Implementation of a Computational Chemistry Laboratory to Support Chemistry Learning
Main Article Content
Abstract
Understanding the impact of using laboratories on learning is fundamental when planning experimental activities that foster student learning. To this end, the implementation of a “dry” laboratory is presented, in which, in an organic chemistry course, molecules are modeled through computational chemistry to visualize and understand different topics associated with the course development through reactivity indices and the electronic nature of matter. . From the implementation, students were able to use specific software that allowed them to model organic molecules along with electronic properties of interest for the course development. A high interest in the methodology was evidenced from the teachers’ observations and positive learning experiences, measured through an adaptation of the Meaningful Learning in the Laboratory Instrument (MLLI).
Article Details
Citas en Dimensions Service
References
Akman, F., Demirpolat, A., Kazachenko, A. S., Kazachenko, A. S., Issaoui, N., & Al-Dossary, O. (2023). Molecular Structure, Electronic Properties, Reactivity (ELF, LOL, and Fukui), and NCI-RDG Studies of the Binary Mixture of Water and Essential Oil of Phlomis bruguieri. Molecules, 28(6), 2684. https://doi.org/10.3390/molecules28062684 DOI: https://doi.org/10.3390/molecules28062684
Argaman, N., & Makov, G. (2000). Density functional theory: An introduction. American Journal of Physics, 68(1), 69-79. https://doi.org/10.1119/1.19375 DOI: https://doi.org/10.1119/1.19375
Berski, S., Gordon, A. J., & Latajka, Z. (2014). Electron Localization Function Study on the Chemical Bonding in a Real Space for Tetrahedrane, Cubane, Adamantane, and Dodecahedrane and Their Perfluorinated Derivatives and Radical Anions. The Journal of Physical Chemistry A, 118(23), 4147-4156. https://doi.org/10.1021/jp501838g DOI: https://doi.org/10.1021/jp501838g
Bretz, S. L. (2019). Evidence for the Importance of Laboratory Courses. En Journal of Chemical Education (Vol. 96, Número 2, pp. 193-195). AMER CHEMICAL SOC. https://doi.org/10.1021/acs.jchemed.8b00874 DOI: https://doi.org/10.1021/acs.jchemed.8b00874
Chattaraj, P., & Debesh, R. (2015). Conceptual Density Functional Theory of Chemical Reactivity. En Advances in Mathematical Chemistry and Applications Volume 1 (pp. 196-221). Bentham Science Publisher. https://www.eurekaselect.com/chapter/7997 DOI: https://doi.org/10.2174/9781681081977115010013
Dunnington, B. D., & Schmidt, J. R. (2012). Generalization of Natural Bond Orbital Analysis to Periodic Systems: Applications to Solids and Surfaces via Plane-Wave Density Functional Theory. Journal of Chemical Theory and Computation, 8(6), 1902-1911. https://doi.org/10.1021/ct300002t DOI: https://doi.org/10.1021/ct300002t
Esselman, B. J., & Hill, N. J. (2019). Integrating Computational Chemistry into an Organic Chemistry Laboratory Curriculum Using WebMO. En Using Computational Methods To Teach Chemical Principles (Vol. 1312, pp. 139-162). American Chemical Society. https://doi.org/10.1021/bk-2019-1312.ch011 DOI: https://doi.org/10.1021/bk-2019-1312.ch011
Fuentealba, P., & Cárdenas, C. (2014). Density functional theory of chemical reactivity. En M. Springborg & J.-O. Joswig (Eds.), Chemical Modelling: Volume 11 (Vol. 11, p. 0). The Royal Society of Chemistry. https://doi.org/10.1039/9781782620112-00151 DOI: https://doi.org/10.1039/9781782620112-00151
Fuentealba, P., Chamorro, E., & Santos, J. C. (2007). Chapter 5 Understanding and using the electron localization function. En A. Toro-Labbé (Ed.), Theoretical Aspects of Chemical Reactivity (Vol. 19, pp. 57-85). Elsevier. https://doi.org/10.1016/S1380-7323(07)80006-9 DOI: https://doi.org/10.1016/S1380-7323(07)80006-9
Galloway, K. R., & Bretz, S. L. (2015). Development of an Assessment Tool To Measure Students’ Meaningful Learning in the Undergraduate Chemistry Laboratory. Journal of Chemical Education, 92(7), 1149-1158. https://doi.org/10.1021/ed500881y DOI: https://doi.org/10.1021/ed500881y
Geerlings, P. (2022). From Density Functional Theory to Conceptual Density Functional Theory and Biosystems. Pharmaceuticals, 15(9). https://doi.org/10.3390/ph15091112 DOI: https://doi.org/10.3390/ph15091112
Glendening, E. D., Landis, C. R., & Weinhold, F. (2013). NBO 6.0: Natural bond orbital analysis program. Journal of Computational Chemistry, 34(16), 1429-1437. https://doi.org/10.1002/jcc.23266 DOI: https://doi.org/10.1002/jcc.23266
Jmol development team. (2016). Jmol. Retrieved from http://jmol.sourceforge.net/. [Software].
Jones, L. L. (2013). How Multimedia-Based Learning and Molecular Visualization Change the Landscape of Chemical Education Research. Journal of Chemical Education, 90(12), 1571-1576. https://doi.org/10.1021/ed4001206 DOI: https://doi.org/10.1021/ed4001206
Kirschner, P., & Huisman, W. (1998). ‘Dry laboratories’ in science education; computer-based practical work. En International Journal of Science Education (Vol. 20, Número 6, pp. 665-682). https://doi.org/10.1080/0950069980200605 DOI: https://doi.org/10.1080/0950069980200605
Kohn, W., Becke, A. D., & Parr, R. G. (1996). Density Functional Theory of Electronic Structure. The Journal of Physical Chemistry, 100(31), 12974-12980. https://doi.org/10.1021/jp960669l DOI: https://doi.org/10.1021/jp960669l
Lu, T., & Chen, F. (2011). Multiwfn: A multifunctional wavefunction analyzer. Journal of Computational Chemistry, 33(5), 580–592. Doi:10.1002/jcc.22885. (s. f.). [Software]. DOI: https://doi.org/10.1002/jcc.22885
Marcus D Hanwell, Donald E Curtis, David C Lonie, Tim Vandermeersch, Eva Zurek and Geoffrey R Hutchison; “Avogadro: An advanced semantic chemical editor, visualization, and analysis platform” Journal of Cheminformatics 2012, 4:17. (s. f.). [Software]. DOI: https://doi.org/10.1186/1758-2946-4-17
MarvinSketch (version 6.2.2, Draw module developed by ChemAxon, http://www.chemaxon.com/products/marvin/marvinsketch/), 2014. (s. f.). [Software].
Melin, J., & Fuentealba, P. (2003). Application of the electron localization function to radical systems. International Journal of Quantum Chemistry, 92(4), 381-390. https://doi.org/10.1002/qua.10515 DOI: https://doi.org/10.1002/qua.10515
NBO 7.0. E. D. Glendening, J, K. Badenhoop, A. E. Reed, J. E. Carpenter, J. A. Bohmann, C. M. Morales, P. Karafiloglou, C. R. Landis, and F. Weinhold, Theoretical Chemistry Institute, University of Wisconsin, Madison (2018. (s. f.). [Software].
Oh, P. S., & Oh, S. J. (2011). What Teachers of Science Need to Know about Models: An overview. International Journal of Science Education, 33(8), 1109-1130. https://doi.org/10.1080/09500693.2010.502191 DOI: https://doi.org/10.1080/09500693.2010.502191
Oliva, J. M. (2019). Distintas acepciones para la idea de modelización en la enseñanza de las ciencias. Enseñanza de las Ciencias. Revista de investigación y experiencias didácticas, 37(2), 5-24. https://doi.org/10.5565/rev/ensciencias.2648 DOI: https://doi.org/10.5565/rev/ensciencias.2648
Pal, R., & Chattaraj, P. K. (2021). Chemical reactivity from a conceptual density functional theory perspective. Journal of the Indian Chemical Society, 98(1), 100008. https://doi.org/10.1016/j.jics.2021.100008 DOI: https://doi.org/10.1016/j.jics.2021.100008
Reid, N., & Shah, I. (2007). The role of laboratory work in university chemistry. Chem. Educ. Res. Pract., 8(2), 172-185. https://doi.org/10.1039/B5RP90026C DOI: https://doi.org/10.1039/B5RP90026C
Sahu, V., Sharma, P., & Kumar, A. (2014). IMPACT OF GLOBAL AND LOCAL REACTIVITY DESCRIPTORS ON THE HETERO-DIELS-ALDER REACTION OF ENAMINOTHIONE WITH VARIOUS ELECTROPHILES. Journal of the Chilean Chemical Society, 59(1), 2327-2334. https://doi.org/10.4067/S0717-97072014000100019 DOI: https://doi.org/10.4067/S0717-97072014000100019
Santos, J. C., Andres, J., Aizman, A., & Fuentealba, P. (2005). An Aromaticity Scale Based on the Topological Analysis of the Electron Localization Function Including σ and π Contributions. Journal of Chemical Theory and Computation, 1(1), 83-86. https://doi.org/10.1021/ct0499276 DOI: https://doi.org/10.1021/ct0499276
Savin, A., Silvi, B., & Colonna, F. (1996). Topological analysis of the electron localization function applied to delocalized bonds. Canadian Journal of Chemistry, 74(6), 1088-1096. https://doi.org/10.1139/v96-122 DOI: https://doi.org/10.1139/v96-122
Schwarz, C. V., & White, B. Y. (2005). Metamodeling Knowledge: Developing Students’ Understanding of Scientific Modeling. Cognition and Instruction, 23(2), 165-205. https://doi.org/10.1207/s1532690xci2302_1 DOI: https://doi.org/10.1207/s1532690xci2302_1
Seery, M. K. (2020). Establishing the Laboratory as the Place to Learn How to Do Chemistry. Journal of Chemical Education, 97(6), 1511-1514. https://doi.org/10.1021/acs.jchemed.9b00764 DOI: https://doi.org/10.1021/acs.jchemed.9b00764
Serena Software (n.y.), PCmodel software V.10.0 (taken from: Http://www.serenasoft.com/). (s. f.). [Software].
Shu-Bin, L. I. U. (2009). Conceptual Density Functional Theory and Some Recent Developments. Acta Physico-Chimica Sinica, 25(03), 590. https://doi.org/10.3866/PKU.WHXB20090332 DOI: https://doi.org/10.3866/PKU.WHXB20090332
Tian L., Fei-Wu C., & 北京科技大学化学与生物工程学院, 北京 100083,School of Chemical and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China. (2011). Meaning and Functional Form of the Electron Localization Function. Acta Physico-Chimica Sinica, 27(12), 2786-2792. https://doi.org/10.3866/PKU.WHXB20112786 DOI: https://doi.org/10.3866/PKU.WHXB20112786
Weinhold, F. (2012). Natural bond orbital analysis: A critical overview of relationships to alternative bonding perspectives. Journal of Computational Chemistry, 33(30), 2363-2379. https://doi.org/10.1002/jcc.23060 DOI: https://doi.org/10.1002/jcc.23060

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Educación Química por Universidad Nacional Autónoma de México se distribuye bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivar 4.0 Internacional.
Basada en una obra en http://www.revistas.unam.mx/index.php/req.