Linking Scales in a Chemical Reactor: From the Microscale to Global Simulation
Main Article Content
Abstract
This article discusses the elements, mathematical description, and computational tools used for the study and design of chemical reactors, with an emphasis on continuous stirred reactors. Five hierarchical scales are described: microscale, mesoscale, macroscale, simplified scales, and process plant. At the first three scales (fluid level), analysis is usually carried out through computational fluid dynamics, providing insights into the influence of equipment geometry, mixing distribution, heat transfer, and mechanical energy losses on fixed or moving surfaces. In contrast, for simplified scales and the process plant, chemical process simulators are employed (unit or module level), which are useful for general sizing from a process engineering standpoint. The transition between these two approaches may entail the loss of relevant information; therefore, alternatives for their integration are discussed. This comprehensive overview, conceived as a “reverse zoom,” offers an integrated vision of transport phenomena, computational simulation, and process engineering in the analysis of chemical reactors.
Article Details
Citas en Dimensions Service
References
Agudelo, Y., y Barrera Zapata, R. (2015). Use of advanced simulation software Aspen Plus as teaching tool in chemical reaction engineering. Revista Educación en Ingeniería, 10(19), 57–68. http://www.educacioneningenieria.org
Aris, R. (1969). Elementary chemical reactor analysis. Prentice-Hall.
Bakker, A., Haidari, A. H., y Marshall, E. M. (2001). Design reactors via CFD. Chemical Engineering Progress, 97(12), 30–39.
Bar-Eli, K., y Noyes, R. M. (1986). A model for imperfect mixing in a CSTR. The Journal of Chemical Physics, 85(6), 3251–3257. https://doi.org/10.1063/1.450995 DOI: https://doi.org/10.1063/1.450995
Baz-Rodríguez, S., Zitlalpopoca-Soriano, A., y Gijón-Arreortúa, I. (2025). Dinámica de fluidos computacional como herramienta didáctica en ingeniería de reactores. Revista Mexicana de Ciencia e Ingeniería Aplicada, 1(1), En prensa.
Bird, R. B., Stewart, W. E., y Lightfoot, E. N. (2006). Fenómenos de transporte (2.ª ed.). Limusa Wiley.
Burghardt, A., y Lipowska, L. (1972). Mixing phenomena in a continuous flow stirred tank reactor. Chemical Engineering Science, 27(10), 1783–1795. https://doi.org/10.1016/0009-2509(72)85040-1 DOI: https://doi.org/10.1016/0009-2509(72)85040-1
Chakraborty, S., y Balakotaiah, V. (2005). Spatially averaged multi-scale models for chemical reactors. En Advances in Chemical Engineering (Vol. 30, pp. 205–297). Elsevier. https://doi.org/10.1016/S0065-2377(05)30004-4 DOI: https://doi.org/10.1016/S0065-2377(05)30004-4
Charpentier, J. (2009). Perspective on multiscale methodology for product design and engineering. Computers & Chemical Engineering, 33, 936–946. https://doi.org/10.1016/j.compchemeng.2008.11.007 DOI: https://doi.org/10.1016/j.compchemeng.2008.11.007
Chaurasia, A. S. (2022). Computational fluid dynamics and Comsol Multiphysics: A step-by-step approach for chemical engineers. Apple Academic Press; CRC Press. DOI: https://doi.org/10.1201/9781003180500
Choi, B. S., Wan, B., Philyaw, S., Dhanasekharan, K., y Ring, T. A. (2004). Residence time distributions in a stirred tank: Comparison of CFD predictions with experiment. Industrial and Engineering Chemistry Research, 43, 6548–6556. https://doi.org/10.1021/ie0308240 DOI: https://doi.org/10.1021/ie0308240
Epstein, I. R. (1995). The consequences of imperfect mixing in autocatalytic chemical and biological systems. Nature, 374, 321–327. https://doi.org/10.1038/374321a0 DOI: https://doi.org/10.1038/374321a0
Fogler, H. S. (2006). Elements of chemical reaction engineering (4th ed.). Pearson.
Fogler, H. S. (2020). Elements of chemical reaction engineering [Sitio web]. https://websites.umich.edu/~elements/5e/index.html
Gayer, M., Kortelainen, J., y Karhela, T. (2010). CFD modelling as an integrated part of multi-level simulation of process plants-semantic modelling approach. 2010 Summer Computer Simulation Conference (SCSC 10). www.vtt.fi
Haag, J., Gentric, C., Lemaltre, C., y Leclerc, J. (2018). Modelling of chemical reactors: From systemic approach to compartmental modelling. International Journal of Chemical Reactor Engineering, 16(8), 20170172. https://doi.org/10.1515/ijcre-2017-0172 DOI: https://doi.org/10.1515/ijcre-2017-0172
Jaworski, Z., y Zakrzewska, B. (2011). Towards multiscale modelling in product engineering. Computers and Chemical Engineering, 35(3), 434–445. https://doi.org/10.1016/j.compchemeng.2010.05.009 DOI: https://doi.org/10.1016/j.compchemeng.2010.05.009
Jurković, D. L. (2021). Chemical reaction and reactor engineering simulations. www.cerres.org
Kwauk, M. (2007). The hierarchical structure of chemical engineering. Science in China Series B: Chemistry, 50(1), 1–6. https://doi.org/10.1007/s11426-007-0001-4 DOI: https://doi.org/10.1007/s11426-007-0001-4
Laín, S., y Gandini, M. A. (2023). Ideal reactors as an illustration of solving transport phenomena problems in engineering. Fluids, 8, 58. https://doi.org/10.3390/fluids8020058 DOI: https://doi.org/10.3390/fluids8020058
Levenspiel, O. (1999). Chemical reaction engineering (3rd ed.). John Wiley y Sons.
Li, Y. (2013). State-of-the-art in multiscale simulation for process development. Korean Chemical Engineering Research, 51(1), 10–24. https://doi.org/10.9713/kcer.2013.51.1.10 DOI: https://doi.org/10.9713/kcer.2013.51.1.10
Madeira, L. M., Alves, M. A., y Rodrigues, A. E. (2004). Teaching nonideal reactors with CFD tools. Chemical Engineering Education, 38(2), 154–160. http://www.fe.up.pt/
Markatos, N. C. (1986). The mathematical modelling of turbulent flows. Applied Mathematical Modelling, 6, 190–220. DOI: https://doi.org/10.1016/0307-904X(86)90045-4
Martin, M. (2020). Introduction to software for chemical engineers. CRC Press.
Ochoa-Tapia, J. A., Hernandez-Rodriguez, R., y Alvarez-Ramirez, J. (2025). Effect of the residence time distribution on the dynamical behavior of isothermal continuous stirred tank reactors: A nonlocal modeling approach. Industrial and Engineering Chemistry Research, 64(12), 6433–6444. https://doi.org/10.1021/acs.iecr.5c00604 DOI: https://doi.org/10.1021/acs.iecr.5c00604
Ouyang, Y., Heynderickx, G., y Van Geem, K. (2022). Development of intensified reactors: A process intensification methodology perspective. Chemical Engineering and Processing, 181, 109164. https://doi.org/10.1016/j.cep.2022.109164 DOI: https://doi.org/10.1016/j.cep.2022.109164
Peng, Z., y Jimenez, J. L. (2019). KinSim: A research-grade, user-friendly, visual kinetics simulator for chemical-kinetics and environmental-chemistry teaching. Journal of Chemical Education, 96(4), 806–811. https://doi.org/10.1021/acs.jchemed.9b00033 DOI: https://doi.org/10.1021/acs.jchemed.9b00033
Python Textbook Companion. (2008). Chemical reaction engineering (example solutions with Python). https://tbc-python.fossee.in/book-details/178/
Rajavathsavai, D., Khapre, A., y Munshi, B. (2014). Study of mixing behavior of CSTR using CFD. Brazilian Journal of Chemical Engineering, 31(1), 119–129. DOI: https://doi.org/10.1590/S0104-66322014000100012
Raponi, A., y Nagy, Z. (2025). CompArt: Next-generation compartmental models for complex systems powered by artificial intelligence. Scientific Reports, 15, 1849–1853. https://doi.org/10.69997/sct.186609 DOI: https://doi.org/10.69997/sct.186609
Scriven, L. (2004). When chemical reactors were admitted and earlier roots of chemical engineering. En L. S. Fan, M. Feinberg, G. Hulse, T. Sweeney, y J. Zakin (Eds.), Unsolved problems in chemical engineering (pp. 11–28). The Ohio State University.
Smith, J. M. (1980). Chemical engineering kinetics (3rd ed.). McGraw-Hill.
Tiscareño-Lechuga, F. (2008). ABC para comprender reactores químicos con multireacción. Editorial Reverté; Instituto Tecnológico de Celaya.
Vaquerizo, L., y Cocero, M. J. (2018). CFD–Aspen Plus interconnection method: Improving thermodynamic modeling in computational fluid dynamic simulations. Computers and Chemical Engineering, 113, 152–161. https://doi.org/10.1016/j.compchemeng.2018.03.019 DOI: https://doi.org/10.1016/j.compchemeng.2018.03.019
Wehinger, G., Ambrosetti, M., Cheula, R., Ding, Z., Isoz, M., Kreitz, B., Kuhlmann, K., Kutscherauer, M., Niyogi, K., Poissonnier, J., Réocreux, R., Rudolf, D., Wagner, J., Zimmermann, R., Bracconi, M., Freund, H., Krewer, U., y Maestri, M. (2022). Quo vadis multiscale modeling in reaction engineering? A perspective. Chemical Engineering Research and Design, 184, 39–58. https://doi.org/10.1016/j.cherd.2022.05.030 DOI: https://doi.org/10.1016/j.cherd.2022.05.030
Whitaker, S. (1999). The method of volume averaging. Kluwer Academic Publishers. DOI: https://doi.org/10.1007/978-94-017-3389-2
Zitney, S. E., y Syamlal, M. (2002). Integrated process simulation and CFD for improved process engineering. Computer Aided Chemical Engineering, 12(10C), 397–402. https://doi.org/10.1016/S1570-7946(02)80094-3 DOI: https://doi.org/10.1016/S1570-7946(02)80094-3

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Educación Química por Universidad Nacional Autónoma de México se distribuye bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivar 4.0 Internacional.
Basada en una obra en http://www.revistas.unam.mx/index.php/req.