Una revisión crítica del artículo: Experimental investigation of the effect of infill parameters on dynamic compressive performance of 3D-printed carbon fiber reinforced polyethylene terephthalate glycol composites

Contenido principal del artículo

José Guadalupe Zavala Villalpando
Juan José Martínez Nolasco
Luis Alejandro Alcaraz Caracheo

Resumen

Conocer las propiedades dinámicas de los materiales impresos en 3D sujetos a altas tasas de deformación permite a diseñadores e ingenieros tener información ingenieril para diseñar componentes sujetos a cargas dinámicas. El trabajo de Chili et al., presentado en 2023 es la investigación más reciente que evalúa las propiedades del tereftalato de polietileno glicol modificado con fibras de carbono (CF-PETG) a través del ensayo con Barra de Hopkinson de Presión Dividida (SHPB). Se presenta un análisis y una discusión detallada de los resultados presentados en el documento analizado. Finalmente, se destacan las áreas de oportunidad que tiene la investigación con el fin de obtener mejores resultados.

Descargas

Detalles del artículo

Cómo citar
Zavala Villalpando, J. G., Martínez Nolasco, J. J., & Alcaraz Caracheo, L. A. (2024). Una revisión crítica del artículo: Experimental investigation of the effect of infill parameters on dynamic compressive performance of 3D-printed carbon fiber reinforced polyethylene terephthalate glycol composites . Entreciencias: Diálogos En La Sociedad Del Conocimiento, 12(26), 1–6. https://doi.org/10.22201/enesl.20078064e.2024.26.89786

Citas en Dimensions Service

Biografía del autor/a

José Guadalupe Zavala Villalpando, Tecnológico Nacional de México en Celaya

Master of Science in Mechanical Engineering from the Tecnológico Nacional de México, Celaya campus. Currently pursuing a Ph.D. in the Engineering Science program at the same institution. Research interests include the mechanical characterization of engineering materials, automation, and control.

Juan José Martínez Nolasco, Tecnológico Nacional de México en Celaya

Ph.D. in Engineering Science from the Tecnológico Nacional de México, Celaya campus. Professor and researcher in the Mechatronics Engineering Department at the same institution. Member of the Graduate Council for the Master's Program in Mechatronics Engineering and the Doctoral Committee for the Ph.D. Program in Engineering Science. Research interests: Development of Mechatronic Systems 4.0 and the application of Industry 4.0 technologies. Recognized as a Level I member of the National System of Researchers (SNI).

Luis Alejandro Alcaraz Caracheo, Tecnológico Nacional de México en Celaya

Ph.D. in Mechanical Engineering from the Instituto Politécnico Nacional. Full-time professor and Head of the Mechanical Engineering Department at the Tecnológico Nacional de México, Celaya campus. Research interests: Mechanical design and characterization of the mechanical properties of metallic materials, polymers, and composites. Recognized as a Level I member of the National System of Researchers (SNI).

Citas

Aghayan, S., Bieler, S., & Weinberg, K. (2022). Determination of the high-strain rate elastic modulus of printing resins using two different split Hopkinson pressure bars. Mechanics of Time-Dependent Materials, 26 (4), 761-773. 10.1007/s11043-021-09511-2

Batista, M., Lagomazzini, J. M., Ramirez-Peña, M., & Vazquez-Martinez, J. M. (2023). Mechanical and Tribological Performance of Carbon Fiber-Reinforced PETG for FFF Applications. Applied Sciences, 13 (23). 10.3390/app132312701

Chen, W., Song, B., Frew, D. J., & Forrestal, M. J. (2003). Dynamic small strain measurements of a metal specimen with a split Hopkinson pressure bar. Experimental Mechanics, 43 (1), 20-23. 10.1007/BF02410479

Chen, W., & Song, B. (2011). Split Hopkinson (Kolsky) Bar: Design, Testing, and Applications. Springer. 10.1007/978-1-4419-7982-7

Chihi, M., Tarfaoui, M., Qureshi, Y., Daly, M., & Bouraoui, C. (2023). Experimental investigation of the effect of infill parameters on dynamic compressive performance of 3D-printed carbon fiber reinforced polyethylene terephthalate glycol composites. Journal of Thermoplastic Composite Materials. 10.1177/08927057231222805

Daly, M., Tarfaoui, M., Bouali, M., & Bendarma, A. (2024). Effects of Infill Density and Pattern on the Tensile Mechanical Behavior of 3D-Printed Glycolyzed Polyethylene Terephthalate Reinforced with Carbon-Fiber Composites by the FDM Process. Journal of Composites Science, 8 (4). 10.3390/jcs8040115

Faidallah, R. F., Hanon, M. M., Szakál, Z., & Oldal, I. (2024). Mechanical characterization of 3D-printed carbon fiber-reinforced polymer composites and pure polymers: Tensile and compressive behavior analysis. International Review of Applied Sciences and Engineering. 10.1556/1848.2024.00796

Gama, B. A., Lopatnikov, S. L., & Gillespie, J. W. (2004). Hopkinson bar experimental technique: A critical review. In Applied Mechanics Reviews, 57, (1-6), 223-250). 10.1115/1.1704626

Gary, G. (2014). Testing With Bars From Dynamic to Quasi-static. In T. Łodygowski & A. Rusinek (Eds.), Constitutive Relations under Impact Loadings (1-58). Springer. 10.1007/978-3-7091-1768-2_1

Govender, R., Kariem, M., Ruan, D., Santiago, R., Shu, D. W., Alves, M., Lu, G., Nurick, G., & Langdon, G. (2018). Towards Standardising SHPB Testing-A Round Robin Exercise. EPJ Web of Conferences, 183. 10.1051/epjconf/201818302027

Hughes, F., Prudom, A., & Swallowe, G. (2013). The high strain-rate behaviour of three molecular weights of polyethylene examined with a magnesium alloy split-Hopkinson pressure bar. Polymer Testing, 32 (5), 827-834. 10.1016/j.polymertesting.2013.04.002

Jain, A., Upadhyay, S., Sahai, A., & Sharma, R. S. (2023). Reinforcement-material effects on the compression behavior of polymer composites. Journal of Applied Polymer Science, 140 (15). 10.1002/app.53722

Ji, Q., Wei, J., Yi, J., Zhang, L., Ma, J., & Wang, Z. (2024). Study on the static and dynamic mechanical properties and constitutive models of 3D printed PLA and PLA-Cu materials. Materials Today Communications, 39, 108690. 10.1016/j.mtcomm.2024.108690

Kariem, M. A., Ruan, D., Beynon, J. H., & Prabowo, D. A. (2018). Mini Round-Robin Test on the Split Hopkinson Pressure Bar. Journal of Testing and Evaluation, 46 (2), 457-468. 10.1520/JTE20160054

Kariem, M. A., Santiago, R. C., Govender, R., Shu, D. W., Ruan, D., Nurick, G., Alves, M., Lu, G., & Langdon, G. S. (2019). Round-Robin test of split Hopkinson pressure bar. International Journal of Impact Engineering, 126, 62-75. 10.1016/j.ijimpeng.2018.12.003

Liao, H., & Chen, W. W. (2018). Specimen-Bar Impedance Mismatch Effects on Equilibrium and Rate Constancy for Kolsky Bar Experiments. Experimental Mechanics, 58 (9), 1439-1449. 10.1007/s11340-018-0428-x

Lei, J., Wei, Z., Liu, T., Sun, H., & Duan, H. (2020). Dynamic mechanical behavior and dynamic constitutive model of fused deposition PLA materials. China Plastics, 34 (11), 59-65. 10.19491/j.issn.1001-9278.2020.11.011

Mansour, M., Tsongas, K., Tzetzis, D., & Antoniadis, A. (2018). Mechanical and Dynamic Behavior of Fused Filament Fabrication 3D Printed Polyethylene Terephthalate Glycol Reinforced with Carbon Fibers. Polymer - Plastics Technology and Engineering, 57 (16), 1715-1725. 10.1080/03602559.2017.1419490

Miyambo, M. E., Von Kallon, D. V., Pandelani, T., & Reinecke, J. D. (2023). Review of the development of the split Hopkinson pressure bar. Procedia CIRP, 119, 800-808. 10.1016/j.procir.2023.04.010

Parry, D. J., Walker, A. G., & Dixon, P. R. (1995). Hopkinson bar pulse smoothing. Measurement Science and Technology, 6. 10.1088/0957-0233/6/5/001

Patil, S., & Sathish, T. (2024). Influence of various input factors on the compressive strength properties of 3D printed carbon fiber reinforced PETG samples using Taguchi analysis. Interactions, 245 (1). 10.1007/s10751-024-02006-9

Patil, S., Sathish, T., Giri, J., & Felemban, B. F. (2024). An experimental study of the impact of various infill parameters on the compressive strength of 3D printed PETG/CF. AIP Advances, 14 (9). 10.1063/5.0212544

Priyanka, G. T. L., Saideep, C., & Tadepalli, T. (2021). Dynamic characterization of additively manufactured polylactide (PLA). Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 235 (1), 23-35. 10.1177/14644207211065149

Samal, M. K., & Sharma, S. (2021). A New Procedure to Evaluate Parameters of Johnson-Cook Elastic-Plastic Material Model from Varying Strain Rate Split Hopkinson Pressure Bar Tests. Journal of Materials Engineering and Performance, 30 (11), 8500-8514. 10.1007/s11665-021-06014-6

Song, B., & Chen, W. (2005). Split Hopkinson pressure bar techniques for characterizing soft materials. In Latin American Journal of Solids and Structures, 2 (2), 113-152. https://www.lajss.org/index.php/LAJSS/article/view/73

Utzeri, M., Farotti, E., Coccia, M., Mancini, E., & Sasso, M. (2021). High strain rate compression behaviour of 3D printed Carbon-PA. Journal of Materials Research, 36(10), 2083–2093. DOI: 10.1557/s43578-021-00248-9

Vecchio, K. S., & Jiang, F. (2007). Improved pulse shaping to achieve constant strain rate and stress equilibrium in split-Hopkinson pressure bar testing. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 38 A (11), 2655-2665. 10.1007/s11661-007-9204-8

Xu, J., Wang, P., Pang, H., Wang, Y., Wu, J., Xuan, S., & Gong, X. (2018). The dynamic mechanical properties of magnetorheological plastomers under high strain rate. Composites Science and Technology, 159, 50-58. 10.1016/j.compscitech.2018.02.030