¿Qué hemos aprendido sobre el razonamiento de los estudiantes de química?

Contenido principal del artículo

Vicente Talanquer Artigas

Resumen

En este trabajo se resumen los resultados de investigaciones en ciencias cognitivas, educación de las ciencias y didácticas disciplinarias específicas sobre el razonamiento humano que proporcionan información relevante para el aprendizaje de la química, y se resaltan sus implicaciones para el currículum, la enseñanza y la evaluación en la disciplina. En el ensayo se describen y analizan diversas perspectivas cognitivas sobre la naturaleza del conocimiento de los estudiantes y su impacto sobre el razonamiento y el aprendizaje.


 

Detalles del artículo

Citas en Dimensions Service

Biografía del autor/a

Vicente Talanquer Artigas, University of Arizona

Estudió química y el posgrado en Fisicoquímica en la Facultad de Química de la Universidad Nacional Autónoma de México. Actualmente es Profesor Distinguido en el Departamento de Química y Bioquímica de la Universidad de Arizona. Sus intereses más importantes en educación química se refieren a la investigación educativa sobre el razonamiento químico y el pensamiento docente. Su trabajo de investigación se enfoca en la educación quimica y formación de profesores.

Citas

Amin, T. G., & Levrini, O. (Eds.). (2017). Converging Perspectives on Conceptual Change: Mapping an EmergingParadigm in the Learning Sciences (1st ed. ed.). Routledge.

Amin, T. G., Smith, C. L., & Wiser, M. (2014). Students conceptions and conceptual change: Three overlapping phases of research. In N. G. Lederman & S. K. Abell (Eds.), Handbook of Science Education Research (pp. 57-81). Routledge.

Andersson, B. (1986). The experiential gestalt of causation: a common core to pupils’ preconceptions in science. European Journal of Science Education, 8(2), 155-171.

Artze-Vega, I., Darby, F., Dewsbury, B., & Imad, M. (2023). The Norton Guide to Equity-Minded Teaching. W. W. Norton.

Barsalou, L. W. (2020). Challenges and Opportunities for Grounding Cognition. Journal of Cognition, 3(1), 31.

Beilin, H. (1992). Piaget’s enduring contribution to developmental psychology. Developmental Psychology, 28, 191-204.

Bodner, G. M., & Domin, D. S. (2000). Mental Models: The Role of Representations in Problem Solving in Chemistry. University Chemistry Education, 4(1), 24-30.

Brown, D. E. (2014). Students’ Conceptions as Dynamically Emergent Structures. Science & Education, 23(7), 1463-1483.

Brown, D. E., & Hammer, D. (2008). Conceptual change in physics. In S. Vosniadou (Ed.), International handbook of research on conceptual change (pp. 127-154). Routledge.

Brown, P. C., Roediger Iii, H. L., & McDaniel, M. A. (2014). Make it stick: The science of successful learning. The Belknap Press of Harvard University Press.

Bunce, D. M. (2001). Does Piaget Still Have Anything to Say to Chemists? Journal of Chemical Education, 78(8), 1107.

Chi, M. T. H. (2013). Two kinds and four sub types of misconceived knowledge, ways to change it and the learning outcomes. In S. Vosniadou (Ed.), International Handbook of Research on Conceptual Change (pp. 49-71). Routledge.

diSessa, A. A. (1993). Toward an Epistemology of Physics. Cognition and Instruction, 10(2-3), 105-225.

Driver, R., & Easley, J. (1978). Pupils and Paradigms: a Review of Literature Related to Concept Development in Adolescent Science Students. Studies in Science Education, 5(1), 61-84.

Driver, R., Squires, A., Rushword, P., & Wood-Robinson, V. (1994). Making Sense of Secondary Science: Research into Children’s Ideas Routledge.

Duschl, R., Maeng, S., & Sezen, A. (2011). Learning progressions and teaching sequences: a review and analysis. Studies in Science Education, 47(2), 123-182.

Gabel, D. L., & Bunce, D. M. (1994). Research on problem solving: Chemistry. In D. L. Gabel (Ed.), Handbook of research on science teaching and learning (pp. 301-326). Macmillan.

Gillies, R. M. (2016). Dialogic interactions in the cooperative classroom. International Journal of Educational Research, 76, 178-189.

Gopnik, A., & Wellman, H. M. (1994). The theory theory. In L. A. Hirschfeld & S. A. Gelman (Eds.), Mapping the Mind: Domain Specificity in Cognition and Culture (pp. 257-293). Cambridge University Press.

Gordon, C., & Tannen, D. (2023). Framing and related concepts in interactional sociolinguistics. Discourse Studies, 25(2), 237-246.

Grotzer, T. A. (2012). Learning causality in a complex world: Understandings of consequence. R&L Education.

Hartman, J. R., Nelson, E. A., & Kirschner, P. A. (2022). Improving student success in chemistry through cognitive science. Foundations of Chemistry, 24(2), 239-261.

Herron, J. D. (1975). Piaget for chemists. Explaining what “good” students cannot understand. Journal of Chemical Education, 52(3), 146.

Hodges, L. C. (2018). Contemporary Issues in Group Learning in Undergraduate Science Classrooms: A Perspective from Student Engagement. CBE—Life Sciences Education, 17(2), es3.

Johnstone, A. H. (2006). Chemical education research in Glasgow in perspective [10.1039/B5RP90021B]. Chemistry Education Research and Practice, 7(2), 49-63.

Kahneman, D., & Klein, G. (2009). Conditions for intuitive expertise: A failure to disagree. American Psychologist, 64, 515-526.

Kind, V. (2004). Beyond Appearances: Students’ Misconceptions about Basic Chemical Ideas. Royal Society of Chemistry.

Lederman, N. G., Zeidler, D. L., & Lederman, J. S. (Eds.). (2023). Handbook of Research on Science Education (First ed., Vol. III). Routledge.

Linn, M. C. (2005). The Knowledge Integration Perspective on Learning and Instruction. In R. K. Sawyer (Ed.), The Cambridge Handbook of the Learning Sciences (pp. 243-264). Cambridge University Press.

Lombardi, D., Shipley, T. F., Bailey, J. M., Bretones, P. S., Prather, E. E., Ballen, C. J., Knight, J. K., Smith, M. K., Stowe, R. L., Cooper, M. M., Prince, M., Atit, K., Uttal, D. H., LaDue, N. D., McNeal, P. M., Ryker, K., St. John, K., van der Hoeven Kraft, K. J., & Docktor, J. L. (2021). The Curious Construct of Active Learning. Psychological Science in the Public Interest, 22(1), 8-43.

Maeyer, J., & Talanquer, V. (2010). The role of intuitive heuristics in students’ thinking: Ranking chemical substances. Science Education, 94(6), 963-984.

Malmberg, K. J., Raaijmakers, J. G. W., & Shiffrin, R. M. (2019). 50 years of research sparked by Atkinson and Shiffrin (1968). Memory & Cognition, 47(4), 561-574.

Morewedge, C. K., & Kahneman, D. (2010). Associative processes in intuitive judgment. Trends in Cognitive Sciences, 14(10), 435-440.

National Research Council. (2000). How People Learn: Brain, Mind, Experience, and School: Expanded Edition. The National Academies Press.

Niaz, M. (1995). Cognitive conflict as a teaching strategy in solving chemistry problems: A dialectic–constructivist perspective. Journal of Research in Science Teaching, 32(9), 959-970.

Oppenheimer, D. M. (2008). The secret life of fluency. Trends in Cognitive Sciences, 12(6), 237-241.

Posner, G. J., Strike, K. A., Hewson, P. W., & Gertzog, W. A. (1982). Accommodation of a scientific conception: Toward a theory of conceptual change. Science Education, 66(2), 211-227.

Potvin, P. (2017). The coexistence claim and its possible implications for success in teaching for conceptual “change”. European Journal of Science and Mathematics Education, 5(1), 55-66.

Russ, R. S., Scherr, R. E., Hammer, D., & Mikeska, J. (2008). Recognizing mechanistic reasoning in student scientific inquiry: A framework for discourse analysis developed from philosophy of science. Science Education, 92(3), 499-525.

Sanmarti, N., Izquierdo, M., & Watson, R. (1995). The substantialisation of properties in pupils’ thinking and in the history of science. Science & Education, 4(4), 349-369.

Slotta, J. D., & Chi, M. T. H. (2006). Helping Students Understand Challenging Topics in Science through Ontology Training. Cognition and Instruction, 24(2), 261-289.

Taber, K. S. (1998). An alternative conceptual framework from chemistry education. International Journal of Science Education, 20(5), 597-608.

Taber, K. S. (2002). Chemical Misconceptions – Prevention, Diagnosis and Cure: Theoretical background (Vol. I). Royal Society of Chemistry.

Taber, K. S., & García-Franco, A. (2010). Learning Processes in Chemistry: Drawing Upon Cognitive Resources to Learn About the Particulate Structure of Matter. Journal of the Learning Sciences, 19(1), 99-142.

Talanquer, V. (2006). Commonsense Chemistry: A Model for Understanding Students’ Alternative Conceptions. Journal of Chemical Education, 83(5), 811.

Talanquer, V. (2008). Students’ predictions about the sensory properties of chemical compounds: Additive versus emergent frameworks. Science Education, 92(1), 96-114.

Talanquer, V. (2014). Chemistry Education: Ten Heuristics To Tame. Journal of Chemical Education, 91(8), 1091-1097.

Talanquer, V. (2015). Threshold Concepts in Chemistry: The Critical Role of Implicit Schemas. Journal of Chemical Education, 92(1), 3-9.

Tanner, K. D. (2013). Structure matters: twenty-one teaching strategies to promote student engagement and cultivate classroom equity. CBE Life Sci Educ, 12(3), 322-331.

Tümay, H. (2016). Reconsidering learning difficulties and misconceptions in chemistry: emergence in chemistry and its implications for chemical education. Chemistry Education Research and Practice, 17(2), 229-245.

Vosniadou, S. (Ed.). (2013). International Handbook of Research on Conceptual Change. Routledge.

Vosniadou, S. (2019). The Development of Students’ Understanding of Science [Perspective]. Frontiers in Education, 4, 32.

Windschitl, M., Thompson, J., & Braaten, M. (2008). Beyond the scientific method: Model-based inquiry as a new paradigm of preference for school science investigations. Science Education, 92(5), 941-967.