A critical review of the article: Experimental investigation of the effect of infill parameters on dynamic compressive performance of 3D-printed carbon fiber reinforced polyethylene terephthalate glycol composites
Main Article Content
Abstract
Understanding the dynamic properties of 3D-printed materials subjected to high strain rates enables designers and engineers to obtain engineering data for designing components subjected to dynamic loads. The work of Chili et al., presented in 2023, is the most recent research that evaluates the properties of carbon fiber-reinforced polyethylene terephthalate glycol (CF-PETG) using the Split Hopkinson Pressure Bar (SHPB) test. A detailed analysis and discussion of the results presented in the analyzed document are provided. Finally, the areas for improvement in the research are highlighted to achieve better results.
Downloads
Article Details
Citas en Dimensions Service
References
Aghayan, S., Bieler, S., & Weinberg, K. (2022). Determination of the high-strain rate elastic modulus of printing resins using two different split Hopkinson pressure bars. Mechanics of Time-Dependent Materials, 26 (4), 761-773. 10.1007/s11043-021-09511-2
Batista, M., Lagomazzini, J. M., Ramirez-Peña, M., & Vazquez-Martinez, J. M. (2023). Mechanical and Tribological Performance of Carbon Fiber-Reinforced PETG for FFF Applications. Applied Sciences, 13 (23). 10.3390/app132312701
Chen, W., Song, B., Frew, D. J., & Forrestal, M. J. (2003). Dynamic small strain measurements of a metal specimen with a split Hopkinson pressure bar. Experimental Mechanics, 43 (1), 20-23. 10.1007/BF02410479
Chen, W., & Song, B. (2011). Split Hopkinson (Kolsky) Bar: Design, Testing, and Applications. Springer. 10.1007/978-1-4419-7982-7
Chihi, M., Tarfaoui, M., Qureshi, Y., Daly, M., & Bouraoui, C. (2023). Experimental investigation of the effect of infill parameters on dynamic compressive performance of 3D-printed carbon fiber reinforced polyethylene terephthalate glycol composites. Journal of Thermoplastic Composite Materials. 10.1177/08927057231222805
Daly, M., Tarfaoui, M., Bouali, M., & Bendarma, A. (2024). Effects of Infill Density and Pattern on the Tensile Mechanical Behavior of 3D-Printed Glycolyzed Polyethylene Terephthalate Reinforced with Carbon-Fiber Composites by the FDM Process. Journal of Composites Science, 8 (4). 10.3390/jcs8040115
Faidallah, R. F., Hanon, M. M., Szakál, Z., & Oldal, I. (2024). Mechanical characterization of 3D-printed carbon fiber-reinforced polymer composites and pure polymers: Tensile and compressive behavior analysis. International Review of Applied Sciences and Engineering. 10.1556/1848.2024.00796
Gama, B. A., Lopatnikov, S. L., & Gillespie, J. W. (2004). Hopkinson bar experimental technique: A critical review. In Applied Mechanics Reviews, 57, (1-6), 223-250). 10.1115/1.1704626
Gary, G. (2014). Testing With Bars From Dynamic to Quasi-static. In T. Łodygowski & A. Rusinek (Eds.), Constitutive Relations under Impact Loadings (1-58). Springer. 10.1007/978-3-7091-1768-2_1
Govender, R., Kariem, M., Ruan, D., Santiago, R., Shu, D. W., Alves, M., Lu, G., Nurick, G., & Langdon, G. (2018). Towards Standardising SHPB Testing-A Round Robin Exercise. EPJ Web of Conferences, 183. 10.1051/epjconf/201818302027
Hughes, F., Prudom, A., & Swallowe, G. (2013). The high strain-rate behaviour of three molecular weights of polyethylene examined with a magnesium alloy split-Hopkinson pressure bar. Polymer Testing, 32 (5), 827-834. 10.1016/j.polymertesting.2013.04.002
Jain, A., Upadhyay, S., Sahai, A., & Sharma, R. S. (2023). Reinforcement-material effects on the compression behavior of polymer composites. Journal of Applied Polymer Science, 140 (15). 10.1002/app.53722
Ji, Q., Wei, J., Yi, J., Zhang, L., Ma, J., & Wang, Z. (2024). Study on the static and dynamic mechanical properties and constitutive models of 3D printed PLA and PLA-Cu materials. Materials Today Communications, 39, 108690. 10.1016/j.mtcomm.2024.108690
Kariem, M. A., Ruan, D., Beynon, J. H., & Prabowo, D. A. (2018). Mini Round-Robin Test on the Split Hopkinson Pressure Bar. Journal of Testing and Evaluation, 46 (2), 457-468. 10.1520/JTE20160054
Kariem, M. A., Santiago, R. C., Govender, R., Shu, D. W., Ruan, D., Nurick, G., Alves, M., Lu, G., & Langdon, G. S. (2019). Round-Robin test of split Hopkinson pressure bar. International Journal of Impact Engineering, 126, 62-75. 10.1016/j.ijimpeng.2018.12.003
Liao, H., & Chen, W. W. (2018). Specimen-Bar Impedance Mismatch Effects on Equilibrium and Rate Constancy for Kolsky Bar Experiments. Experimental Mechanics, 58 (9), 1439-1449. 10.1007/s11340-018-0428-x
Lei, J., Wei, Z., Liu, T., Sun, H., & Duan, H. (2020). Dynamic mechanical behavior and dynamic constitutive model of fused deposition PLA materials. China Plastics, 34 (11), 59-65. 10.19491/j.issn.1001-9278.2020.11.011
Mansour, M., Tsongas, K., Tzetzis, D., & Antoniadis, A. (2018). Mechanical and Dynamic Behavior of Fused Filament Fabrication 3D Printed Polyethylene Terephthalate Glycol Reinforced with Carbon Fibers. Polymer - Plastics Technology and Engineering, 57 (16), 1715-1725. 10.1080/03602559.2017.1419490
Miyambo, M. E., Von Kallon, D. V., Pandelani, T., & Reinecke, J. D. (2023). Review of the development of the split Hopkinson pressure bar. Procedia CIRP, 119, 800-808. 10.1016/j.procir.2023.04.010
Parry, D. J., Walker, A. G., & Dixon, P. R. (1995). Hopkinson bar pulse smoothing. Measurement Science and Technology, 6. 10.1088/0957-0233/6/5/001
Patil, S., & Sathish, T. (2024). Influence of various input factors on the compressive strength properties of 3D printed carbon fiber reinforced PETG samples using Taguchi analysis. Interactions, 245 (1). 10.1007/s10751-024-02006-9
Patil, S., Sathish, T., Giri, J., & Felemban, B. F. (2024). An experimental study of the impact of various infill parameters on the compressive strength of 3D printed PETG/CF. AIP Advances, 14 (9). 10.1063/5.0212544
Priyanka, G. T. L., Saideep, C., & Tadepalli, T. (2021). Dynamic characterization of additively manufactured polylactide (PLA). Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 235 (1), 23-35. 10.1177/14644207211065149
Samal, M. K., & Sharma, S. (2021). A New Procedure to Evaluate Parameters of Johnson-Cook Elastic-Plastic Material Model from Varying Strain Rate Split Hopkinson Pressure Bar Tests. Journal of Materials Engineering and Performance, 30 (11), 8500-8514. 10.1007/s11665-021-06014-6
Song, B., & Chen, W. (2005). Split Hopkinson pressure bar techniques for characterizing soft materials. In Latin American Journal of Solids and Structures, 2 (2), 113-152. https://www.lajss.org/index.php/LAJSS/article/view/73
Utzeri, M., Farotti, E., Coccia, M., Mancini, E., & Sasso, M. (2021). High strain rate compression behaviour of 3D printed Carbon-PA. Journal of Materials Research, 36(10), 2083–2093. DOI: 10.1557/s43578-021-00248-9
Vecchio, K. S., & Jiang, F. (2007). Improved pulse shaping to achieve constant strain rate and stress equilibrium in split-Hopkinson pressure bar testing. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 38 A (11), 2655-2665. 10.1007/s11661-007-9204-8
Xu, J., Wang, P., Pang, H., Wang, Y., Wu, J., Xuan, S., & Gong, X. (2018). The dynamic mechanical properties of magnetorheological plastomers under high strain rate. Composites Science and Technology, 159, 50-58. 10.1016/j.compscitech.2018.02.030

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Entreciencias: Diálogos en la Sociedad del Conocimiento recognizes and respects the moral rights of authors as well as ownership rights transferred in non-exclusivity to the journal for its open access dissemination and its preservation. Hence, authors who publish in this journal accept the following conditions:
- Entreciencias: Diálogos en la Sociedad del Conocimiento from Universidad Nacional Autónoma de México is distributed under a Licencia Creative Commons Atribución-NoComercial-SinDerivar 4.0 Internacional, which allows the information and metadata to be used without commercial ends as long as proper citation is utilized.
Authors will have the right to non-exclusively distribute the contribution made to Entreciencias: Diálogos en la Sociedad del Conocimiento. That is, they will be able to include it in an institutional repository or disseminate it in other digital or printed media as long as it is explicitly stated that it was first published in Entreciencias: Diálogos en la Sociedad del Conocimiento. The following information must additionally be included: author, year, volume, page numbers, electronic paging, and DOI.
Authors, whose publications have been accepted, will have to send the Letter of Copyright Transfer in the corresponding format, filled out and signed by the author or authors.