Applying organic chemistry in the synthesis of polymers by the step mechanism

Main Article Content

Ana María Herrera-González
Nayely Trejo-Carbajal
Martín Caldera-Villalobos

Abstract

Chemistry teaching is dynamic and one way to generate meaningful learning is through its application. For example, organic chemistry is applied to polymerization mechanisms and promotes their understanding. It is very common to find chain mechanisms in books, whether ionic or via free radicals, but this is not the case for polymers that are obtained in step mechanisms. The step mechanisms are different depending on the organic functional groups involved in the polymerization reactions. So, knowledge of organic chemistry is necessary to understand these mechanisms. The mechanisms of polymerization reactions can be a complex topic to understand for many students and apprentices of polymer chemistry. This article details and compares the mechanisms of stage and chain polymerization, evidencing their differences and emphasizes developing reaction mechanisms of some commodity and engineering polymers that are obtained by the step mechanism; PET, Nylon, Thiokol, polyurethane, Bakelite and melamine in a didactic and dynamic way for easy learning.

Article Details

Citas en Dimensions Service

References

Bada, S. O., y Olusegun, S. (2015). Constructivism learning theory: A paradigm for teaching and learning. Journal of Research & Method in Education, 5(6), 66-70. https://doi.org/10.9790/7388-05616670

Billmeyer, F. W. (2020). Ciencia de los polímeros. Nueva York, USA: Reverté.

Caldera, M., y Herrera, A. M. (2019). Polímeros adhesivos y formación de uniones a través de reacciones de polimerización y fuerzas intermoleculares. Educación Química, 30(2), 2-13. https://doi.org/10.22201/fq.18708404e.2019.2.68197

Carraher Jr, C. E. (2003). Seymour/Carraher’s polymer chemistry. Nueva York, USA: CRC Press.

Castellar, G., Angulo, E. R., y Cardozo, B. M. (2014). Transesterification vegetable oils using heterogeneous catalysts. Prospect, 12(2), 90-104.

Duffy, C., Zetterlund, P. B., y Aldabbagh, F. (2018). Radical polymerization of alkyl 2-cyanoacrylates. Molecules, 23(2), 465. https://doi.org/10.3390/molecules23020465

Elizondo, C., Ramírez, C., Lizardi, M., Sillas, H., Soto, A., y Castillo, J. (2013). Obtención de un aromatizante por medio de la esterificación de Fischer. Revista naturaleza y tecnología (ensayos), 2, 31-35. http://quimica.ugto.mx/index.php/nyt/article/viewFile/185/6

Flory, P. J. (1953). Principles of polymer chemistry. Nueva York, USA: Cornell University Press.

Gallardo, F., y Merino, C. (2022). Los polímeros: Una progresión y propuesta didáctica. Educación Química, 33(2). http://dx.doi.org/10.22201/fq.18708404e.2022.2.77220

Jenkins, A. D., Kratochvíl, P., Stepto, R. F. T., y Suter, U. W. (1996). Glossary of basic terms in polymer science (IUPAC Recommendations 1996). Pure and Applied Chemistry, 68(12), 2287-2311.

Jonassen, D. H., y Strobel, J. (2006). Modeling for meaningful learning. In Engaged learning with emerging technologies(pp. 1-27).

McMurry, J. (2006). Química orgánica. México: Thomson.

Morrison, R. T., y Boyd, R. T. (1992). Química orgánica. Argentina: Addison-Wesley Iberoamericana.

Odian, G. (2004). Principles of polymerization. Nueva York, USA: John Wiley & Sons.

Raman, Y., Surif, J., e Ibrahim, N. H. (2024). The effect of problem-based learning approach in enhancing problem-solving skills in chemistry education: A systematic review. International Journal of Interactive Mobile Technologies, 18(5). https://doi.org/10.3991/ijim.v18i05.47929

Soderberg, T. (2024). The nucleophilic acyl substitution mechanism. Is licensed CC BY-NC-SA 4.0. Consultada en febrero 20, 2024 en https://digitalcommons.morris.umn.edu/chem_facpubs/1/

Solomons, T. W. G., Fryhle, C. B., y Snyder, S. A. (2017). Solomons’ Organic Chemistry. Singapur: Wiley.

Wade, L. G., y Simek, J. W. (2017). Química orgánica (Vol. 1 y 2). España: Pearson.