Enhancing High School Students’ Conceptual Understanding of Acid-Base Chemistry through Augmented Reality Modules
Main Article Content
Abstract
Understanding the acid-base concept requires grasping multiple representations. Augmented Reality (AR) technology has shown promise in enhancing students’ comprehension of chemical concepts. Accordingly, digital modules integrating AR features have been developed. This study aimed to create a valid and feasible AR-based acid-base concept module and assess its effectiveness in improving students’ conceptual understanding. The research followed a Research and Development framework, employing the ADDIE model as its methodological approach. A one-group pretest-posttest design evaluated the module’s effectiveness. Thirty second-grade high school science students, who had previously studied acid-base concepts, were selected through convenience sampling. Instruments included multiple-choice tests and questionnaires developed by the researchers. The module achieved a validation score of 87.65% and a gain index of 0.56, indicating high feasibility. Final product testing demonstrated a significant improvement in students’ conceptual understanding (Sig. 0.000 < 0.05). Students reported that the module greatly facilitated their learning and increased their interest in chemistry by integrating innovative technology. Feedback highlighted positive reactions to the engaging design, clear color schemes, and the overall ease of use, reflecting the module’s effectiveness in supporting meaningful and interactive learning of acid-base concepts.
Article Details
Citas en Dimensions Service
References
Abdinejad, M., Talaie, B., Qorbani, H. S., & Dalili, S. (2021). Student Perceptions Using Augmented Reality and 3D Visualization Technologies in Chemistry Education. Journal of Science Education and Technology, 30(1), 87–96. https://doi.org/10.1007/s10956-020-09880-2 DOI: https://doi.org/10.1007/s10956-020-09880-2
Alfaro, J. L. D., Gantois, S., Blattgerste, J., De Croon, R., Verbert, K., Pfeiffer, T., & Van Puyvelde, P. (2022). Mobile Augmented Reality Laboratory for Learning Acid-Base Titration. Journal of Chemical Education, 99(2), 531–537. https://doi.org/10.1021/acs.jchemed.1c00894 DOI: https://doi.org/10.1021/acs.jchemed.1c00894
Amores-valencia, A., & Burgos, D. (2023). The Impact of Augmented Reality ( AR ) on the Academic Performance of High School Students. Electronics, 12, 2173. DOI: https://doi.org/10.3390/electronics12102173
Amores-valencia, A., Burgos, D., & Branch-bedoya, J. W. (2022). Influence of motivation and academic performance in the use of Augmented Reality in education . A systematic review. Frontiers in Psychology, 13, 1011409. DOI: https://doi.org/10.3389/fpsyg.2022.1011409
Annisa, A., & Azra, F. (2023). Description of student learning difficulties in the acid-base material. Jurnal Pijar Mipa, 18(5), 707–711. https://doi.org/10.29303/jpm.v18i5.5583 DOI: https://doi.org/10.29303/jpm.v18i5.5583
Anshari, M., Almunawar, M. N., Shahrill, M., Wicaksono, D. K., & Huda, M. (2017). Smartphones usage in the classrooms: Learning aid or interference? Education and Information Technologies, 22(6), 3063–3079. https://doi.org/10.1007/s10639-017-9572-7 DOI: https://doi.org/10.1007/s10639-017-9572-7
Apriani, R., Harun, A. I., Erlina, E., Sahputra, R., & Ulfah, M. (2021). Pengembangan Modul Berbasis Multipel Representasi dengan Bantuan Teknologi Augmented Reality untuk Membantu Siswa Memahami Konsep Ikatan Kimia. Jurnal IPA & Pembelajaran IPA, 5(4), 305–330. https://doi.org/10.24815/jipi.v5i4.23260 DOI: https://doi.org/10.24815/jipi.v5i4.23260
Arango, J. P. B., Del Carmen Suárez Millán, M., & Arango, Y. A. F. (2024). Applicability of augmented reality and computer science in the classroom. Educación Química, 35(2), 138–156. https://doi.org/10.22201/fq.18708404e.2024.2.86812 DOI: https://doi.org/10.22201/fq.18708404e.2024.2.86812
Ardyansyah, A., & Rahayu, S. (2023). Development and Implementation of Augmented Reality-Based Card Game Learning Media with Environmental Literacy for Improving Students’ Understanding of Carbon Compounds. Orbital, 15(2), 118–126. https://doi.org/10.17807/orbital.v15i2.17617 DOI: https://doi.org/10.17807/orbital.v15i2.17617
Ardyansyah, A., & Rahayu, S. (2024). Technology-enhanced learning influence on chemical literacy: A systematic review. Ecletica Quimica, 49, 1–9. https://doi.org/10.26850/1678-4618.eq.v49.2024.e1534 DOI: https://doi.org/10.26850/1678-4618.eq.v49.2024.e1534
Ariani, S., Hidayanti, E., Studi, P., Kimia, P., & Reality, A. (2024). Development of Acid Base Solution Teaching Module Integrated Ethnochemistry Based on Augmented Reality. Chemistry Education Practice, 7(1), 200. https://doi.org/10.29303/cep.v7i1.6083 DOI: https://doi.org/10.29303/cep.v7i1.6083
Aydin-Gunbatar, S., & Akin, F. N. (2022). Pre-service chemistry teachers’ use of pedagogical transformation competence to develop topic-specific pedagogical content knowledge for planning to teach acid–base equilibrium. Chemistry Education Research and Practice, 23(1), 137–158. https://doi.org/10.1039/D1RP00106J DOI: https://doi.org/10.1039/D1RP00106J
Azmi, L., & Latisma, L. (2022). Development of Acid-Base E-Module Based on Contextual Approach with REACT Strategy to Improve Students’ Learning Outcomes. Jurnal Pendidikan MIPA, 23(1), 266–275. https://doi.org/10.23960/jpmipa/v23i1.pp266-275 DOI: https://doi.org/10.23960/jpmipa/v23i1.pp266-275
Bretz, S. L., & McClary, L. (2015). Students’ understandings of acid strength: How meaningful is reliability when measuring alternative conceptions? Journal of Chemical Education, 92(2), 212–219. https://doi.org/10.1021/ed5005195 DOI: https://doi.org/10.1021/ed5005195
Cai, S., Wang, X., & Chiang, F. K. (2014). A case study of Augmented Reality simulation system application in a chemistry course. Computers in Human Behavior, 37, 31–40. https://doi.org/10.1016/j.chb.2014.04.018 DOI: https://doi.org/10.1016/j.chb.2014.04.018
Carrizo, M. A., Barutti, M. E., Soto Amado, S. B., Montes, N. de los Á., & Sosa, M. A. (2024). Talleres áulicos enriquecidos con realidad aumentada: una iniciativa para promover la alfabetización científica. Educación Química, 35(4), 171–183. https://doi.org/10.22201/fq.18708404e.2024.4.87883 DOI: https://doi.org/10.22201/fq.18708404e.2024.4.87883
Cartrette, D. P., & Mayo, P. M. (2011). Students’ understanding of acids/bases in organic chemistry contexts. Chemistry Education Research and Practice, 12(1), 29–39. https://doi.org/10.1039/c1rp90005f DOI: https://doi.org/10.1039/C1RP90005F
Cetin-Dindar, A., & Geban, O. (2017). Conceptual understanding of acids and bases concepts and motivation to learn chemistry. Journal of Educational Research, 110(1), 85–97. https://doi.org/10.1080/00220671.2015.1039422 DOI: https://doi.org/10.1080/00220671.2015.1039422
Chen, S.-Y., & Liu, S.-Y. (2020). Using augmented reality to experiment with elements in a chemistry course. Computers in Human Behavior, 111, 106418. https://doi.org/https://doi.org/10.1016/j.chb.2020.106418 DOI: https://doi.org/10.1016/j.chb.2020.106418
Cheng, K. H., & Tsai, C. C. (2013). Affordances of Augmented Reality in Science Learning: Suggestions for Future Research. Journal of Science Education and Technology, 22(4), 449–462. https://doi.org/10.1007/s10956-012-9405-9 DOI: https://doi.org/10.1007/s10956-012-9405-9
Cooper, M., Kouyoumdjian, H., & Underwood, S. (2016). Investigating Students’ Reasoning about Acid–Base Reactions. Journal of Chemical Education, 93, 1703–1712. https://doi.org/10.1021/ACS.JCHEMED.6B00417 DOI: https://doi.org/10.1021/acs.jchemed.6b00417
Dankbaar, M. E. W., Alsma, J., Jansen, E. E. H., van Merrienboer, J. J. G., van Saase, J. L. C. M., & Schuit, S. C. E. (2016). An experimental study on the effects of a simulation game on students’ clinical cognitive skills and motivation. Advances in Health Sciences Education, 21(3), 505–521. https://doi.org/10.1007/s10459-015-9641-x DOI: https://doi.org/10.1007/s10459-015-9641-x
Dankbaar, M. E. W., Richters, O., Kalkman, C. J., Prins, G., Ten Cate, O. T. J., Van Merrienboer, J. J. G., & Schuit, S. C. E. (2017). Comparative effectiveness of a serious game and an e-module to support patient safety knowledge and awareness. BMC Medical Education, 17(1), 1–10. https://doi.org/10.1186/s12909-016-0836-5 DOI: https://doi.org/10.1186/s12909-016-0836-5
Dori, Y. J., Avargil, S., Kohen, Z., Saar, L., & Dori, Y. J. (2018). Context-based learning and metacognitive prompts for enhancing scientific text comprehension. International Journal of Science Education, 40(10), 1198–1220. https://doi.org/10.1080/09500693.2018.1470351 DOI: https://doi.org/10.1080/09500693.2018.1470351
Drechsler, M., & Van Driel, J. (2008). Experienced teachers’ pedagogical content knowledge of teaching acid-base chemistry. Research in Science Education, 38(5), 611–631. https://doi.org/10.1007/s11165-007-9066-5 DOI: https://doi.org/10.1007/s11165-007-9066-5
Fombona-Pascual, A., Fombona, J., & Vicente, R. (2022). Augmented Reality, a Review of a Way to Represent and Manipulate 3D Chemical Structures. Journal of Chemical Information and Modeling, 62(8), 1863–1872. https://doi.org/10.1021/acs.jcim.1c01255 DOI: https://doi.org/10.1021/acs.jcim.1c01255
Garzón, J., & Acevedo, J. (2019). Meta-analysis of the impact of Augmented Reality on students’ learning gains. Educational Research Review, 27, 244–260. https://doi.org/https://doi.org/10.1016/j.edurev.2019.04.001 DOI: https://doi.org/10.1016/j.edurev.2019.04.001
Habiddin, H., Kurnia Akbar, D. F., Husniah, I., & Luna, P. (2022). Uncovering Students’ Understanding: Evidence for the Teaching of Acid-Base Properties of Salt Solution. Educación Química, 33(1), 64–76. https://doi.org/10.22201/fq.18708404e.2022.1.79488 DOI: https://doi.org/10.22201/fq.18708404e.2022.1.79488
Hake, R. R. (1998). Interactive-engagement versus traditional methods: A six-thousand-student survey of mechanics test data for introductory physics courses. American Journal of Physics, 66(1), 64–74. https://doi.org/10.1119/1.18809 DOI: https://doi.org/10.1119/1.18809
Hoe, K. Y., & Subramaniam, R. (2016). On the prevalence of alternative conceptions on acid-base chemistry among secondary students: Insights from cognitive and confidence measures. Chemistry Education Research and Practice, 17(2), 263–282. https://doi.org/10.1039/c5rp00146c DOI: https://doi.org/10.1039/C5RP00146C
Hung, Y., Chen, C. -h., & Huang, S. -w. (2017). Applying augmented reality to enhance learning: a study of different teaching materials. J. Comput. Assist. Learn., 33, 252–266. https://doi.org/10.1111/jcal.12173 DOI: https://doi.org/10.1111/jcal.12173
Hurrahman, M., Erlina*, E., Melati, H. A., Enawaty, E., & Sartika, R. P. (2022). Pengembangan E-Modul Berbasis Multipel Representasi Dengan Bantuan Teknologi Augmented Reality untuk Pembelajaran Materi Bentuk Molekul. Jurnal Pendidikan Sains Indonesia, 10(1), 89–114. https://doi.org/10.24815/jpsi.v10i1.22579 DOI: https://doi.org/10.24815/jpsi.v10i1.22579
Hurrell, D. (2021). Conceptual Knowledge OR Procedural Knowledge or Conceptual Knowledge AND Procedural Knowledge: Why the Conjunction is Important to Teachers. Australian Journal of Teacher Education, 46(2), 57–71. https://doi.org/10.14221/ajte.2021v46n2.4 DOI: https://doi.org/10.14221/ajte.2021v46n2.4
Ibáñez, M.-B., & Delgado-Kloos, C. (2018). Augmented reality for STEM learning: A systematic review. Computers & Education, 123, 109–123. https://doi.org/https://doi.org/10.1016/j.compedu.2018.05.002 DOI: https://doi.org/10.1016/j.compedu.2018.05.002
Islamiyah, K. K., Rahayu, S., & Dasna, I. (2022). The Effectiveness of Remediation Learning Strategy in Reducing Misconceptions on Chemistry: A Systematic Review. Tadris: Jurnal Keguruan Dan Ilmu Tarbiyah. https://doi.org/10.24042/tadris.v7i1.11140 DOI: https://doi.org/10.24042/tadris.v7i1.11140
Khairani, R. N., & Prodjosantoso, A. K. (2023). Application of Augmented Reality on Chemistry Learning: A Systematic Review. Jurnal Penelitian Pendidikan IPA, 9(11), 1221–1228. https://doi.org/10.29303/jppipa.v9i11.4412 DOI: https://doi.org/10.29303/jppipa.v9i11.4412
Lee, W. W., & Owens, D. L. (2004). Multimedia-Based Instructional Design. In Pfeiffer (2nd ed.). John Wiley & Sons.
Lin, C. Y., & Wu, H. K. (2021). Effects of different ways of using visualizations on high school students’ electrochemistry conceptual understanding and motivation towards chemistry learning. Chemistry Education Research and Practice, 22(3), 786–801. https://doi.org/10.1039/d0rp00308e DOI: https://doi.org/10.1039/D0RP00308E
Listia, H., & Andromeda, A. (2022). Development of the Acid and Base E-Module Based on Contextual Teaching And Learning for Class XI SMA/MA. Journal of Educational Sciences, 6(4), 673. https://doi.org/10.31258/jes.6.4.p.673-686 DOI: https://doi.org/10.31258/jes.6.4.p.673-686
Makhataeva, Z., & Varol, H. A. (2020). Augmented reality for robotics: A review. Robotics, 9(2). https://doi.org/10.3390/ROBOTICS9020021 DOI: https://doi.org/10.3390/robotics9020021
Mazzuco, A., Krassmann, A. L., Reategui, E., & Gomes, R. S. (2022). A systematic review of augmented reality in chemistry education. Review of Education, 10(1), e3325. https://doi.org/https://doi.org/10.1002/rev3.3325 DOI: https://doi.org/10.1002/rev3.3325
Mills, S. (2016). Conceptual understanding: A concept analysis. Qualitative Report, 21(3), 546–557. https://doi.org/10.46743/2160-3715/2016.2308 DOI: https://doi.org/10.46743/2160-3715/2016.2308
Nieswandt, M., & West, B. S. (2007). Student Affect and Conceptual Understanding in Learning Chemistry. Journal of Research in Science Teaching, 44(7), 908–937. https://doi.org/10.1002/tea DOI: https://doi.org/10.1002/tea.20169
Nyachwaya, J. M. (2016). General chemistry students’ conceptual understanding and language fluency: Acid-base neutralization and conductometry. Chemistry Education Research and Practice, 17(3), 509–522. https://doi.org/10.1039/c6rp00015k DOI: https://doi.org/10.1039/C6RP00015K
Ovando, M. N. (1993). Individualized Learning Modules. International Journal of Educational Management, 7(3). https://doi.org/10.1108/EUM0000000001983 DOI: https://doi.org/10.1108/EUM0000000001983
Oyman, M., Bal, D., & Ozer, S. (2022). Extending the technology acceptance model to explain how perceived augmented reality affects consumers’ perceptions. Comput. Hum. Behav., 128, 107127. https://doi.org/10.1016/j.chb.2021.107127 DOI: https://doi.org/10.1016/j.chb.2021.107127
Peterson, R. A. (1994). A Meta-analysis of Cronbach’s Coefficient Alpha. Journal of Consumer Research, 21(2), 381–391. https://doi.org/10.1086/209405 DOI: https://doi.org/10.1086/209405
Petterson, M. N., Watts, F. M., Snyder-White, E. P., Archer, S. R., Shultz, G. V., & Finkenstaedt-Quinn, S. A. (2020). Eliciting student thinking about acid-base reactions: Via app and paper-pencil based problem solving. Chemistry Education Research and Practice, 21(3), 878–892. https://doi.org/10.1039/c9rp00260j DOI: https://doi.org/10.1039/C9RP00260J
Petterson, M., Watts, F., Snyder-White, E., Archer, S., Shultz, G., & Finkenstaedt-Quinn, S. (2020). Eliciting student thinking about acid–base reactions via app and paper–pencil based problem solving. Chemistry Education Research and Practice. https://doi.org/10.1039/c9rp00260j DOI: https://doi.org/10.26434/chemrxiv.10295228.v1
Rahayu, S., Chandrasegaran, A. L., Treagust, D. F., Kita, M., & Ibnu, S. (2011). Understanding acid-base concepts: Evaluating the efficacy of a senior high school student-centred instructional program in Indonesia. International Journal of Science and Mathematics Education, 9(6), 1439–1458. https://doi.org/10.1007/s10763-010-9272-x DOI: https://doi.org/10.1007/s10763-010-9272-x
Ramli, R. Z., Wan Zakiyatussariroh, W. H., Ahmed M. S., E., & and Sahari @ Ashaari, N. (2024). Augmented reality: a systematic review between usability and learning experience. Interactive Learning Environments, 32(10), 6250–6266. https://doi.org/10.1080/10494820.2023.2255230 DOI: https://doi.org/10.1080/10494820.2023.2255230
Ryu, E. J., & Paik, S. H. (2021). Analysis of cognition levels related to acid-base models in high school science-gifted students. Journal of the Korean Chemical Society, 65(1), 37–47. https://doi.org/10.5012/jkcs.2021.65.1.37
Salame, I. I., Montero, A., & Eschweiler, D. (2022). Examining some of the Students’ Challenges and Alternative Conceptions in Learning about Acid-base Titrations. International Journal of Chemistry Education Research, 6, 1–10. https://doi.org/10.20885/ijcer.vol6.iss1.art1 DOI: https://doi.org/10.20885/ijcer.vol6.iss1.art1
Schmidt-McCormack, J. A., Judge, J. A., Spahr, K., Yang, E., Pugh, R., Karlin, A., Sattar, A., Thompson, B. C., Gere, A. R., & Shultz, G. V. (2019). Analysis of the role of a writing-to-learn assignment in student understanding of organic acid–base concepts. Chemistry Education Research and Practice, 20(2), 383–398. https://doi.org/10.1039/C8RP00260F DOI: https://doi.org/10.1039/C8RP00260F
Schmitt, N. (1996). Uses and abuses of coefficient alpha. Psychological Assessment, 8(4), 350–353. https://doi.org/10.1037/1040-3590.8.4.350 DOI: https://doi.org/10.1037//1040-3590.8.4.350
Sheppard, K. (2006). High school students ’ understanding of titrations and related acid- base phenomena. Chemistry Education Research and Practice, 7(1), 32–45. DOI: https://doi.org/10.1039/B5RP90014J
Shiue, Y. (2019). Impact of an Augmented Reality System on Students ’ Learning Performance for a Health Education Course. International Journal of Management, Economics, and Social Sciences, 8(3), 195–204. https://doi.org/10.32327/IJMESS.8.3.2019.12 DOI: https://doi.org/10.32327/IJMESS/8.3.2019.12
Sırakaya, M., & Alsancak Sırakaya, D. (2022). Augmented reality in STEM education: a systematic review. Interactive Learning Environments, 30(8), 1556–1569. https://doi.org/10.1080/10494820.2020.1722713 DOI: https://doi.org/10.1080/10494820.2020.1722713
Syafruddin, A. B., Widarti, H. R., & Rokhim, D. A. (2024). Development of Instagram-Based Learning Media To Increase Students Learning Interest in Acid-Base Materials. Turkish Online Journal of Distance Education, 25(2), 228–247. https://doi.org/10.17718/tojde.1312770 DOI: https://doi.org/10.17718/tojde.1312770
Treagust, D., Nieswandt, M., & Duit, R. (2018). Sources of students difficulties in learning Chemistry. Educación Química, 11(2), 228. https://doi.org/10.22201/fq.18708404e.2000.2.66458 DOI: https://doi.org/10.22201/fq.18708404e.2000.2.66458
Tseng, C.-H., Tuan, H.-L., & Chin, C. (2010). Investigating the Influence of Motivational Factors on Conceptual Change in a Digital Learning Context Using the Dual‐Situated Learning Model. International Journal of Science Education, 32, 1853–1875. https://doi.org/10.1080/09500690903219156 DOI: https://doi.org/10.1080/09500690903219156
Widarti, H. R., Ainur Rokhim, D., & Sarosah Rahmaniyah, N. M. (2022). Multiple representation-based mobile apps with learning cycle 7e model on colligative properties of solutions. Educación Química, 33(3), 115–126. https://doi.org/10.22201/fq.18708404e.2022.3.80540 DOI: https://doi.org/10.22201/fq.18708404e.2022.3.80540
Wong, C. H. S., Tsang, K. C. K., & Chiu, W.-K. (2021). Using Augmented Reality as a Powerful and Innovative Technology to Increase Enthusiasm and Enhance Student Learning in Higher Education Chemistry Courses. Journal of Chemical Education, 98(11), 3476–3485. https://doi.org/10.1021/acs.jchemed.0c01029 DOI: https://doi.org/10.1021/acs.jchemed.0c01029
Wu, H.-K., & Shah, P. (2004). Exploring visuospatial thinking in chemistry learning. Science Education, 88(3), 465–492. https://doi.org/https://doi.org/10.1002/sce.10126 DOI: https://doi.org/10.1002/sce.10126
Yerimadesi, Y., Bayharti, B., Azizah, A., Lufri, L., Andromeda, A., & Guspatni, G. (2019). Effectiveness of acid-base modules based on guided discovery learning for increasing critical thinking skills and learning outcomes of senior high school student. Journal of Physics: Conference Series, 1185(1). https://doi.org/10.1088/1742-6596/1185/1/012151 DOI: https://doi.org/10.1088/1742-6596/1185/1/012151
Zhang, S., & Yao, Z. (2025). The challenge of the application of augmented reality in science education in China: a systematic review. Disciplinary and Interdisciplinary Science Education Research, 7(1), 4. https://doi.org/10.1186/s43031-025-00123-1 DOI: https://doi.org/10.1186/s43031-025-00123-1

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Educación Química por Universidad Nacional Autónoma de México se distribuye bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivar 4.0 Internacional.
Basada en una obra en http://www.revistas.unam.mx/index.php/req.