the following han-
dler into the card script:

on openCard
Global whichPicThisTrial
put the short name of image 1 & return into ThePictureNames
put the short name of image 2 & return after ThePictureNames
put the short name of image 3 & return after ThePictureNames
put the short name of image 4 & return after ThePictureNames
put the number of lines in ThePictureNames into TotalLinesToSelectFrom
put the random of TotalLinesToSelectFrom into RandomLineSelected
put line RandomLineSelected of thePictureNames into whichPicThisTrial
wait 2 seconds
revSpeak “Select the “ & whichPicThisTrial

end openCard

Reading this code now may make some sense, but see Table 2 for a step by step expla-
nation of each of these lines of code. To summarize, the openCard handler will be
triggered whenever an openCard message is sent to the card (usually when you first
visit the card). Once the whichPicThisTrial is established as a global variable, a list of all
the pictures presented on the screen will be made (the list is contained in the variable
ThePictureNames). The contents of ThePictureNames will look like this in our case:

Cat
Pigeon
Dog
Rat

That is, one picture name per line. Next we need to figure out the number of lines in
that container – thus the code “put the number of lines in ThePictureNames into Total-
LinesToSelectFrom” will put that number (4) into the variable called “TotalLinesToSelect-
From”. Then we use the Random function of LiveCode to randomly select a number
from 1 to 4 – “put the random of TotalLinesToSelectFrom” and we store it in the con-
tainer “RandomLineSelected”. Filling in the contents of the TotalLinesToSelectFrom, this
code will execute this: “Put the random of 4 into RandomLineSelected”. We then use
that randomly selected number (assume the number 2 was randomly selected) to spec-
ify which image we want the student to select “put line RandomLineSelected of thePic-
tureNames into whichPicThisTrial” which, when we plug in the contents of each
container (RandomLineSelected and thePictureNames) used, ends up being

176

Bill Potter et al.

Table 2

A step by step analysis of each line of code in card 2 of the Receptive ID program.

On openCard This is the message sent when the card first opens. Thus
any time you go to a new card, this message is sent.
This handler responds to that message

Global whichPicThisTrial Makes variable whichPicThisTrial a global variable – it
will still exist once the handler ends.

Put the short name of image 1
& return into
ThePictureNames
put the short name of image 2
& return after
ThePictureNames
put the short name of image 3
& return after
ThePictureNames
put the short name of image 4
& return after
ThePictureNames

The short name of image 1 (or 2-4) will get the name
you typed in the Property Inspector for each image and
put it in a variable named ThePictureNames. Notice that
for image 1 we use “Into”- that will put the first image
name into the variable - on line 1 – we put a return after
that first image name so that the next one will be on the
second line and so one. When all four lines have been
completed (In about a millisecond total) this is what will
be in thePictureNames – for our program:
Cat
Pigeon
Dog
Rat
(see Figure 5, we arranged the images 1-4 from left to
right)

put the number of lines in
ThePictureNames into
TotalLinesToSelectFrom

Number is a function in Livecode (see Dictionary,
function for more information. When you request
number of lines, LiveCode will count them and return
the number – in this case, from above, you can see
there are 4 lines. The number 4 will be in the container
TotalLinesToSelectFrom

put the random of
TotalLinesToSelectFrom into
RandomLineSelected

Random is another function – you tell the computer the
highest number to randomly select from and it will give
you a number from 1 to that maximum number (in this
case 4). So each time the openCard Handler is executed
a new random number between 1 and 4 will be chosen
– notice that the same number can be chosen on two
consecutive trials (we are doing what is called random
selection with replacement). That randomly selected
number is placed in the container (variable)
RandomLineSelected.

177

computer programming for research and application

Put line RandomLineSelected
of thePictureNames into
whichPicThisTrial

If 3 was the number between 1 and 4 that was selected,
this line of code would read “Put line 3 of

Cat
Pigeon
Dog
Rat

Into whichPicThisTrial (this last variable is our global
variable – see above) Thus, when done, with the
number 3 randomly selected, “Dog” will be put into the
global variable whichPicThisTrial

 wait 2 seconds Just like it sounds! For two seconds the program does
nothing.

revSpeak “Select the “ &
whichPicThisTrial

Revspeak is a command that will speak text in a
computer generated voice. In this case the computer
will speak “Select the dog”

end openCard This handler is done.

Table 2 (continued)

A step by step analysis of each line of code in card 2 of the Receptive ID program.

Put line 2 of
Cat
Pigeon
Dog
Rat

into “whichPicThisTrial” (our Global variable). Since 2 is the number that was ran-
domly selected, then “Pigeon” will be in the “whichPicThisTrial” container. The next
line of code has the computer wait for 2 seconds – since computers are very fast if you
did not put the delay in, once a student arrives in this card (and the openCard message
is sent) almost immediately the computer will ask them to select an image. The stu-
dent needs a few seconds to orient to the screen (these wait times are often called
inter-trial intervals in discrete trial training). The last line of code should be somewhat
familiar to you now: revSpeak “Select the “ & whichPicThisTrial. RevSpeak of course
is a command to speak some text. The text you are directing the computer to speak is
“Select the” and the contents of whichPicThisTrial – which ends up being “Select the
Pigeon” – which, if your computer sound is on (not muted), you should hear in the

178

Bill Potter et al.

computer voice. These voices are changeable, as is the speed and pitch – open the
dictionary and search for revSpeak. The “See Also” clickable links in the dictionary
definition of a term will provide information on these additional options.

We often test our code to see if it is working correctly – two easy methods are:

1.	While in the script editor (depicted in Figure 3) click on the green arrow and
select the handler you want to run.

2.	In this case, send the openCard message to the card – to do so you can simply
type “openCard” into the Message Box (see Figure 2 to open the message box)
and press return – the openCard message is sent – don’t be surprised if it takes
a few seconds for you to hear the voice – after all you did tell LiveCode to wait
for 2 seconds.

Next we want to put some code in the buttons so when they are clicked on we can
determine if the student selected the correct image and give them some feedback.
Here is the code we created:

on mouseUp
 global whichPicThisTrial

 if the short name of me = whichPicThisTrial then
 revSpeak the Short name of me
 wait 20 milliseconds
 revSpeak “Excellent, great job!”
 else
 RevSpeak “Sorry, Try again”
 end if
end mouseUp

Table 3 shows line by line what the code does.
If this handler is copied and pasted into the script of each image then whenever

the student clicks on an image LiveCode will evaluate if it was the correct one or not
and deliver your programmed feedback.

At this point there is only one thing left to do – allow the student to start a new
trial. You might suspect that it is as simple as running the “openCard” handler again
– and you would be correct – “Excellent, great job!” This can be done many ways –
we opted to have a button on the screen (see Figure 5) named “Next”. In that button
script is a single handler:

on mouseUp
 opencard -- this sends the opencard message and starts the next trial
end mouseUp

179

computer programming for research and application

This allows the student to control the pace of the instruction. If you prefer to have
control over when the next trial is presented you can send the openCard message in
the image’s if- then statement like below – after a correct response:

 revSpeak the Short name of me
 wait 20 milliseconds
 revSpeak “Excellent, great job!”
 openCard

Table 3

Line by line analysis of LiveCode script

On mouseUp

global whichPicThisTrial

if the short name of me = whichPicThisTrial
then
 revSpeak the Short name of me
 wait 20 milliseconds
 revSpeak “Excellent, great job!”
 else
 RevSpeak “Sorry, Try again”
 end if
end mouseUp

The event that triggers the handler –
when the student releases the mouse
button

This makes sure we are using the global
variable we created in the card script –
this holds the name of the correct image.

This is an if-then control structure (for
more info see Menu item “Help”,
“Dictionary”, “Language”, “Control
Structure”). In this code the computer
evaluates if everything after the “if” is
true or false. If it is true, then the first part
of the statement will be executed, if it is
false then the code in the “else” part of
the statement will be executed. The “end
if” tells the computer that control
structure is finished. So in this case if the
name of the image clicked on is equal to
the name of the correct image, then the
computer will speak the name of the
image (“Pigeon”) then will do a brief
wait, then will speak “Excellent, great
job!”. The else part of the if-then will not
be executed. You can see what happens
if the student clicks on the wrong image
the “short name of me =
whichPicThisTrial” will be false and only
the else portion will be spoken.

180

Bill Potter et al.

The next trial will start after the student clicks on the correct image. This is a very
simple program – you might want to add in many other options – for instance count
the number of correct and incorrect responses. You can include “add 1 to theCor-
rectsContainer” in the correct response portion of the if-then control structure above
and “add 1 to theIncorrectsContainer” in the else part of the if-then statement (make
them global variables so you can increment them after each trial). You can block out
the rest of the computer screen by writing this line of code: “set the backdrop to
black” and get rid of it with the code “set the backdrop to none” (it eliminates distrac-
tions from the computer’s desktop - you will likely put it in a card script – “on open-
Card” or stack script “on openStack”). You can randomize the order of the images on
the screen using the images location property (a single x-y point in the center of the
object, in pixels- see Figure 6, panel A). You can use a similar technique we used in
the card to randomly select the correct image for each trial – put all the image loca-
tions into a container, then randomly select (deleting the one you selected so you
don’t place two images in the same location) and using the code “Set the location of
image 1 to TheContainerHoldingXYCoordinate”.

The nice thing about the way this simple program is designed is that you can
change what image is displayed, as well as the names of each image to modify what
the student learns. For instance if you wanted to train colors, you could put all dog
pictures in and change the name to “yellow” or “yellow dog” and it will still work
perfectly. You could also train more complex conditional discriminations – for in-
stance have two triangle pictures and two circle pictures with each one colored with
two different colors (e.g. chosen from red, green, blue and yellow) and name the im-
ages accordingly – “red and green square” or “red and green circle” and it will still
work. You could also give more specific feedback on incorrect answers – for instance,
in the “else” portion of the if-then statement you could have the code: RevSpeak “In-
correct. You selected the “ & the short name of me & “ Try again.” Notice the spaces
just after “selected “ and just before “ Try Again” – this is intentional if you did not put
it in and the user incorrectly selected “Pigeon” the computer would try to speak: “In-
correct. You selected thePigeonTry Again” which would sound interesting but proba-
bly not the feedback desired. Finally, the code presented in the card stack was created
for pedagogical reasons – see Appendix C for a more efficient/effective code.

Next Steps

Needless to say, there are many more capabilities of LiveCode that we were not
able to cover. Once you get the basics down and understand LiveCode and its lan-
guage, the learning curve rapidly accelerates. For research and application purposes,
learning to save your work as a standalone application – for different platforms – is a
good next step. A standalone is a version of your program which you can give to par-
ticipants for whatever platform they work on – Macintosh, Windows, Linux/unix and
of course smart phones (IOS or Android). The end user cannot see your code, nor

181

computer programming for research and application

modify it. The smart phone apps are a bit more difficult – not on the programming
side, but rather in getting the apps on the phones. Apple (IOS) requires app developers
to register with them and install certificates to verify their identity. Android has some
similar precautions, but allows developers to install the app via a USB connection to
test the programs. Of course it is a fully functional program so we have used it to load
programs for various purposes. We created a simple Android program that mimics the
Motivaider (http://www.motiv-aider.com/) which vibrates on various schedules to
evoke whatever responses you have trained. The Motivaider has been the focus of a
number of research articles (e.g. Legge, Debar & Alber-Morgan, 2010). It is a very
simple LiveCode program – it only has one card, and one button. In the script of the
button is the following code:

on mouseUp
 mobileVibrate 3
 send mouseUp to me in 40 seconds
end mouseUp

Whenever the “mobileVibrate” is issued the phone will vibrate – in this case 3 times
since we have the “3” after the command. In this case the phone will vibrate every 40
seconds. Of course you could put a text field on the screen and the user could type in
the number of seconds with the following code modification:

on mouseUp
 mobileVibrate 3
 put field 1 into SecondsToWait
 send mouseUp to me in SecondsToWait seconds
end mouseUp

This way, the end user could set the time interval for however many seconds they
prefer, or an experimenter tells them to set. Other variations may be obvious now – for
instance using the random function to generate random intervals for the vibrations.
Other programs are just as simple to write – programs that allow you to record obser-
vations of various behaviors – you could use taps to the card 1 window – handling the
“mouseDown” or “mouseUp” messages or have several buttons that count the num-
ber of different responses, all the while tracking time. To time events we typically use
“the milliseconds”. If you type “put the milliseconds” into the message box, you will
get a number such as: 1412224054953. This definition is from the LiveCode diction-
ary when we looked up “milliseconds”: The milliseconds function returns the total
number of milliseconds since midnight GMT, January 1, 1970. Thus, it is easy to have
quite precise timing between two events – for example, in a single button script we
put the following handlers:

182

Bill Potter et al.

on mouseDown
 Global theTiming
 put the milliseconds into TheTiming
end mouseDown

on mouseUp
 Global theTiming
 put return & the milliseconds after TheTiming
 put Line 2 of thetiming – line 1 of thetiming into TheElapsedTime
 put theTiming & return & TheElapsedTime
end mouseUp

Below is what appeared in the message box (if you use “put” but do not specify a
container – a field or variable – then LiveCode automatically puts it into the message
box)

1412224412962
1412224413034
72
(If you were really ambitious you could determine the date and time we wrote this
part of the article, using these numbers)

The mouseDown stored the milliseconds observed on the first line above; the
mouseUp did the same putting it in line 2 of the container “theTiming”. The next line
found the difference between the mouseUp time and the mouseDown time and put
that number into a container called “theElapsedTime”. The last line just displays the
numbers in the message box. Since LiveCode is a higher level programming language,
and the computer’s operating system is often doing other things, we generally use mil-
liseconds for timing, but consider it accurate to about a tenth of a second, which is
usually more than the resolution we need in behavioral research.

Finally, spend some time learning how to use the powerful debugging tools in
LiveCode – here is a great site for this as well as other LiveCode instruction: http://
revolution.byu.edu/debug/Debugging.php. The debugger will allow you to analyze
your code one step at a time – peering into variables as you go, and examining how
your code is behaving (or sometimes, misbehaving!).

Conclusions

Computer programs, and computer programming skills, can be a powerful tool
allowing behavior analysts to discover functional relationships and basic principles as
well as spreading behavioral technology by merging electro-mechanical technologies
with behavioral technologies. In addition, the fine grain analysis that programming

183

computer programming for research and application

requires, likely helps behavior analysts become better at the molecular approach to
analyzing tasks which some behavior analysts promote (Palmer, 2010; 2012) as do the
authors of this paper. In addition, once a minimal repertoire is established in a pro-
gramming language, the programmer mainly engages in problem solving – and we
can all use improvements in that skillset. Of course programming repertoires will not
develop overnight – persistence is essential. We have found it helpful to learn pro-
gramming by picking a project with personal relevance and learn what is needed to
accomplish that project – it taps into existing motivative operations (Michael, 1982)
– the same thing we try to arrange when working with clients or students.

Recent advances have led to the development of effective technologies that can
transduce topography-based behavior into states usable by a computer. The Kinect
(Microsoft Kinect, 2011) can track and analyze body positions quite effectively, while
speech to text recognizers such as SIRI and DragonSpeak can tranduce speech into
text which of course can be manipulated in LiveCode. Virtual Reality headsets are
commercially available for creating very realistic artificial environments. These and
other advances will allow behavioral scientists and practitioners to gather and analyze
data in a more efficient and effective manner, not to mention in much more quantity.
It will likely also open a whole host of new areas for research and application.

As noted earlier in the paper, professional programmers are very good at creating
computer code that is fast and efficient for the particular computer operating system
they are working on. They may attend to the impact they have on the end user, but
they are not trained in behavior/environment interactions. Behavior analysts presum-
ably will be considering the antecedents, consequences and contingencies arranged
for the end user, with efficient code only being a secondary consideration. While the
applications that a behavior analyst might create using LiveCode may not be distribu-
tion (or market) ready, they certainly would function as a prototype for professional
programmers to convert into distributable software, and as demonstrated in this arti-
cle, are certainly acceptable for research purposes.

We encourage you to adopt a programming language of your choice – other be-
havior analysts have also promoted this (Dixon & MacLin, 2003). It is true that one
could hire a programmer, but we feel that the intersection of computer programming
and behavior analysis is quite powerful, providing a new repertoire that combines
with the behavior analytic repertoire to produce qualitative and quantitative advan-
tages for research and application purposes.

References

Apple Computer, Inc. (1998). Hypercard. Cupertino, CA. Retrieved October 152014
from http://download.info.apple.com/Apple_Support_Area/Manuals/
software/0340617AHYPERCARDI.PDF

Association for Behavior Analysis International (2014). Retrieved October 1, 2014
from http://abainternational.org

184

Bill Potter et al.

Beleboni, M. G. S. (2014, January). A brief overview of Microsoft Kinect and its ap-
plications. Paper presented at the Interactive Mulitmedia Conference, University of
Southampton, UK. Retrieved from http://mms.ecs.soton.ac.uk/2014/papers/2.pdf

Catania, A. C., Ono, K., & de Souza, D. (2000). Sources of novel behavior: Stimulus
control arranged for different response dimensions. European Journal of Behavior
Analysis, 1(1), 23-32. http://www.ejoba.org/PDF/2000_1/Catania_Ono_de%20
Souza_2000.pdf

Dallery, J. & Glenn, I.M. (2005). Effects of an internet-based voucher reinforcement
program for smoking abstinence: A feasibility study. Journal of Applied Behavior
Analysis, 38, 349-357. doi: 10.1901/jaba.2005.150-04

Dixon, M.R., & MacLin, O.H. (2003). Visual basic for behavioral psychologists. Reno,
NV, US: Context Press.

Donahoe, J. W. & Palmer, D. C. (1994). Learning and complex behavior. Boston, MA:
Allyn & Bacon; reprinted in 2005 by Ledgetop Publishers.

Duroy, A. (2005). Second order conditional discriminations. Unpublished master’s
thesis, California State University, Stanislaus, Turlock.

Escobar, R. (2014). From Relays to Microcontrollers: The adoption of technology in
operant research. Mexican Journal of Behavior Analysis, 40, 127-153.

Ferster, C. B. & Skinner, B. F. (1957). Schedules of reinforcement. East Norwalk, CT:
Appleton-Century-Crofts.

Granpeesheh, D., Tarbox, J., Dixon, D. R., Peters, C. A., Thompson, K., & Kenzer, A.
(2010). Evaluation of an eLearning tool for training behavioral therapists in aca-
demic knowledge of applied behavior analysis. Research in Autism Spectrum Dis-
orders, 4, 11-17. doi: 10.1016/j.rasd.2009.07.004

Jakubow, J. J. (2007). Review of the book sniffy the virtual rat pro version 2.0. Journal
of the Experimental Analysis of Behavior, 87(2), 317-323. doi: 10.1901/
jeab.2007.07-06

Jang, J., Dixon, D. R., Tarbox, J., Granpeesheh, D., Kornack, J., & de Nocker, Y.(2012).
Randomized trial of an eLearning program for training family members of children
with autism in the principles and procedures of applied behavior analysis. Re-
search in Autism Spectrum Disorders, 6, 852-856. doi: 10.1016/j.rasd.2011.11.004

Jenkins, H. M., & Moore, B. R. (1973). The form of the auto-shaped response with
food or water reinforcers. Journal Of The Experimental Analysis Of Behavior, 20(2),
163-181. doi:10.1901/jeab.1973.20-163

LaMon, B., & Zeigler, H. (1988). Control of pecking response form in the pigeon: To-
pography of ingestive behaviors and conditioned keypecks with food and water
reinforcers. Animal Learning & Behavior, 16(3), 256-267. doi:10.3758/BF03209075

Lattal, K. A. (2008). JEAB at 50: Coevolution of research and technology. Journal of the
Experimental Analysis of Behavior, 89, 129-135. doi: 10.1901/jeab.2008.89-129

Layng, T.V.J., Twyman, J. S., & Stikeleather, G. (2003). Headsprout Early ReadingTM:
Reliably teaching children to read. Behavioral Technology Today, 3, 7-20. http://
www.behavior.org/resources/191.pdf

185

computer programming for research and application

Legge, D. B., DeBar, R. M., & Alber-Morgan, S. R. (2010). The effects of self-monitoring
with a MotivAider[R] on the on-task behavior of fifth and sixth graders with autism
and other disabilities. Journal of Behavior Assessment and Intervention in Children,
1(1), 43-52. http://0-files.eric.ed.gov.opac.msmc.edu/fulltext/EJ916280.pdf

Max, M. (2010). Tact training in children with autism: Discrete trials or computer-
based programming. Unpublished master’s thesis, California State University, Stan-
islaus, Turlock.

McMenamin, S. M. and Palmer, J. F. (1984). Essential Systems Analysis. Upper Saddle
River, NJ: Yourdan Press.

Michael, J. (1982). Distinguishing between discriminative and motivational functions
of stimuli. The Journal of the Experimental Analysis of Behavior, 37, 149-155. doi:
10.1901/jeab.1982.37-149

Michael, J. (1985). Two kinds of verbal behavior plus a possible third. The Analysis of
Verbal Behavior, 3, 1-4. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2748478/

Microsoft Kinect (2011). Retrieved October 1, 2014 from http://www.microsoft.com/
en-us/kinectforwindows/

Morford, Z.H., Witts, B. N., Killingsworth, K. J., Alavosius, M. P., (2014). Gamification:
The intersection between behavior analysis and game design technologies. The
Behavior Analyst, 37(1), 25-40. doi: 10.1007/S40614-014-0006-1

MotivAider. Retrieved October 1, 2014 from http://www.motiv-aider.com
Page, S. & Neuringer, A. (1985). Variability is an operant. Journal of Experimental Psy-

chology: Animal Behavior Processes, Vol 11(3), Jul 1985, 429-452. doi:
10.1037/0097-7403.11.3.429

Palmer, D. C. (2010). Behavior under the microscope: Increasing the resolution of our
experimental procedures. The Behavior Analyst, 33 (1), 37-45. http://www.ncbi.
nlm.nih.gov/pmc/articles/PMC2867504/

Palmer, D. C. (2012). The role of atomic repertoires in complex behavior. The Behavior
Analyst, 35(1), 59-73. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3359856/

Persicke, A., Bishop, M. R., Coffman, C. M., Najdowski, A. C., Tarbox, J., Chi, K., …
Deering, A. (2014). Evaluation of the concurrent validity of a skills assessment for
autism treatment. Research in Autism Spectrum Disorders, 8, 281-285. doi:
10.1016/j.rasd.2013.12.011

Redner, R. (2009). Abstract second-order conditional discriminations in pigeons. Un-
published master’s thesis, California State University, Stanislaus, Turlock.

Shahan, T. A. & Chase, P. N. (2002). Novelty, stimulus control, and operant variability.
Association for Behavior Analysis International, 25(2), 175-190. http://www.ncbi.
nlm.nih.gov/pmc/articles/PMC2731615/

Skinner, B. F. (1938). The Behavior of Organisms: An Experimental Analysis. Cam-
bridge, Massachusetts: B.F. Skinner Foundation

Skinner, B. F. (1958). Teaching machines: From the experimental study of learning
come devices which arrange optimal conditions for self-instruction. Science,
128(3330), 969-977.

186

Bill Potter et al.

Stanton, J. (2010). Information transfer with a tactile device. Unpublished master’s
thesis, California State University, Stanislaus, Turlock.

 Tarbox, J., Najdowski, A. C., Bergstrom R., Wilke, A., Bishop,M., Kenzer, A., & Dixon,
D. (2013) Randomized evaluation of a web-based tool for designing function-
based behavioral intervention plans. Research in Autism Spectrum Disorders, 7,
1509-1517. doi: 10.1016/j.rasd.2013.08.005

Trudeau, M (writer). (1990, July 27) Interview with B. F. Skinner [Radio series epi-
sode]. In NPR (producer), All Things Considered. USA: National Public Radio.

Whalen, C., Liden, L., Ingersoll, B., Dallaire, E., & Liden, S. (2006). Behavioral im-
provements associated with computer-assisted instruction for children with devel-
opmental disabilities. SLP-ABA, 1(1), 11-26. https://www.msu.edu/~ingers19/
Computer-Assisted%20Instruction.pdf

Whalen, C., Moss, D., Ilan, A., Vaupel, M., Fielding, P., Macdonald, K., Symon, J.
(2010). Efficacy of TeachTown: Basics Computer-assisted Intervention for the Inten-
sive Comprehensive Autism Program in Los Angeles Unified School District. Au-
tism, 14, 179-197.: doi: 10.1177/1362361310363282

187

computer programming for research and application

Appendix A
Some Additional LiveCode Software programs created

Available to download at:
https://www.dropbox.com/sh/b4b0wafoyyd9caw/AADHsBt08QTu7bdrC6hOd_g0a?dl=0

While most of these programs are functional they are not supported and are provided
here to allow the reader to examine the coding techniques and hopefully gain some
insight into solving particular programming problems.

Description Availability
Dissertation – modelled bank tellers task of entering in checks
deposited to a bank. No

Matching to Sample (MTS) tasks. Many different types of these
– all of them are quite easy to arrange in LiveCode, including
Stimulus Equivalence studies.

Yes

Second Order Conditional Discriminations – a variation on the
MTS programs with conditional stimuli presented altering the
correct choices.

Yes

Frame Analysis Software – this program allows you to enter text
into a text-box and it will parse the text into Frames of text (See
Autoclitic or Intraverbal Frames, Skinner, 1957). These frames
are sorted by frequency to allow a user to determine the
prevalence of those frames.

Yes

CBT for teaching tacts to children with Autism. No

A variability study (see Page & Nueringer, 1985) which uses a
piano keyboard for participants to play notes and to compare
variability across conditions.

Yes

Dissertation – Created a number of computer-based tasks for
children to perform after drinking caffeine or not.

No

Dissertation – Examined how adding a topography-based
response to a selection-based task impacted performance.

No

Program designed to help a person who suffered a stroke regain
reading skills.

Yes

Stimulus presenter for operant chambers (as described earlier in
this article).

Yes

188

Bill Potter et al.

A program designed to examine students reactions to micro-
expressions. The software modelled an internet video program
to allow participants to type to the listener, but only receive
video feedback.

Yes but not videos

Tactile Stimulation Trainer – as described earlier in the article. Yes but without relays

Advisor Helper – a program which when a student’s transcripts
are pasted into a text field, will analyze if they have met the
requirements for the general CSU Stanislaus psychology major.

Yes
Specific to CSU

Stanislaus transcripts
(but modifiable)

Appendix A (continued)

189

computer programming for research and application

Appendix B
Advice from New LiveCode Learners

1.	S tart with LC University vs. LC website. LCU was much better at aiming the infor-
mation at a true beginner!

2.	B ecause there is so much new information to absorb, redo mini apps (i.e., “Hello
World”) discussed in the tutorials/lessons several times, so you can eventually do
them on your own. Moving too fast through the information will just cause frustra-
tion.

3.	I would worry more about completing tasks than understanding all of the informa-
tion presented, at least initially. I found that some of the written material only
made since after I tried some of the tutorials.

4.	I found the “Hello World” lesson to be easier to follow in the tutorials section than
the one in the “beginner’s guide.”

5. Doing a Google search is often more productive than searching within LiveCode.
6.	L astly, I would just suggest not giving up too early. I know I got frustrated because,

although it uses English words, programming is really a different language. I
would tell anyone just starting to go in expecting to be confused. This may seem
pessimistic, but I think predicting the confusion might make users less frustrated
and not give up too soon.

190

Bill Potter et al.

Appendix C
More efficient coding for the Receptive Identification program

Below is the original code provided for pedagogical reasons:

on openCard
Global whichPicThisTrial
put the short name of image 1 & return into ThePictureNames
put the short name of image 2 & return after ThePictureNames
put the short name of image 3 & return after ThePictureNames
put the short name of image 4 & return after ThePictureNames
put the number of lines in ThePictureNames into TotalLinesToSelectFrom
put the random of TotalLinesToSelectFrom into RandomLineSelected
put line RandomLineSelected of thePictureNames into whichPicThisTrial
wait 2 seconds
revSpeak “Select the “ & whichPicThisTrial

end openCard

Below is the revised code:

on openCardGlobal whichPicThisTrial
Repeat with x = 1 to the number of images on this card
put the short name of image x & return after ThePictureNames
end repeat
put random(the number of lines in ThePictureNames) into RandomLineSe-
lected
put line RandomLineSelected of thePictureNames into whichPicThisTrial
wait 2 seconds
revSpeak “Select the “ & whichPicThisTrial

end openCard

The main addition is the use of the repeat control structure – it provides two advan-
tages – less code to write and thus less likely to make errors, and it allows the user to
add as many images on the screen and it will still work - in the original, the user was
limited to using only 4 images – If any more were added the computer would ignore
them (never put the names in to thePictureNames). A slightly different version of the
random function is also used – saving some lines of code.

Finally we would also not use the individual scripts in the buttons – if you want to
make a change you would have to change all of them individually. Recall that mes-
sages not handled by an object pass along to the card and to the stack. We could
simply put a single handler in the card script that reads:

191

computer programming for research and application

on mouseUp
 global whichPicThisTrial
 put the short name of the target into WhatClickedOn
 if whatClickedOn = “zzzzz” Then exit mouseUp

 if WhatClickedOn = whichPicThisTrial then
 revSpeak the Short name of image whatClickedOn
 wait 20 milliseconds
 revSpeak “Excellent, great job!”

 else
 RevSpeak “Sorry, Try again”

 end if
end mouseUp

The target is a function that
returns what you clicked
on (e.g. Image “Dog”)
We named the second
card “zzzzz” i f they
clicked on it we could pre-
vent the rest of the script
from running (exit). We
used “zzzzz” as it is un-
likely that will be a picture
name used for receptive
identification.
We also had to change the
“me” – to the name of the
correct image. We forgot
the first time and the com-
puter said “z z z z z, excel-
lent, great job!” the “zzzzz
of course being the name
of “me” which since the
script in in the card, it is
the name of the card.

Thus if we need to make a change to the mouseUp script (e.g. add in counters)
– we only have to do it one place

Appendix C (continued)

