Enlazando escalas en un reactor químico: de la microescala a la simulación global

Contenido principal del artículo

Sergio Antonio Baz-Rodríguez
Ángel Zitlalpopoca-Soriano
Julio Sacramento-Rivero

Resumen

Este artículo discute los elementos, la descripción matemática y las herramientas de cómputo empleadas para el estudio y diseño de reactores químicos, haciendo énfasis en reactores agitados continuos. Se describen cinco escalas jerárquicas: microescala, mesoescala, macroescala, escalas simplificadas y planta de proceso. En las tres primeras escalas (nivel de fluidos), el análisis suele realizarse con dinámica de fluidos computacional, lo que permite obtener información sobre la influencia de la geometría del equipo, la distribución del mezclado, el intercambio de calor y las pérdidas de energía mecánica en superficies fijas o móviles. En cambio, para las escalas simplificadas y la planta de proceso se emplean simuladores de procesos químicos (nivel de unidad o módulo), útiles para el dimensionamiento general desde la ingeniería de procesos. El tránsito entre ambos enfoques puede implicar la pérdida de información relevante; por ello, se discuten alternativas para su integración. Este panorama integral, concebido como un “zoom inverso”, ofrece una visión completa de los fenómenos de transporte, la simulación computacional y la ingeniería de procesos en el análisis de reactores químicos.

Detalles del artículo

Citas en Dimensions Service

Citas

Agudelo, Y., y Barrera Zapata, R. (2015). Use of advanced simulation software Aspen Plus as teaching tool in chemical reaction engineering. Revista Educación en Ingeniería, 10(19), 57–68. http://www.educacioneningenieria.org

Aris, R. (1969). Elementary chemical reactor analysis. Prentice-Hall.

Bakker, A., Haidari, A. H., y Marshall, E. M. (2001). Design reactors via CFD. Chemical Engineering Progress, 97(12), 30–39.

Bar-Eli, K., y Noyes, R. M. (1986). A model for imperfect mixing in a CSTR. The Journal of Chemical Physics, 85(6), 3251–3257. https://doi.org/10.1063/1.450995 DOI: https://doi.org/10.1063/1.450995

Baz-Rodríguez, S., Zitlalpopoca-Soriano, A., y Gijón-Arreortúa, I. (2025). Dinámica de fluidos computacional como herramienta didáctica en ingeniería de reactores. Revista Mexicana de Ciencia e Ingeniería Aplicada, 1(1), En prensa.

Bird, R. B., Stewart, W. E., y Lightfoot, E. N. (2006). Fenómenos de transporte (2.ª ed.). Limusa Wiley.

Burghardt, A., y Lipowska, L. (1972). Mixing phenomena in a continuous flow stirred tank reactor. Chemical Engineering Science, 27(10), 1783–1795. https://doi.org/10.1016/0009-2509(72)85040-1 DOI: https://doi.org/10.1016/0009-2509(72)85040-1

Chakraborty, S., y Balakotaiah, V. (2005). Spatially averaged multi-scale models for chemical reactors. En Advances in Chemical Engineering (Vol. 30, pp. 205–297). Elsevier. https://doi.org/10.1016/S0065-2377(05)30004-4 DOI: https://doi.org/10.1016/S0065-2377(05)30004-4

Charpentier, J. (2009). Perspective on multiscale methodology for product design and engineering. Computers & Chemical Engineering, 33, 936–946. https://doi.org/10.1016/j.compchemeng.2008.11.007 DOI: https://doi.org/10.1016/j.compchemeng.2008.11.007

Chaurasia, A. S. (2022). Computational fluid dynamics and Comsol Multiphysics: A step-by-step approach for chemical engineers. Apple Academic Press; CRC Press. DOI: https://doi.org/10.1201/9781003180500

Choi, B. S., Wan, B., Philyaw, S., Dhanasekharan, K., y Ring, T. A. (2004). Residence time distributions in a stirred tank: Comparison of CFD predictions with experiment. Industrial and Engineering Chemistry Research, 43, 6548–6556. https://doi.org/10.1021/ie0308240 DOI: https://doi.org/10.1021/ie0308240

Epstein, I. R. (1995). The consequences of imperfect mixing in autocatalytic chemical and biological systems. Nature, 374, 321–327. https://doi.org/10.1038/374321a0 DOI: https://doi.org/10.1038/374321a0

Fogler, H. S. (2006). Elements of chemical reaction engineering (4th ed.). Pearson.

Fogler, H. S. (2020). Elements of chemical reaction engineering [Sitio web]. https://websites.umich.edu/~elements/5e/index.html

Gayer, M., Kortelainen, J., y Karhela, T. (2010). CFD modelling as an integrated part of multi-level simulation of process plants-semantic modelling approach. 2010 Summer Computer Simulation Conference (SCSC 10). www.vtt.fi

Haag, J., Gentric, C., Lemaltre, C., y Leclerc, J. (2018). Modelling of chemical reactors: From systemic approach to compartmental modelling. International Journal of Chemical Reactor Engineering, 16(8), 20170172. https://doi.org/10.1515/ijcre-2017-0172 DOI: https://doi.org/10.1515/ijcre-2017-0172

Jaworski, Z., y Zakrzewska, B. (2011). Towards multiscale modelling in product engineering. Computers and Chemical Engineering, 35(3), 434–445. https://doi.org/10.1016/j.compchemeng.2010.05.009 DOI: https://doi.org/10.1016/j.compchemeng.2010.05.009

Jurković, D. L. (2021). Chemical reaction and reactor engineering simulations. www.cerres.org

Kwauk, M. (2007). The hierarchical structure of chemical engineering. Science in China Series B: Chemistry, 50(1), 1–6. https://doi.org/10.1007/s11426-007-0001-4 DOI: https://doi.org/10.1007/s11426-007-0001-4

Laín, S., y Gandini, M. A. (2023). Ideal reactors as an illustration of solving transport phenomena problems in engineering. Fluids, 8, 58. https://doi.org/10.3390/fluids8020058 DOI: https://doi.org/10.3390/fluids8020058

Levenspiel, O. (1999). Chemical reaction engineering (3rd ed.). John Wiley y Sons.

Li, Y. (2013). State-of-the-art in multiscale simulation for process development. Korean Chemical Engineering Research, 51(1), 10–24. https://doi.org/10.9713/kcer.2013.51.1.10 DOI: https://doi.org/10.9713/kcer.2013.51.1.10

Madeira, L. M., Alves, M. A., y Rodrigues, A. E. (2004). Teaching nonideal reactors with CFD tools. Chemical Engineering Education, 38(2), 154–160. http://www.fe.up.pt/

Markatos, N. C. (1986). The mathematical modelling of turbulent flows. Applied Mathematical Modelling, 6, 190–220. DOI: https://doi.org/10.1016/0307-904X(86)90045-4

Martin, M. (2020). Introduction to software for chemical engineers. CRC Press.

Ochoa-Tapia, J. A., Hernandez-Rodriguez, R., y Alvarez-Ramirez, J. (2025). Effect of the residence time distribution on the dynamical behavior of isothermal continuous stirred tank reactors: A nonlocal modeling approach. Industrial and Engineering Chemistry Research, 64(12), 6433–6444. https://doi.org/10.1021/acs.iecr.5c00604 DOI: https://doi.org/10.1021/acs.iecr.5c00604

Ouyang, Y., Heynderickx, G., y Van Geem, K. (2022). Development of intensified reactors: A process intensification methodology perspective. Chemical Engineering and Processing, 181, 109164. https://doi.org/10.1016/j.cep.2022.109164 DOI: https://doi.org/10.1016/j.cep.2022.109164

Peng, Z., y Jimenez, J. L. (2019). KinSim: A research-grade, user-friendly, visual kinetics simulator for chemical-kinetics and environmental-chemistry teaching. Journal of Chemical Education, 96(4), 806–811. https://doi.org/10.1021/acs.jchemed.9b00033 DOI: https://doi.org/10.1021/acs.jchemed.9b00033

Python Textbook Companion. (2008). Chemical reaction engineering (example solutions with Python). https://tbc-python.fossee.in/book-details/178/

Rajavathsavai, D., Khapre, A., y Munshi, B. (2014). Study of mixing behavior of CSTR using CFD. Brazilian Journal of Chemical Engineering, 31(1), 119–129. DOI: https://doi.org/10.1590/S0104-66322014000100012

Raponi, A., y Nagy, Z. (2025). CompArt: Next-generation compartmental models for complex systems powered by artificial intelligence. Scientific Reports, 15, 1849–1853. https://doi.org/10.69997/sct.186609 DOI: https://doi.org/10.69997/sct.186609

Scriven, L. (2004). When chemical reactors were admitted and earlier roots of chemical engineering. En L. S. Fan, M. Feinberg, G. Hulse, T. Sweeney, y J. Zakin (Eds.), Unsolved problems in chemical engineering (pp. 11–28). The Ohio State University.

Smith, J. M. (1980). Chemical engineering kinetics (3rd ed.). McGraw-Hill.

Tiscareño-Lechuga, F. (2008). ABC para comprender reactores químicos con multireacción. Editorial Reverté; Instituto Tecnológico de Celaya.

Vaquerizo, L., y Cocero, M. J. (2018). CFD–Aspen Plus interconnection method: Improving thermodynamic modeling in computational fluid dynamic simulations. Computers and Chemical Engineering, 113, 152–161. https://doi.org/10.1016/j.compchemeng.2018.03.019 DOI: https://doi.org/10.1016/j.compchemeng.2018.03.019

Wehinger, G., Ambrosetti, M., Cheula, R., Ding, Z., Isoz, M., Kreitz, B., Kuhlmann, K., Kutscherauer, M., Niyogi, K., Poissonnier, J., Réocreux, R., Rudolf, D., Wagner, J., Zimmermann, R., Bracconi, M., Freund, H., Krewer, U., y Maestri, M. (2022). Quo vadis multiscale modeling in reaction engineering? A perspective. Chemical Engineering Research and Design, 184, 39–58. https://doi.org/10.1016/j.cherd.2022.05.030 DOI: https://doi.org/10.1016/j.cherd.2022.05.030

Whitaker, S. (1999). The method of volume averaging. Kluwer Academic Publishers. DOI: https://doi.org/10.1007/978-94-017-3389-2

Zitney, S. E., y Syamlal, M. (2002). Integrated process simulation and CFD for improved process engineering. Computer Aided Chemical Engineering, 12(10C), 397–402. https://doi.org/10.1016/S1570-7946(02)80094-3 DOI: https://doi.org/10.1016/S1570-7946(02)80094-3

Artículos más leídos del mismo autor/a