Phosphate adsorption study employing a synthesized activated carbon derived from banana pseudostem
Contenido principal del artículo
Resumen
In recent years, the application of biomass sources as precursors for various materials has been employed as an alternative for waste reuse. The banana pseudostem, being a lignocellulosic residue generated in huge quantities, has been studied for its reuse possibilities. The use of this biomaterial as a pyrolyzed and activated adsorbent compound is a promising application in wastewater treatment. Phosphorus (P), as a macronutrient, must have its concentration controlled in water bodies, as it contributes to the eutrophication process and causes environmental impact, demanding effective control of its release and removal in wastewater. Although some studies have already applied the banana pseudostem in wastewater treatment, its use for phosphorus removal is still scarce. Therefore, this work aimed to produce and characterize the banana pseudostem activated carbon (BPAC) under specific conditions at 600°C for 90 minutes, through chemical activation with zinc chloride at a ratio of 3:1. The results showed a surface area of 996 m² g-1, and the kinetic and adsorption isotherm tests revealed an equilibrium time of 16 hours and a maximum P adsorption capacity of 11.82 mg L-1, respectively. The pseudo-first order kinetics model were better fitted to experimental results, and for the isotherm at 18°C, the Langmuir was better fitted. The pH at the point of zero charge resulted in a value of 7.20, indicating that phosphorus adsorption is better favored near neutrality.
Detalles del artículo
Citas en Dimensions Service
Citas
Abdullah, N., Mohd Taib, R., Mohamad Aziz, N. S., Omar, M. R., Md Disa, N. (2023). Banana pseudo-stem biochar derived from slow and fast pyrolysis process. Heliyon, 9(1). https://doi.org/10.1016/j.heliyon.2023.e12940
Akkari, I., Graba, Z., Bezzi, N., Merzeg, F. A., Bait, N., Ferhati, A. (2023). Raw pomegranate peel as promise efficient biosorbent for the removal of Basic Red 46 dye: equilibrium, kinetic, and thermodynamic studies. Biomass Conversion and Biorefinery, 13(9), 8047–8060. https://doi.org/10.1007/s13399-021-01620-9
APHA, AWWA, WEF. (2023). Standard Methods for the Examination of Water and Wastewater, 24th ed., APHA (American Public Health Association), USA
Badanayak, P., Jose, S., Bose, G. (2023). Banana pseudostem fiber: A critical review on fiber extraction, characterization, and surface modification. Journal of Natural Fibers, 20(1). https://doi.org/10.1080/15440478.2023.2168821
Bagali, S. S., Gowrishankar, B. S., Roy, A. S. (2017). Optimization, Kinetics, and Equilibrium Studies on the Removal of Lead(II) from an Aqueous Solution Using Banana Pseudostem as an Adsorbent. Engineering, 3(3), 409–415. https://doi.org/10.1016/J.ENG.2017.03.024
Baharim, N. H., Sjahrir, F., Taib, R. M., Idris, N., Daud, T. A. T. (2023). Removal of Crystal Violet from Aqueous Solution using Post-Treated Activation Biochar Derived from Banana Pseudo Stem. Chemical Engineering Transactions, 98, 45–50. https://doi.org/10.3303/CET2398008
Biswas, B., Rahman, T., Sakhakarmy, M., Jahromi, H., Eisa, M., Baltrusaitis, J., Lamba, J., Torbert, A., Adhikari, S. (2023). Phosphorus adsorption using chemical and metal chloride activated biochars: Isotherms, kinetics and mechanism study. Heliyon, 9(9), e19830. https://doi.org/10.1016/j.heliyon.2023.e19830
Braun, J. C. A., Borba, C. E., Godinho, M., Perondi, D., Schontag, J. M., Wenzel, B. M. (2019). Phosphorus adsorption in Fe-loaded activated carbon: Two-site monolayer equilibrium model and phenomenological kinetic description. Chemical Engineering Journal, 361, 751–763. https://doi.org/10.1016/j.cej.2018.12.073
Chen, J., Chen, Z., Song, Z., Cao, S., Li, X., Wang, Y., Zhan, Z., Du, M., Teng, D., Lv, D., Shao, D. (2024). Preparation of La/Mg modified sheep dung activated carbon and its adsorption characteristics for phosphorus in wastewater. Desalination and Water Treatment, 317, 100013. https://doi.org/10.1016/j.dwt.2024.100013
Chew, T. W., H’Ng, P. S., Luqman Chuah Abdullah, B. C. T. G., Chin, K. L., Lee, C. L., Mohd Nor Hafizuddin, B. M. S., TaungMai, L. (2023). A Review of Bio-Based Activated Carbon Properties Produced from Different Activating Chemicals during Chemicals Activation Process on Biomass and Its Potential for Malaysia. Materials, 16(23), 7365. https://doi.org/10.3390/ma16237365
COPAM-CERH/MG, Conselho Estadual de Política Ambiental e Conselho Estadual de Recursos Hídricos de Minas Gerais. (2022). Deliberação Normativa Conjunta COPAM-CERH/MG Nº 8. Diário do Executivo – Minas Gerais, 2 de dezembro de 2022. Avaliable at: https://www.siam.mg.gov.br/sla/download.pdf?idNorma=56521
Council of the European Communities. (1991). Council Directive 91/271/EEC of 21 May 1991 concerning urban waste water treatment. Official Journal of the European Communities, L135, 40-52. Avaliable at: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=OJ:L:1991:135:FULL
Debina, B., Eric, S. N., Fotio, D., Arnaud, K. T., Lemankreo, D.-Y., Rahman, A. N. (2020). Adsorption of Indigo Carmine Dye by Composite Activated Carbons Prepared from Plastic Waste (PET) and Banana Pseudo Stem. Journal of Materials Science and Chemical Engineering, 08(12), 39–55. https://doi.org/10.4236/msce.2020.812004
Fernandes, E. R. K., Marangoni, C., Souza, O., Sellin, N. (2013). Thermochemical characterization of banana leaves as a potential energy source. Energy Conversion and Management, 75, 603–608. https://doi.org/10.1016/j.enconman.2013.08.008
Ghani, Z. A., Yusoff, M. S., Zaman, N. Q., Zamri, M. F. M. A., Andas, J. (2017). Optimization of preparation conditions for activated carbon from banana pseudo-stem using response surface methodology on removal of color and COD from landfill leachate. Waste Management, 62, 177–187. https://doi.org/10.1016/j.wasman.2017.02.026
Guo, Z., Li, J., Guo, Z., Guo, Q., Zhu, B. (2017). Phosphorus removal from aqueous solution in parent and aluminum-modified eggshells: thermodynamics and kinetics, adsorption mechanism, and diffusion process. Environmental Science and Pollution Research, 24(16), 14525–14536. https://doi.org/10.1007/s11356-017-9072-8
Huong, P. T., Jitae, K., Giang, B. L., Nguyen, T. D., Thang, P. Q. (2019). Novel lanthanum-modified activated carbon derived from pine cone biomass as ecofriendly bio-sorbent for removal of phosphate and nitrate in wastewater. Rendiconti Lincei. Scienze Fisiche e Naturali, 30(3), 637–647. https://doi.org/10.1007/s12210-019-00827-3
Hussain, S., Aziz, H. A., Isa, M. H., Ahmad, A., Van Leeuwen, J., Zou, L., Beecham, S., Umar, M. (2011). Orthophosphate removal from domestic wastewater using limestone and granular activated carbon. Desalination, 271(1–3), 265–272. https://doi.org/10.1016/j.desal.2010.12.046
Jiang, F., Cao, D., Hu, S., Wang, Y., Zhang, Y., Huang, X., Zhao, H., Wu, C., Li, J., Ding, Y., Liu, K. (2022). High-pressure carbon dioxide-hydrothermal enhance yield and methylene blue adsorption performance of banana pseudo-stem activated carbon. Bioresource Technology, 354, 127137. https://doi.org/10.1016/j.biortech.2022.127137
Kumar, P., Sudha, S., Chand, S., Srivastava, V. C. (2010). Phosphate Removal from Aqueous Solution Using Coir-Pith Activated Carbon. Separation Science and Technology, 45(10), 1463–1470. https://doi.org/10.1080/01496395.2010.485604
Lim, S. S., Fontmorin, J.-M., Pham, H. T., Milner, E., Abdul, P. M., Scott, K., Head, I., Yu, E. H. (2021). Zinc removal and recovery from industrial wastewater with a microbial fuel cell: Experimental investigation and theoretical prediction. Science of The Total Environment, 776, 145934. https://doi.org/10.1016/j.scitotenv.2021.145934
Liu, Y., Hu, X. (2019). Kinetics and Thermodynamics of Efficient Phosphorus Removal by a Composite Fiber. Applied Sciences, 9(11), 2220. https://doi.org/10.3390/app9112220
Mahardika, D., Park, H.-S., Choo, K.-H. (2018). Ferrihydrite-impregnated granular activated carbon (FH@GAC) for efficient phosphorus removal from wastewater secondary effluent. Chemosphere, 207, 527–533. https://doi.org/10.1016/j.chemosphere.2018.05.124
Mappr. (2022). Top 10 Largest Banana Producing Countries. Access at 09 May 2024. Avaliabe at: https://www.mappr.co/largest-banana-producing-countries/
Mor, S., Chhoden, K., Negi, P., Ravindra, K. (2017). Utilization of nano-alumina and activated charcoal for phosphate removal from wastewater. Environmental Nanotechnology, Monitoring Management, 7, 15–23. https://doi.org/10.1016/j.enmm.2016.11.006
Namasivayam, C., Sangeetha, D. (2004). Equilibrium and kinetic studies of adsorption of phosphate onto ZnCl2 activated coir pith carbon. Journal of Colloid and Interface Science, 280(2), 359–365. https://doi.org/10.1016/j.jcis.2004.08.015
Nascimento, R. F. do, Lima, A. C. A. de, Vidal, C. B., Melo, D. de Q., Raulino, G. S. C. (2014). Adsorção: Aspectos teóricos e aplicações ambientais. Imprensa Universitária da Universidade Federal do Ceará.
Ouakouak, A. K., Youcef, L. (2016). Phosphates Removal by Activated Carbon. Sensor Letters, 14(6), 600–605. https://doi.org/10.1166/sl.2016.3664
Silva, M. C., Spessato, L., Silva, T. L., Lopes, G. K. P., Zanella, H. G., Yokoyama, J. T. C., Cazetta, A. L., Almeida, V. C. (2021). H3PO4–activated carbon fibers of high surface area from banana tree pseudo-stem fibers: Adsorption studies of methylene blue dye in batch and fixed bed systems. Journal of Molecular Liquids, 324, 114771. https://doi.org/10.1016/j.molliq.2020.114771
Usman, M. O., Aturagaba, G., Ntale, M., Nyakairu, G. W. (2022). A review of adsorption techniques for removal of phosphates from wastewater. Water Science and Technology, 86(12), 3113–3132. https://doi.org/10.2166/wst.2022.382
Wang, Z., Nie, E., Li, J., Yang, M., Zhao, Y., Luo, X., Zheng, Z. (2012). Equilibrium and kinetics of adsorption of phosphate onto iron-doped activated carbon. Environmental Science and Pollution Research, 19(7), 2908–2917. https://doi.org/10.1007/s11356-012-0799-y
Yao, S., Wang, M., Liu, J., Tang, S., Chen, H., Guo, T., Yang, G., Chen, Y. (2018). Removal of phosphate from aqueous solution by sewage sludge-based activated carbon loaded with pyrolusite. Journal of Water Reuse and Desalination, 8(2), 192–201. https://doi.org/10.2166/wrd.2017.054
Yuan, J., Zhu, Y., Wang, J., Liu, Z., He, M., Zhang, T., Li, P., Qiu, F. (2021). Facile Modification of Biochar Derived from Agricultural Straw Waste with Effective Adsorption and Removal of Phosphorus from Domestic Sewage. Journal of Inorganic and Organometallic Polymers and Materials, 31(9), 3867–3879. https://doi.org/10.1007/s10904-021-01992-5
Zhang, C., Sun, S., Xu, S., Johnston, C., Wu, C. (2022). Phosphorus Removal from Dirty Farmyard Water by Activated Anaerobic-Digestion-Derived Biochar. Industrial Engineering Chemistry Research, 62(45), 19216-19224. https://doi.org/10.1016/j.bej.2022.108679
Zhou, K., Barjenbruch, M., Kabbe, C., Inical, G., Remy, C. (2017). Phosphorus recovery from municipal and fertilizer wastewater: China's potential and perspective. Journal of Environmental Sciences. 52, 151-159, http://dx.doi.org/10.1016/j.jes.2016.04.010
Zhou, Q., Wang, X., Liu, J., Zhang, L. (2012). Phosphorus removal from wastewater using nano-particulates of hydrated ferric oxide doped activated carbon fiber prepared by Sol–Gel method. Chemical Engineering Journal, 200–202, 619–626. https://doi.org/10.1016/j.cej.2012.06.123

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.