Phosphate adsorption study employing a synthesized activated carbon derived from banana pseudostem

Contenido principal del artículo

Moisés de Souza Luz Faria
Rayra Millene Ribeiro Lima
Rita de Cássia Superbi de Sousa
Alisson Carraro Borges

Resumen

In recent years, the application of biomass sources as precursors for various materials has been employed as an alternative for waste reuse. The banana pseudostem, being a lignocellulosic residue generated in huge quantities, has been studied for its reuse possibilities. The use of this biomaterial as a pyrolyzed and activated adsorbent compound is a promising application in wastewater treatment. Phosphorus (P), as a macronutrient, must have its concentration controlled in water bodies, as it contributes to the eutrophication process and causes environmental impact, demanding effective control of its release and removal in wastewater. Although some studies have already applied the banana pseudostem in wastewater treatment, its use for phosphorus removal is still scarce. Therefore, this work aimed to produce and characterize the banana pseudostem activated carbon (BPAC) under specific conditions at 600°C for 90 minutes, through chemical activation with zinc chloride at a ratio of 3:1. The results showed a surface area of 996 m² g-1, and the kinetic and adsorption isotherm tests revealed an equilibrium time of 16 hours and a maximum P adsorption capacity of 11.82 mg L-1, respectively. The pseudo-first order kinetics model were better fitted to experimental results, and for the isotherm at 18°C, the Langmuir was better fitted. The pH at the point of zero charge resulted in a value of 7.20, indicating that phosphorus adsorption is better favored near neutrality.


 

Detalles del artículo

Cómo citar
[1]
Faria, M. de S.L. , Lima, R.M.R. , Superbi de Sousa, R. de C. y Carraro Borges, A. 2025. Phosphate adsorption study employing a synthesized activated carbon derived from banana pseudostem. Revista AIDIS de ingeniería y ciencias ambientales: Investigación, desarrollo y práctica. 18, 1 (abr. 2025), 111–124. DOI:https://doi.org/10.22201/iingen.0718378xe.2025.18.1.88930.

Citas en Dimensions Service

Citas

Abdullah, N., Mohd Taib, R., Mohamad Aziz, N. S., Omar, M. R., Md Disa, N. (2023). Banana pseudo-stem biochar derived from slow and fast pyrolysis process. Heliyon, 9(1). https://doi.org/10.1016/j.heliyon.2023.e12940

Akkari, I., Graba, Z., Bezzi, N., Merzeg, F. A., Bait, N., Ferhati, A. (2023). Raw pomegranate peel as promise efficient biosorbent for the removal of Basic Red 46 dye: equilibrium, kinetic, and thermodynamic studies. Biomass Conversion and Biorefinery, 13(9), 8047–8060. https://doi.org/10.1007/s13399-021-01620-9

APHA, AWWA, WEF. (2023). Standard Methods for the Examination of Water and Wastewater, 24th ed., APHA (American Public Health Association), USA

Badanayak, P., Jose, S., Bose, G. (2023). Banana pseudostem fiber: A critical review on fiber extraction, characterization, and surface modification. Journal of Natural Fibers, 20(1). https://doi.org/10.1080/15440478.2023.2168821

Bagali, S. S., Gowrishankar, B. S., Roy, A. S. (2017). Optimization, Kinetics, and Equilibrium Studies on the Removal of Lead(II) from an Aqueous Solution Using Banana Pseudostem as an Adsorbent. Engineering, 3(3), 409–415. https://doi.org/10.1016/J.ENG.2017.03.024

Baharim, N. H., Sjahrir, F., Taib, R. M., Idris, N., Daud, T. A. T. (2023). Removal of Crystal Violet from Aqueous Solution using Post-Treated Activation Biochar Derived from Banana Pseudo Stem. Chemical Engineering Transactions, 98, 45–50. https://doi.org/10.3303/CET2398008

Biswas, B., Rahman, T., Sakhakarmy, M., Jahromi, H., Eisa, M., Baltrusaitis, J., Lamba, J., Torbert, A., Adhikari, S. (2023). Phosphorus adsorption using chemical and metal chloride activated biochars: Isotherms, kinetics and mechanism study. Heliyon, 9(9), e19830. https://doi.org/10.1016/j.heliyon.2023.e19830

Braun, J. C. A., Borba, C. E., Godinho, M., Perondi, D., Schontag, J. M., Wenzel, B. M. (2019). Phosphorus adsorption in Fe-loaded activated carbon: Two-site monolayer equilibrium model and phenomenological kinetic description. Chemical Engineering Journal, 361, 751–763. https://doi.org/10.1016/j.cej.2018.12.073

Chen, J., Chen, Z., Song, Z., Cao, S., Li, X., Wang, Y., Zhan, Z., Du, M., Teng, D., Lv, D., Shao, D. (2024). Preparation of La/Mg modified sheep dung activated carbon and its adsorption characteristics for phosphorus in wastewater. Desalination and Water Treatment, 317, 100013. https://doi.org/10.1016/j.dwt.2024.100013

Chew, T. W., H’Ng, P. S., Luqman Chuah Abdullah, B. C. T. G., Chin, K. L., Lee, C. L., Mohd Nor Hafizuddin, B. M. S., TaungMai, L. (2023). A Review of Bio-Based Activated Carbon Properties Produced from Different Activating Chemicals during Chemicals Activation Process on Biomass and Its Potential for Malaysia. Materials, 16(23), 7365. https://doi.org/10.3390/ma16237365

COPAM-CERH/MG, Conselho Estadual de Política Ambiental e Conselho Estadual de Recursos Hídricos de Minas Gerais. (2022). Deliberação Normativa Conjunta COPAM-CERH/MG Nº 8. Diário do Executivo – Minas Gerais, 2 de dezembro de 2022. Avaliable at: https://www.siam.mg.gov.br/sla/download.pdf?idNorma=56521

Council of the European Communities. (1991). Council Directive 91/271/EEC of 21 May 1991 concerning urban waste water treatment. Official Journal of the European Communities, L135, 40-52. Avaliable at: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=OJ:L:1991:135:FULL

Debina, B., Eric, S. N., Fotio, D., Arnaud, K. T., Lemankreo, D.-Y., Rahman, A. N. (2020). Adsorption of Indigo Carmine Dye by Composite Activated Carbons Prepared from Plastic Waste (PET) and Banana Pseudo Stem. Journal of Materials Science and Chemical Engineering, 08(12), 39–55. https://doi.org/10.4236/msce.2020.812004

Fernandes, E. R. K., Marangoni, C., Souza, O., Sellin, N. (2013). Thermochemical characterization of banana leaves as a potential energy source. Energy Conversion and Management, 75, 603–608. https://doi.org/10.1016/j.enconman.2013.08.008

Ghani, Z. A., Yusoff, M. S., Zaman, N. Q., Zamri, M. F. M. A., Andas, J. (2017). Optimization of preparation conditions for activated carbon from banana pseudo-stem using response surface methodology on removal of color and COD from landfill leachate. Waste Management, 62, 177–187. https://doi.org/10.1016/j.wasman.2017.02.026

Guo, Z., Li, J., Guo, Z., Guo, Q., Zhu, B. (2017). Phosphorus removal from aqueous solution in parent and aluminum-modified eggshells: thermodynamics and kinetics, adsorption mechanism, and diffusion process. Environmental Science and Pollution Research, 24(16), 14525–14536. https://doi.org/10.1007/s11356-017-9072-8

Huong, P. T., Jitae, K., Giang, B. L., Nguyen, T. D., Thang, P. Q. (2019). Novel lanthanum-modified activated carbon derived from pine cone biomass as ecofriendly bio-sorbent for removal of phosphate and nitrate in wastewater. Rendiconti Lincei. Scienze Fisiche e Naturali, 30(3), 637–647. https://doi.org/10.1007/s12210-019-00827-3

Hussain, S., Aziz, H. A., Isa, M. H., Ahmad, A., Van Leeuwen, J., Zou, L., Beecham, S., Umar, M. (2011). Orthophosphate removal from domestic wastewater using limestone and granular activated carbon. Desalination, 271(1–3), 265–272. https://doi.org/10.1016/j.desal.2010.12.046

Jiang, F., Cao, D., Hu, S., Wang, Y., Zhang, Y., Huang, X., Zhao, H., Wu, C., Li, J., Ding, Y., Liu, K. (2022). High-pressure carbon dioxide-hydrothermal enhance yield and methylene blue adsorption performance of banana pseudo-stem activated carbon. Bioresource Technology, 354, 127137. https://doi.org/10.1016/j.biortech.2022.127137

Kumar, P., Sudha, S., Chand, S., Srivastava, V. C. (2010). Phosphate Removal from Aqueous Solution Using Coir-Pith Activated Carbon. Separation Science and Technology, 45(10), 1463–1470. https://doi.org/10.1080/01496395.2010.485604

Lim, S. S., Fontmorin, J.-M., Pham, H. T., Milner, E., Abdul, P. M., Scott, K., Head, I., Yu, E. H. (2021). Zinc removal and recovery from industrial wastewater with a microbial fuel cell: Experimental investigation and theoretical prediction. Science of The Total Environment, 776, 145934. https://doi.org/10.1016/j.scitotenv.2021.145934

Liu, Y., Hu, X. (2019). Kinetics and Thermodynamics of Efficient Phosphorus Removal by a Composite Fiber. Applied Sciences, 9(11), 2220. https://doi.org/10.3390/app9112220

Mahardika, D., Park, H.-S., Choo, K.-H. (2018). Ferrihydrite-impregnated granular activated carbon (FH@GAC) for efficient phosphorus removal from wastewater secondary effluent. Chemosphere, 207, 527–533. https://doi.org/10.1016/j.chemosphere.2018.05.124

Mappr. (2022). Top 10 Largest Banana Producing Countries. Access at 09 May 2024. Avaliabe at: https://www.mappr.co/largest-banana-producing-countries/

Mor, S., Chhoden, K., Negi, P., Ravindra, K. (2017). Utilization of nano-alumina and activated charcoal for phosphate removal from wastewater. Environmental Nanotechnology, Monitoring Management, 7, 15–23. https://doi.org/10.1016/j.enmm.2016.11.006

Namasivayam, C., Sangeetha, D. (2004). Equilibrium and kinetic studies of adsorption of phosphate onto ZnCl2 activated coir pith carbon. Journal of Colloid and Interface Science, 280(2), 359–365. https://doi.org/10.1016/j.jcis.2004.08.015

Nascimento, R. F. do, Lima, A. C. A. de, Vidal, C. B., Melo, D. de Q., Raulino, G. S. C. (2014). Adsorção: Aspectos teóricos e aplicações ambientais. Imprensa Universitária da Universidade Federal do Ceará.

Ouakouak, A. K., Youcef, L. (2016). Phosphates Removal by Activated Carbon. Sensor Letters, 14(6), 600–605. https://doi.org/10.1166/sl.2016.3664

Silva, M. C., Spessato, L., Silva, T. L., Lopes, G. K. P., Zanella, H. G., Yokoyama, J. T. C., Cazetta, A. L., Almeida, V. C. (2021). H3PO4–activated carbon fibers of high surface area from banana tree pseudo-stem fibers: Adsorption studies of methylene blue dye in batch and fixed bed systems. Journal of Molecular Liquids, 324, 114771. https://doi.org/10.1016/j.molliq.2020.114771

Usman, M. O., Aturagaba, G., Ntale, M., Nyakairu, G. W. (2022). A review of adsorption techniques for removal of phosphates from wastewater. Water Science and Technology, 86(12), 3113–3132. https://doi.org/10.2166/wst.2022.382

Wang, Z., Nie, E., Li, J., Yang, M., Zhao, Y., Luo, X., Zheng, Z. (2012). Equilibrium and kinetics of adsorption of phosphate onto iron-doped activated carbon. Environmental Science and Pollution Research, 19(7), 2908–2917. https://doi.org/10.1007/s11356-012-0799-y

Yao, S., Wang, M., Liu, J., Tang, S., Chen, H., Guo, T., Yang, G., Chen, Y. (2018). Removal of phosphate from aqueous solution by sewage sludge-based activated carbon loaded with pyrolusite. Journal of Water Reuse and Desalination, 8(2), 192–201. https://doi.org/10.2166/wrd.2017.054

Yuan, J., Zhu, Y., Wang, J., Liu, Z., He, M., Zhang, T., Li, P., Qiu, F. (2021). Facile Modification of Biochar Derived from Agricultural Straw Waste with Effective Adsorption and Removal of Phosphorus from Domestic Sewage. Journal of Inorganic and Organometallic Polymers and Materials, 31(9), 3867–3879. https://doi.org/10.1007/s10904-021-01992-5

Zhang, C., Sun, S., Xu, S., Johnston, C., Wu, C. (2022). Phosphorus Removal from Dirty Farmyard Water by Activated Anaerobic-Digestion-Derived Biochar. Industrial Engineering Chemistry Research, 62(45), 19216-19224. https://doi.org/10.1016/j.bej.2022.108679

Zhou, K., Barjenbruch, M., Kabbe, C., Inical, G., Remy, C. (2017). Phosphorus recovery from municipal and fertilizer wastewater: China's potential and perspective. Journal of Environmental Sciences. 52, 151-159, http://dx.doi.org/10.1016/j.jes.2016.04.010

Zhou, Q., Wang, X., Liu, J., Zhang, L. (2012). Phosphorus removal from wastewater using nano-particulates of hydrated ferric oxide doped activated carbon fiber prepared by Sol–Gel method. Chemical Engineering Journal, 200–202, 619–626. https://doi.org/10.1016/j.cej.2012.06.123