A critical review of the article: Experimental investigation of the effect of infill parameters on dynamic compressive performance of 3D-printed carbon fiber reinforced polyethylene terephthalate glycol composites

Main Article Content

José Guadalupe Zavala Villalpando
Juan José Martínez Nolasco
Luis Alejandro Alcaraz Caracheo

Abstract

Understanding the dynamic properties of 3D-printed materials subjected to high strain rates enables designers and engineers to obtain engineering data for designing components subjected to dynamic loads. The work of Chili et al., presented in 2023, is the most recent research that evaluates the properties of carbon fiber-reinforced polyethylene terephthalate glycol (CF-PETG) using the Split Hopkinson Pressure Bar (SHPB) test. A detailed analysis and discussion of the results presented in the analyzed document are provided. Finally, the areas for improvement in the research are highlighted to achieve better results.

Downloads

Article Details

How to Cite
Zavala Villalpando, J. G., Martínez Nolasco, J. J., & Alcaraz Caracheo, L. A. (2024). A critical review of the article: Experimental investigation of the effect of infill parameters on dynamic compressive performance of 3D-printed carbon fiber reinforced polyethylene terephthalate glycol composites . Entreciencias: Diálogos En La Sociedad Del Conocimiento, 12(26), 1–6. https://doi.org/10.22201/enesl.20078064e.2024.26.89786

Citas en Dimensions Service

Author Biographies

José Guadalupe Zavala Villalpando, Tecnológico Nacional de México en Celaya

Maestro en Ciencias en Ingeniería Mecánica por el Tecnológico Nacional de México en Celaya, estudiante del programa Doctorado en Ciencias de la Ingeniería en el Tecnológico Nacional de México en Celaya. Líneas de investigación: Caracterización mecánica de materiales para la ingeniería, automatización y control.

Juan José Martínez Nolasco, Tecnológico Nacional de México en Celaya

Doctor en Ciencias de la Ingeniería por el Tecnológico Nacional de México en Celaya. Profesor – Investigador adscrito al departamento de Ingeniería Mecatrónica en el Tecnológico Nacional de México en Celaya. Integrante del Consejo de Posgrado de la Maestría en Ciencias en Ingeniería Mecatrónica y del Claustro del Doctorado en Ciencias de la Ingeniería. Líneas de Investigación: Desarrollo de Sistemas Mecatrónicos 4.0 y Aplicación de las Tecnologías de la Industria 4.0. Miembro del Sistema Nacional de Investigadoras e Investigadores Nivel I.

Luis Alejandro Alcaraz Caracheo, Tecnológico Nacional de México en Celaya

Doctor en Ciencias en Ingeniería Mecánica por el Instituto Politécnico Nacional. Profesor-Investigador de tiempo completo y jefe del Departamento de Ingeniería Mecánica del Tecnológico Nacional de México en Celaya. Las líneas de investigación: Diseño Mecánico y caracterización propiedades mecánicas de materiales metálicos, polímeros y compuestos. Miembro del Sistema Nacional de Investigadores nivel I.

References

Aghayan, S., Bieler, S., & Weinberg, K. (2022). Determination of the high-strain rate elastic modulus of printing resins using two different split Hopkinson pressure bars. Mechanics of Time-Dependent Materials, 26 (4), 761-773. 10.1007/s11043-021-09511-2

Batista, M., Lagomazzini, J. M., Ramirez-Peña, M., & Vazquez-Martinez, J. M. (2023). Mechanical and Tribological Performance of Carbon Fiber-Reinforced PETG for FFF Applications. Applied Sciences, 13 (23). 10.3390/app132312701

Chen, W., Song, B., Frew, D. J., & Forrestal, M. J. (2003). Dynamic small strain measurements of a metal specimen with a split Hopkinson pressure bar. Experimental Mechanics, 43 (1), 20-23. 10.1007/BF02410479

Chen, W., & Song, B. (2011). Split Hopkinson (Kolsky) Bar: Design, Testing, and Applications. Springer. 10.1007/978-1-4419-7982-7

Chihi, M., Tarfaoui, M., Qureshi, Y., Daly, M., & Bouraoui, C. (2023). Experimental investigation of the effect of infill parameters on dynamic compressive performance of 3D-printed carbon fiber reinforced polyethylene terephthalate glycol composites. Journal of Thermoplastic Composite Materials. 10.1177/08927057231222805

Daly, M., Tarfaoui, M., Bouali, M., & Bendarma, A. (2024). Effects of Infill Density and Pattern on the Tensile Mechanical Behavior of 3D-Printed Glycolyzed Polyethylene Terephthalate Reinforced with Carbon-Fiber Composites by the FDM Process. Journal of Composites Science, 8 (4). 10.3390/jcs8040115

Faidallah, R. F., Hanon, M. M., Szakál, Z., & Oldal, I. (2024). Mechanical characterization of 3D-printed carbon fiber-reinforced polymer composites and pure polymers: Tensile and compressive behavior analysis. International Review of Applied Sciences and Engineering. 10.1556/1848.2024.00796

Gama, B. A., Lopatnikov, S. L., & Gillespie, J. W. (2004). Hopkinson bar experimental technique: A critical review. In Applied Mechanics Reviews, 57, (1-6), 223-250). 10.1115/1.1704626

Gary, G. (2014). Testing With Bars From Dynamic to Quasi-static. In T. Łodygowski & A. Rusinek (Eds.), Constitutive Relations under Impact Loadings (1-58). Springer. 10.1007/978-3-7091-1768-2_1

Govender, R., Kariem, M., Ruan, D., Santiago, R., Shu, D. W., Alves, M., Lu, G., Nurick, G., & Langdon, G. (2018). Towards Standardising SHPB Testing-A Round Robin Exercise. EPJ Web of Conferences, 183. 10.1051/epjconf/201818302027

Hughes, F., Prudom, A., & Swallowe, G. (2013). The high strain-rate behaviour of three molecular weights of polyethylene examined with a magnesium alloy split-Hopkinson pressure bar. Polymer Testing, 32 (5), 827-834. 10.1016/j.polymertesting.2013.04.002

Jain, A., Upadhyay, S., Sahai, A., & Sharma, R. S. (2023). Reinforcement-material effects on the compression behavior of polymer composites. Journal of Applied Polymer Science, 140 (15). 10.1002/app.53722

Ji, Q., Wei, J., Yi, J., Zhang, L., Ma, J., & Wang, Z. (2024). Study on the static and dynamic mechanical properties and constitutive models of 3D printed PLA and PLA-Cu materials. Materials Today Communications, 39, 108690. 10.1016/j.mtcomm.2024.108690

Kariem, M. A., Ruan, D., Beynon, J. H., & Prabowo, D. A. (2018). Mini Round-Robin Test on the Split Hopkinson Pressure Bar. Journal of Testing and Evaluation, 46 (2), 457-468. 10.1520/JTE20160054

Kariem, M. A., Santiago, R. C., Govender, R., Shu, D. W., Ruan, D., Nurick, G., Alves, M., Lu, G., & Langdon, G. S. (2019). Round-Robin test of split Hopkinson pressure bar. International Journal of Impact Engineering, 126, 62-75. 10.1016/j.ijimpeng.2018.12.003

Liao, H., & Chen, W. W. (2018). Specimen-Bar Impedance Mismatch Effects on Equilibrium and Rate Constancy for Kolsky Bar Experiments. Experimental Mechanics, 58 (9), 1439-1449. 10.1007/s11340-018-0428-x

Lei, J., Wei, Z., Liu, T., Sun, H., & Duan, H. (2020). Dynamic mechanical behavior and dynamic constitutive model of fused deposition PLA materials. China Plastics, 34 (11), 59-65. 10.19491/j.issn.1001-9278.2020.11.011

Mansour, M., Tsongas, K., Tzetzis, D., & Antoniadis, A. (2018). Mechanical and Dynamic Behavior of Fused Filament Fabrication 3D Printed Polyethylene Terephthalate Glycol Reinforced with Carbon Fibers. Polymer - Plastics Technology and Engineering, 57 (16), 1715-1725. 10.1080/03602559.2017.1419490

Miyambo, M. E., Von Kallon, D. V., Pandelani, T., & Reinecke, J. D. (2023). Review of the development of the split Hopkinson pressure bar. Procedia CIRP, 119, 800-808. 10.1016/j.procir.2023.04.010

Parry, D. J., Walker, A. G., & Dixon, P. R. (1995). Hopkinson bar pulse smoothing. Measurement Science and Technology, 6. 10.1088/0957-0233/6/5/001

Patil, S., & Sathish, T. (2024). Influence of various input factors on the compressive strength properties of 3D printed carbon fiber reinforced PETG samples using Taguchi analysis. Interactions, 245 (1). 10.1007/s10751-024-02006-9

Patil, S., Sathish, T., Giri, J., & Felemban, B. F. (2024). An experimental study of the impact of various infill parameters on the compressive strength of 3D printed PETG/CF. AIP Advances, 14 (9). 10.1063/5.0212544

Priyanka, G. T. L., Saideep, C., & Tadepalli, T. (2021). Dynamic characterization of additively manufactured polylactide (PLA). Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 235 (1), 23-35. 10.1177/14644207211065149

Samal, M. K., & Sharma, S. (2021). A New Procedure to Evaluate Parameters of Johnson-Cook Elastic-Plastic Material Model from Varying Strain Rate Split Hopkinson Pressure Bar Tests. Journal of Materials Engineering and Performance, 30 (11), 8500-8514. 10.1007/s11665-021-06014-6

Song, B., & Chen, W. (2005). Split Hopkinson pressure bar techniques for characterizing soft materials. In Latin American Journal of Solids and Structures, 2 (2), 113-152. https://www.lajss.org/index.php/LAJSS/article/view/73

Utzeri, M., Farotti, E., Coccia, M., Mancini, E., & Sasso, M. (2021). High strain rate compression behaviour of 3D printed Carbon-PA. Journal of Materials Research, 36(10), 2083–2093. DOI: 10.1557/s43578-021-00248-9

Vecchio, K. S., & Jiang, F. (2007). Improved pulse shaping to achieve constant strain rate and stress equilibrium in split-Hopkinson pressure bar testing. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 38 A (11), 2655-2665. 10.1007/s11661-007-9204-8

Xu, J., Wang, P., Pang, H., Wang, Y., Wu, J., Xuan, S., & Gong, X. (2018). The dynamic mechanical properties of magnetorheological plastomers under high strain rate. Composites Science and Technology, 159, 50-58. 10.1016/j.compscitech.2018.02.030