Exploring Genomics in High School: A Practical Approach Using Bioinformatics Tools

Main Article Content

Marco Antonio Carballo-Ontiveros
América Nitxin Castañeda-Sortibrán
Paulina Cifuentes-Ruiz
Paula Susana Larios-Jurado
Rosario Raquel Biciego Sánchez
Wolfgang Francisco Cottom-Salas

Abstract

This study focused on introducing students to the analysis of real genomic data using bioinformatics tools. An innovative instructional sequence was implemented, integrating theoretical and practical knowledge, from understanding key molecular biology concepts to applying them in current issues such as personalized medicine and biotechnology. The results show a significant positive impact on the development of interdisciplinary skills, including critical thinking, problem-solving, and collaborative work. The experience also brought students closer to real scientific practice, fostering the understanding of gene and protein structure and function, and promoting scientific and technological literacy in upper secondary education. This pedagogical approach demonstrates that bioinformatics can be an effective resource to transform biology teaching, linking theory and practice and preparing students for twenty-first-century challenges.

Article Details

Citas en Dimensions Service

References

Amatore, Z., Gunn, S., y Harris, L. (2020). An educational bioinformatics project to improve genome annotation. Frontiers in Microbiology, 11, 577497. https://doi.org/10.3389/fmicb.2020.577497 DOI: https://doi.org/10.3389/fmicb.2020.577497

Bain, S. A., Plaisier, H., Anderson, F., Cook, N., Crouch, K., Meagher, T. R., Ritchie, M. G., Wallace, E. W. J., y Barker, D. (2022). Bringing bioinformatics to schools with the 4273pi project. PLoS Computational Biology, 18(1), e1009705. https://doi.org/10.1371/journal.pcbi.1009705 DOI: https://doi.org/10.1371/journal.pcbi.1009705

Crick, F. H. (1958). On protein synthesis. Symposia of the Society for Experimental Biology, 12, 138–163.

Duncan, R. G., y Reiser, B. J. (2007). Reasoning across ontologically distinct levels: Students’ understanding of molecular genetics. Journal of Research in Science Teaching, 44(7), 938–959. https://doi.org/10.1002/tea.20186 DOI: https://doi.org/10.1002/tea.20186

Erwin Jr., R. W. (2015). Data literacy: Real-world learning through problem-solving with data sets. American Secondary Education, 43, 18–26. https://www.jstor.org/stable/43694208

Escuela Nacional Preparatoria. (2025). 1502-Biología IV. http://enp.unam.mx/assets/pdf/guias/BIOLOGIA%20IV%203%20EDIC%202023%20DIGITAL.pdf

Gelbart, H., Brill, G., y Yarden, A. (2009). The impact of a web-based research simulation in bioinformatics on students’ understanding of genetics. Research in Science Education, 39, 725–751. https://doi.org/10.1007/s11165-008-9101-1 DOI: https://doi.org/10.1007/s11165-008-9101-1

Gilbert, D. (2004). Bioinformatics software resources. Briefings in Bioinformatics, 5(3), 300–304. https://doi.org/10.1093/bib/5.3.300 DOI: https://doi.org/10.1093/bib/5.3.300

Goeddel, D. V., Kleid, D. G., Bolivar, F., Heyneker, H. L., Yansura, D. G., Crea, R., Hirose, T., Kraszewski, A., Itakura, K., y Riggs, A. D. (1979). Expression in Escherichia coli of chemically synthesized genes for human insulin. Proceedings of the National Academy of Sciences, 76(1), 106–110. https://doi.org/10.1073/pnas.76.1.106 DOI: https://doi.org/10.1073/pnas.76.1.106

Hall, J. (2011). Engaging teachers and students with real data: Benefits and challenges. In B. Phillips (Ed.), Teaching statistics in school mathematics: Challenges for teaching and teacher education. The 18th ICMI study (pp. 335–346). Springer. https://doi.org/10.1007/978-94-007-1131-0_32 DOI: https://doi.org/10.1007/978-94-007-1131-0_32

Kleinschmit, A., Brink, B., Roof, S., Goller, C. C., y Robertson, S. D. (2019). Sequence similarity: An inquiry-based and “under the hood” approach for incorporating molecular sequence alignment in introductory undergraduate biology courses. CBE—Life Sciences Education, 6. https://doi.org/10.24918/cs.2019.5 DOI: https://doi.org/10.24918/cs.2019.5

Kovarik, D. N., Patterson, D. G., Cohen, C., Sanders, E. A., Peterson, K. A., Porter, S. G., y Chowning, J. T. (2013). Bioinformatics education in high school: Implications for promoting science, technology, engineering, and mathematics careers. CBE—Life Sciences Education, 12(3), 441–459. https://doi.org/10.1187/cbe.12-11-0193 DOI: https://doi.org/10.1187/cbe.12-11-0193

Lawrence, T. J., Kauffman, K. T., Amrine, K. C. H., Carper, D. L., Lee, R. S., Becich, P. J., Canales, C. J., y Ardell, D. H. (2015). FAST: FAST analysis of sequences toolbox. Frontiers in Genetics, 6, 172. https://doi.org/10.3389/fgene.2015.00172 DOI: https://doi.org/10.3389/fgene.2015.00172

Machluf, Y., y Yarden, A. (2013). Integrating bioinformatics into senior high school: Design principles and implications. Briefings in Bioinformatics, 14(5), 648–660. https://doi.org/10.1093/bib/bbt030 DOI: https://doi.org/10.1093/bib/bbt030

Martins, A., Fonseca, M. J., Lemos, M., Lencastre, L., y Tavares, F. (2020). Bioinformatics-based activities in high school: Fostering students’ literacy, interest, and attitudes on gene regulation, genomics, and evolution. Frontiers in Microbiology, 11, 578099. https://doi.org/10.3389/fmicb.2020.578099 DOI: https://doi.org/10.3389/fmicb.2020.578099

Moore, J. H. (2007). Bioinformatics. Journal of Cellular Physiology, 213, 365–369. DOI: https://doi.org/10.1002/jcp.21218

Morales, N., Sequeira, N., Prendas, T., y Zúñiga, K. (2016). Escala de Likert: Una herramienta económica. Revista PDF, 6.

National Center for Biotechnology Information (NCBI). (2025). Notes on GenBank statistics. https://www.ncbi.nlm.nih.gov/genbank/statistics/

Pellegrini, M., Marcotte, E. M., Thompson, M. J., Eisenberg, D., y Yeates, T. O. (1999). Assigning protein functions by comparative genome analysis: Protein phylogenetic profiles. Proceedings of the National Academy of Sciences, 96(8), 4285–4288. https://doi.org/10.1073/pnas.96.8.4285 DOI: https://doi.org/10.1073/pnas.96.8.4285

Rodriguez-Sotres, R. (2005). El descubrimiento de la ubiquitina y de su papel en la degradación de proteínas intracelulares. Educación Química, 16(1), 56–62. https://doi.org/10.22201/fq.18708404e.2005.1.66138 DOI: https://doi.org/10.22201/fq.18708404e.2005.1.66138

Rodriguez-Sotres, R., y Aguayo-Ortíz, R. (2025). Desentrañando los secretos de autoensamblado en las máquinas de la vida: Plegamiento de proteínas y Nobel de Química 2024. Educación Química, 36(1), 5–13. https://doi.org/10.22201/fq.18708404e.2025.1.89902 DOI: https://doi.org/10.22201/fq.18708404e.2025.1.89902

Schreiweis, C., Bornschein, U., Burguiere, E., Kerimoglu, C., Schreiter, S., Dannemann, M., Goyal, S., Rea, E., French, C. A., Puliyadi, R., Groszer, M., Fisher, S. E., Mundry, R., Winter, C., Hever, W., Pääbo, S., Enard, W., y Graybiel, A. M. (2014). Humanized Foxp2 accelerates learning by enhancing transitions from declarative to procedural performance. Proceedings of the National Academy of Sciences, 111(39), 14253–14258. https://doi.org/10.1073/pnas.1414542111 DOI: https://doi.org/10.1073/pnas.1414542111

UniProt. (2023). UniProt: The universal protein knowledgebase in 2023. Nucleic Acids Research, 51, D523–D531. https://doi.org/10.1093/nar/gkac1052 DOI: https://doi.org/10.1093/nar/gkac1052