Balancing Chemical Equations: An Algebraic Method with Gauss-Jordan and Computational Tools

Main Article Content

Victor González
Darwin Jaque-Puca
Irene Hidalgo
Brayan Urbano
Martha González

Abstract

Balancing chemical equations, a cornerstone of chemistry, has driven the development of various methods, including the algebraic Gauss-Jordan method and computational software. This study demonstrates the effectiveness of the algebraic Gauss-Jordan method and computational software as a tool for balancing chemical equations. A simplified manual method and a computer program that provides additional information are proposed, without neglecting the importance of optimizing learning time. The article describes the use of the Gauss-Jordan method for balancing chemical equations, compared to other methods such o trial and error and the vector method. The software WolframAlpha, EBAS-equation balancer®, and Matlab are presented for automatic equation balancing, highlighting the importance of teaching and learning equation balancing in the training of university students.

Article Details

Citas en Dimensions Service

References

Andrilli, S. (2016). Álgebra lineal elemental: Sistemas de ecuaciones lineales (pp. 85–151). Elsevier. https://doi.org/10.1016/b978-0-12-800853-9.00002-5

Campanario, J. M. (1995). Automatic “balancing” of chemical equations. Computers & Chemistry, 19(2), 85–90. https://doi.org/10.1016/0097-8485(95)00008-G

Castelló Hernández, M. (1996). Balanceo de ecuaciones químicas mediante computadora. Madrid: Editorial Complutense. https://revistas.unam.mx/index.php/req/article/view/66640

Chang, R., y Goldsby, K. (2017). Química (12a ed.). México: McGraw Hill Education.

ChemEquations. (2024). ChemEquations: Balanceo de ecuaciones químicas. https://chemequations.com/es/?s=KMnO4+%2B+KI+%2B+H2SO4+%3D+MnSO4+%2B+K2SO4+%2B+I2+%2B+H2O

ChemicalAid. (2024). ChemicalAid Equation Balancer. https://www.chemicalaid.com/tools/equationbalancer.php?equation=KI+%2B+KMnO4+%2B+H2SO4+%3D+I2+%2B+MnSO4+%2B+K2SO4+%2B+H2O&hl=es

EBAS Stoichiometry Calculator. (2024). EBAS Stoichiometry Calculator. https://www.chembuddy.com/EBAS-stoichiometry-calculator

Gaffney, J. S. (2018). General chemistry for engineers: Chemical equations and mass balance. Elsevier, 117–146. https://doi.org/10.1016/B978-0-12-810425-5.00004-7

Ji, J. (2012). Gauss–Jordan elimination methods for the Moore–Penrose inverse of a matrix. Linear Algebra and Its Applications, 437(7), 1835–1844. https://doi.org/10.1016/j.laa.2012.05.017

MathWorks. (2024). MATLAB software. https://www.mathworks.com/products/matlab.html

Méndez Gutiérrez, L., Peña Duarte, P., y Peña Méndez, P. (2024). Balanceo de ecuaciones químicas usando propiedades de los vectores en el espacio tridimensional R³. Educación Química, 35(1). https://doi.org/10.22201/fq.18708404e.2024.1.86709

OpenStax College. (2022). Chemistry 2e. Houston, TX: OpenStax College. https://bit.ly/49qcFEE

Organización de Estados Americanos. (2017). Balanceo de ecuaciones químicas. https://www.guao.org/sites/default/files/biblioteca/Balanceo%20de%20ecuaciones%20qu%C3%ADmicas_0.pdf

Phillips, J. C. (1998). Algebraic constructs for the graphical and computational solution to balancing chemical equations. Computers & Chemistry, 22(4), 295–308. https://doi.org/10.1016/s0097-8485(97)00066-1

Regalado-Méndez, A., Delgado-Vidal, F., Martínez-López, R., y Peralta-Reyes, E. (2014). Balanceo de ecuaciones químicas integrando las asignaturas de química general, álgebra lineal y computación: Un enfoque de aprendizaje activo. Formación Universitaria, 7(2), 29–40. https://doi.org/10.4067/S0718-50062014000200005

Rincón, C., y Garritz, A. (1997). Fundamento matemático del método de balanceo por números de oxidación. Educación Química. https://revistas.unam.mx/index.php/req/article/view/66619

Risteski, I. B. (2009). A new singular matrix method for balancing chemical equations and their stability. Journal of the Chinese Chemical Society, 56(1), 65–79. https://doi.org/10.1002/jccs.200900011

Sen, S. K., Agarwal, H., y Sen, S. (2006). Chemical equation balancing: An integer programming approach. Mathematical and Computer Modelling, 44(7–8), 678–691. https://doi.org/10.1016/j.mcm.2006.02.004

Sharma, G., Agarwala, A., y Bhattacharya, B. (2013). A fast parallel Gauss–Jordan algorithm for matrix inversion using CUDA. Computers & Structures, 128, 31–37. https://doi.org/10.1016/j.compstruc.2013.06.015

Soleimani, F., Stanimirovic, P., y Soleymani, F. (2015). Some matrix iterations for computing generalized inverses and balancing chemical equations. Algorithms, 8(4), 982–998. https://doi.org/10.3390/a8040982

Tang, H., y Yang, X. (2021). Uncertain chemical reaction equation. Applied Mathematics and Computation, 411, 126479. https://doi.org/10.1016/j.amc.2021.126479

Udawat, B., Begani, J., Mansinghka, M., Bhatia, N., Sharma, H., y Hadap, A. (2022). Gauss–Jordan method for balancing chemical equations for different materials. Materials Today: Proceedings.https://doi.org/10.1016/j.matpr.2021.05.576

WolframAlpha LLC. (s. f.). WolframAlpha: Row Reduce. https://www.wolframalpha.com/input?i=rowreduce&lang=es