Peer Instruction en clases de química: revisión sistemática sobre contribuciones y posibilidades

Contenido principal del artículo

Cassiana Herzer Griebeler
Camila Greff Passos
Maurícius Selvero Pazinato

Resumen

El objetivo de este trabajo es mapear estudios sobre Instrucción entre Pares en la Enseñanza de la Química. Para esto, desarrollamos una revisión sistemática de cómo se ha implementado e investigado la Peer Instruction (Instrucción entre Pares - IP) en clases de Química, así como el impacto de la IP en los resultados de aprendizaje de los estudiantes en ese contexto. Nuestro objetivo es apoyar a los profesores de química en la elección de utilizar la IP y promover su implementación basada en evidencia. La revisión abarca el período desde 1991 hasta 2022. Los estudios se llevaron a cabo principalmente en instituciones de educación superior, en universidades públicas de Inglaterra, Turquía, Estados Unidos y Brasil. La IP se implementó en cursos de Química, como en los subcampos de Química General, Química Física y Química Analítica. Algunos estudios adaptaron la IP a cursos en línea, mientras que otros compararon diferentes tipos de grupos de pares e investigaron la influencia de diferentes factores en la IP, como la lectura previa a la clase y la presentación de los resultados de votación en vivo. La efectividad de la IP varió según la forma en que se implementó, como la agrupación de pares, clases en línea o presenciales. Los resultados de la IP en las clases de química se han monitorizado principalmente a través de la percepción de los estudiantes, y el rendimiento en preguntas conceptuales se utiliza con frecuencia como herramienta de evaluación. Esta revisión encontró un pequeño número de estudios sobre la IP en química, especialmente en clases de química de secundaria. Además, las actividades previas a la clase no se emplean ampliamente. La mayoría de los artículos utilizaron análisis cuantitativos e indican resultados positivos para el proceso de aprendizaje.

Detalles del artículo

Citas en Dimensions Service

Biografía del autor/a

Cassiana Herzer Griebeler, Universidade Federal do Rio Grande do Sul

Possui graduação em Química pela Universidade Federal do Rio Grande do Sul (2016) e mestrado em Química pela Universidade Federal do Rio Grande do Sul (2019). Atualmente é bolsista de doutorado da Universidade Federal do Rio Grande do Sul, atuando na área de Ensino de Química. Tem experiência na área de Química, com ênfase em Síntese Orgânica, nos seguintes temas: síntese assimétrica e líquidos iônicos quirais; e na área de Ensino de Química, nos seguintes temas: metodologias ativas de ensino.

Camila Greff Passos, Universidade Federal do Rio Grande do Sul

Atualmente é professora adjunta na Universidade Federal do Rio Grande do Sul e coordenadora de área do Subprojeto PIBID/Multidisciplinar: Biologia, Física e Química. Orienta no Programa de Pós-Graduação em Química da Universidade Federal do Rio Grande do Sul. Foi coordenadora de área do Subprojeto PIBID/Química da mesma Instituição no período de 2014-2017. Possui graduação em Química Licenciatura Plena pela Universidade Luterana do Brasil (2003), mestrado em Físico-Química de materiais (2007) e doutorado em Educação Química pela Universidade Federal do Rio Grande do Sul (2012). Foi professora da educação básica por 6 anos, e desde 2005 atua na educação superior, com experiência na docência e na pesquisa sobre formação de professores. Áreas de interesse: metodologias ativas de ensino e aprendizagem, reformas curriculares e desenvolvimento profissional docente.

Maurícius Selvero Pazinato, Universidade Federal do Rio Grande do Sul

Professor Adjunto da Universidade Federal do Rio Grande Sul - UFRGS, Instituto de Química, Departamento de Química Orgânica. Orienta nos Programas de Pós Graduação em Química (PPGQ) e Mestrado Profissional em Química em Rede Nacional (PROFQUI) da UFRGS. Atua na área de Ensino de Química e possui experiência nos seguintes temas: ensino e aprendizagem de conceitos científicos, metodologias de ensino, abordagem temática, epistemologia da Ciência e formação de professores de Química. Atualmente é coordenador substituto do PROFQUI e coordenador do núcleo de Química do Projeto Interdisciplinar do Residência Pedagógica - UFRGS. Possui graduação em Química Licenciatura (2010), mestrado (2012) e doutorado (2016) em Educação em Ciências (Ensino de Química) pela Universidade Federal de Santa Maria - UFSM. Foi professor substituto do Departamento de Metodologia de Ensino do Centro de Educação - UFSM (2014) e professor Adjunto da Universidade Federal do Pampa - UNIPAMPA, campus Dom Pedrito (2014-2018).

Citas

Aricò, F. R. & Lancaster, S. J. (2018). Facilitating active learning and enhancing student self-assessment skills. International Review of Economics Education, 29, 6-13. https://doi.org/10.1016/j.iree.2018.06.002

Belmonte, I. S., Borges, A. V., & Garcia, I. T. S. (2022). Adaptation of physical chemistry course in COVID-19 period: reflections on peer instruction and team-based learning. Journal of Chemical Education, 99(6), 2252-2258. http://dx.doi.org/10.1021/acs.jchemed.1c00529

Bernardi, F. M. & Pazinato, M. S. (2022). The case study method in chemistry teaching: A systematic review. Journal of Chemical Education, 99(3), 1211-1219. http://dx.doi.org/10.1021/acs.jchemed.1c00733

Børte, K., Nesje, K., & Lillejord, S. (2023). Barriers to student active learning in higher education. Teaching in Higher Education, 28(3), 597-615. https://doi.org/10.1080/13562517.2020.1839746

Brooks, B. J. & Koretsky, M. D. (2011). The influence of group discussion on students’ responses and confidence during peer instruction. Journal of Chemical Education, 88(11), 1477-1484. http://dx.doi.org/10.1021/ed101066x

Bruck, A. D. & Towns, M. H. (2009). Analysis of classroom response system questions via four lenses in a general chemistry course. Chemistry Education Research and Practice, 10(4), 291-295. http://dx.doi.org/10.1039/B920834H

Crouch, C. H. & Mazur, E. (2001). Peer instruction: Ten years of experience and results. American Journal of Physics, 69(9), 970-977. https://doi.org/10.1119/1.1374249

Crouch, C. H., Watkins, J., Fagen, A. P., & Mazur, E. (2007). Peer instruction: Engaging students one-on-one, all at once. Research-based Reform of University Physics, 1(1), 40-95. http://dx.doi.org/10.1119/RevPERv1.1.3

Freeman, S., Eddy, S. L., McDonough, M., Smith, M. K., Okoroafor, N., Jordt, H., & Wenderoth, M. P. (2014). Active learning increases student performance in science, engineering, and mathematics. Proceedings of the National Academy of Sciences, 111(23), 8410-8415. https://doi.org/10.1073/pnas.1319030111

Gok, T. & Gok, O. (2016). Peer instruction in chemistry education: Assessment of students’ learning strategies, conceptual learning and problem solving. In Asia-Pacific Forum on Science Learning and Teaching (pp. 1-21). Hong Kong, CN.

Graffam, B. (2007). Active learning in medical education: strategies for beginning implementation. Medical Teacher, 29(1), 38-42. http://dx.doi.org/10.1080/01421590601176398

Hake, R. R. (1998). Interactive-engagement versus traditional methods: A six-thousand-student survey of mechanics test data for introductory physics courses. American Journal of Physics, 66(1), 64-74. http://dx.doi.org/10.1119/1.18809

Heiner, C. E., Banet, A. I., & Wieman, C. (2014). Preparing students for class: How to get 80% of students reading the textbook before class. American Journal of Physics, 82(10), 989-996. http://dx.doi.org/10.1119/1.4895008

Lucas, A. R. (2012). Using WeBWorK, a web-based homework delivery and grading system, to help prepare students for active learning. Primus, 22(2), 97-107. https://doi.org/10.1080/10511970.2010.497834

Mazur, E. (1997). Peer instruction: Getting students to think in class. In AIP Conference Proceedings (Vol. 399, No. 1, pp. 981-988). Cambridge, MA.

Mazur, E. (1999). Peer Instruction: A User’s Manual. Upper Saddle River, NJ: Prentice Hall.

Michinov, N., Morice, J., & Ferrières, V. (2015). A step further in peer instruction: Using the stepladder technique to improve learning. Computers & Education, 91, 1-13. http://dx.doi.org/10.1016/j.compedu.2015.09.007

Miller, K., Lasry, N., Lukoff, B., Schell, J., & Mazur, E. (2014). Conceptual question response times in peer instruction classrooms. Physical Review Special Topics - Physics Education Research, 10(2), 020113. http://dx.doi.org/10.1103/PhysRevSTPER.10.020113

Moraes, L. D. de M., Carvalho, R. S., & Neves, Á. J. M. (2016). O Peer Instruction como proposta de metodologia ativa no ensino de química. The Journal of Engineering and Exact Sciences, 2(3), 107-131. http://dx.doi.org/10.18540/jcecvl2iss3pp107-131

Morice, J., Michinov, N., Delaval, M., Sideridou, A., & Ferrières, V. (2015). Comparing the effectiveness of peer instruction to individual learning during a chromatography course. Journal of Computer Assisted Learning, 31(6), 722-733. https://doi.org/10.1111/jcal.12116

Müller, M. G., Araujo, I. S., Veit, E. A., & Schell, J. (2017). Uma revisão da literatura acerca da implementação da metodologia interativa de ensino Peer Instruction (1991 a 2015). Revista Brasileira de Ensino de Física, 39. http://dx.doi.org/10.1590/1806-9126-rbef-2017-0012

Nakhleh, M. B. (1992). Why some students don’t learn chemistry: Chemical misconceptions. Journal of Chemical Education, 69(3), 191. https://doi.org/10.1021/ED069P191

Novak, G., Gavrin, A., Christian, W., & Patterson, E. (1999). Just-in-Time Teaching: Blending Active Learning with Web Technology. Upper Saddle River, NJ: Prentice Hall.

Olpak, Y. Z. & Yilmaz, R. (2022). Review of Trends in Peer Instruction: Bibliometric Mapping Analysis and Systematic Review. Journal of Learning and Teaching in Digital Age, 7(1), 42-50. https://doi.org/10.53850/joltida.978824

Pearson, R. J. (2019). Exploring Peer Instruction: Should Cohort Clicker Responses Appear During or After Polling? Journal of Chemical Education, 96(5), 873-879. http://dx.doi.org/10.1021/acs.jchemed.9b00035

Pollozi, S., Haddad, I., Tyagi, A., Mills, P., & McGregor, D. (2019). Using clicker-based group work facilitated by a modified peer instruction process in a highly successful flipped general chemistry classroom. In Active Learning in General Chemistry: Whole-class Solutions (pp. 35-53). American Chemical Society.

Prince, M. (2004). Does active learning work? A review of the research. Journal of Engineering Education, 93(3), 223-231. http://dx.doi.org/10.1002/j.2168-9830.2004.tb00809.x

Sadler, I. (2012). The challenges for new academics in adopting student-centred approaches to teaching. Studies in Higher Education, 37(6), 731-745. http://dx.doi.org/10.1080/03075079.2010.543968

Simpson, R. D. & Oliver, J. S. (1990). A summary of major influences on attitude toward and achievement in science among adolescent students. Science Education, 74(1), 1-18. https://psycnet.apa.org/doi/10.1002/sce.3730740102

Vickrey, T., Rosploch, K., Rahmanian, R., Pilarz, M., & Stains, M. (2015). Research-based implementation of peer instruction: A literature review. CBE—Life Sciences Education, 14(1), es3. http://dx.doi.org/10.1187/cbe.14-11-0198

Yıldırım, T. & Canpolat, N. (2019). An investigation of the effectiveness of the peer instruction method on teaching about solutions at the high-school level. Egitim ve Bilim, 44(199). http://dx.doi.org/10.15390/EB.2019.7966

Young, K. K. & Talanquer, V. (2013). Effect of different types of small-group activities on students’ conversations. Journal of Chemical Education, 90(9), 1123-1129. http://dx.doi.org/10.1021/ed400049a

Zhang, P., Ding, L., & Mazur, E. (2017). Peer Instruction in introductory physics: A method to bring about positive changes in students’ attitudes and beliefs. Physical Review Physics Education Research, 13(1), 010104. http://dx.doi.org/10.1103/PhysRevPhysEducRes.113.010104