Chemistry Teaching: challenges from a feminist studies perspective on the philosophy of sciences

Main Article Content

Xenia Rueda
Juan Carlos García Cruz

Abstract

This paper analyzes the challenges of teaching chemistry from the perspective of feminist studies in the philosophy of science, linked to the obstacles arising from Science, Technology, and Society (STS) studies. We begin by considering the conception of knowledge and, specifically for chemistry, the concept of practice, which has contributed to a better understanding of the field itself. However, we turn to feminist epistemology to understand how science has been shaped by androcentric assumptions, excluding other epistemic subjects, and promoting a homogeneous vision. Therefore, we propose a reflection on the teaching of chemistry and the challenges it faces in the 21st century. This reflection goes beyond the learning of chemical concepts, aiming to analyze and include previously overlooked aspects and to advocate for a broader worldview—one that maximizes the understanding of the phenomena we seek to describe and comprehend. This, without a doubt, will enrich the scientific landscape, particularly in terms of research problems and applications that address a plural society, free from androcentric and universal biases.

Article Details

Citas en Dimensions Service

References

Arrieta de Guzmán, T. (2018). Sobre el pensamiento feminista y la ciencia. Letras-Lima, 89(130), 51-78.

Chamizo Guerrero, J. A. (2022). Las prácticas químicas a través de sus transformaciones. Crítica, Revista Hispanoamericana de Filosofía, 54(162), 57-82.

Chamizo, J. A., y García-Cruz, J. C. (2020). Experiencia en la formación de docentes a partir de la historia y la filosofía de la química. Revista Eureka sobre enseñanza y divulgación de las Ciencias, 17(1). https://doi.org/10.25267/Rev_Eureka_ensen_divulg_cienc.2020.v17.i1.1601

Cutcliffe, S. H. (1990). Ciencia, tecnología y sociedad: un campo interdisciplinar. En M. Medina y J. Sanmartín (Eds.), Ciencia, Tecnología y Sociedad (pp. 20-41). Anthropos.

Erduran, S. (2013). Philosophy, Chemistry and Education: An Introduction. Science & Education, 7, 1559-1562.

Erduran, S., Arduriz, A., y Naaman, M. (2007). Developing epistemologically empowered teachers examining the role of philosophy of chemistry in teacher education. Science & Education, 16, 975-989.

Gallego, A. P., Gallego, R., y Pérez, R. (2009). El contexto histórico didáctico de la institucionalización de la química como ciencia. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 6, 247-263.

González García, M., López Cerezo, J. A., y Luján, J. L. (1996). Ciencia, Tecnología y Sociedad: introducción al estudio social de la ciencia y la tecnología. Tecnos.

Gray, C., y Leith, H. (2004). Perpetuating gender stereotypes in the classroom: A teacher perspective. Educational Studies, 30(1), 3-17. https://doi.org/10.1080/0305569032000159705

Hacking, I. (1983). Representing and Intervening. Cambridge University Press.

Haraway, D. (1995). Simios, cyborgs y mujeres. La reinvención de la naturaleza. Ediciones Cátedra.

Harding, S. (1986). The science question in feminism. Cornell University Press.

Harding, S. (1987). Is there a feminist method? En S. Harding (Ed.), Feminism and Methodology. Indiana University Press.

Harding, S. (1991). Whose Science? Whose Knowledge? Thinking from Women’s Lives. Cornell University Press.

Harding, S. (1992). After the neutrality ideal: Science, politics, and “strong objectivity”. Social Research, 59(3), 567-587.

Harding, S. (1993). Rethinking standpoint epistemology: What is ‘strong objectivity’? En L. Alcoff & E. Potter (Eds.), Feminist Epistemologies (pp. 49-82). Routledge.

Hartsock, N. (2019). The feminist standpoint revisited and other essays. Routledge.

Hodson, D. (2008). Towards scientific literacy: A teachers’ guide to the history, philosophy and sociology of science. Sense Publishers.

Höttecke, D., y Silva, C. C. (2011). Why implementing history and philosophy in school science education is a challenge: An analysis of obstacles. Science & Education, 20, 293-316.

Justi, R., y Cardoso, P. C. (2016). Discussion of the controversy concerning a historical event among pre-service teachers. Science & Education, 25, 795-822.

Kuhn, T. (1971). La estructura de las revoluciones científicas. Fondo de Cultura Económica.

Maffia, D. (2007). Epistemología feminista: La subversión semiótica de las mujeres en la ciencia. Revista Venezolana de Estudios de la Mujer, 12(28), 63-98.

Matthews, M. (Ed.). (2014). International handbook of research in history, philosophy and science teaching. Springer.

Moreno, L., y Calvo, M. A. (2019). ¿Cómo presentan la historia de la química los libros de texto de Educación Secundaria? Un análisis desde la didáctica y los estudios históricos de la ciencia. Revista Eureka de Enseñanza y Divulgación de las Ciencias, 16, 1101.

Olivé, L. (2008). Representaciones, producción de conocimiento y normatividad: Un enfoque naturalizado. En J. Esteban & J. Martínez (Comps.), Normas y prácticas en la ciencia (pp. 50-72). UNAM, Instituto de Investigaciones Filosóficas.

Olivé, L. (2010). Prólogo. En J. A. Chamizo (Coord.), Historia y filosofía de la química. Aportes para la enseñanza (pp. 1-10). Siglo XXI.

Reichenbach, H. (1938). Experience and prediction: An analysis of the foundations and the structure of knowledge. The University of Chicago Press.

Schatzki, T. (1996). Social practices: A Wittgensteinian approach to human activity and the social. Cambridge University Press.

Tolvanen, S., Jansson, J., Vesterinen, V., y Aksela, M. (2014). How to use historical approach to teach nature of science in chemistry education? Science & Education, 23, 1605-1636.

Turner, S. (1994). The social theory of practices. The University of Chicago Press.

Van Aalsvort, J. (2004). Logical positivism as a tool to analyze the problem of chemistry’s lack of relevance in secondary school chemical education. International Journal of Science Education, 26, 1151-1168.

Wandersee, J. H. (1990). Concept mapping and the cartography of cognition. Journal of Research in Science Teaching, 27, 923-936.