A formulation for calculating atomic charges in molecules
Main Article Content
Abstract
Atomic charges within a molecule are frequently referred to in chemistry textbooks and represent the most simplified version of the molecular charge distribution. These charge distributions give insight into molecular polarity, on which many molecular properties of substances depend. Access to atomic charge values requires the use of sophisticated computational methods based on quantum chemistry, which, if accessible, are above the conceptual level for basic chemistry courses (and therefore they would be black box values). In the present work, a conceptually simple method for the calculation of atomic charges that requires knowledge of common topics in chemistry, such as Lewis representations, orbitals and electronegativity, is proposed. Based on the formulation for the calculation of atomic charges, some applications linked to dipole moments, inductive and mesomeric effects, stability of carbocations, acidity of halogenated carboxylic acids, catalytic action of Lewis acids and contribution of lone pairs of electrons to the dipole moment.
Article Details
Citas en Dimensions Service
References
Agronomov, A. E., Bolesov, I. G., Potapov, V. M., Foss, V. L., Chiranov, S. S., & Shabarov, Y. S. (1977). Problems and exercises in organic chemistry (p. 88). Mir Publishers.
Allen, L. C. (1989). Lewis–Langmuir atomic charges. Journal of the American Chemical Society, 111(26), 9115. https://doi.org/10.1021/ja00207a026 DOI: https://doi.org/10.1021/ja00207a026
Andrade-Gamboa, J. (2004). Polarity of a dative bond: Donor and acceptor electronegativities. Educación Química, 15(Número extraordinario), 335–341. https://doi.org/10.22201/fq.18708404e.2004.4e.66152 DOI: https://doi.org/10.22201/fq.18708404e.2004.4e.66152
Andrade-Gamboa, J., & Donati, E. R. (2006). El concepto de resonancia: Confusiones ontológicas y epistemológicas. Educación Química, 17(2), 174–179. https://doi.org/10.22201/fq.18708404e.2006.2.66057 DOI: https://doi.org/10.22201/fq.18708404e.2006.2.66057
Bergmann, D., & Hinze, J. (1987). Electronegativity and charge distribution. En K. D. Sen & C. K. Jørgensen (Eds.), Electronegativity (pp. 145–190). Springer-Verlag. DOI: https://doi.org/10.1007/BFb0029840
Bodner, G. M., Rickard, L. H., & Spencer, J. N. (1996). Chemistry: Structure and dynamics (p. 141). Wiley.
Bratsch, S. G. (1984). Electronegativity equalization with Pauling units. Journal of Chemical Education, 61(7), 588–589. https://doi.org/10.1021/ed061p588 DOI: https://doi.org/10.1021/ed061p588
Bratsch, S. G. (1985). A group electronegativity method with Pauling units. Journal of Chemical Education, 62(2), 101–103. https://doi.org/10.1021/ed062p101 DOI: https://doi.org/10.1021/ed062p101
Cotton, F. A., & Wilkinson, G. (1975). Química inorgánica avanzada (p. 125). Editorial Limusa.
Elliot, A. J. (2000). Fluorinated acetic acids. En Kirk-Othmer Encyclopedia of Chemical Technology. Wiley. DOI: https://doi.org/10.1002/0471238961.0612211505121209.a02
Gillespie, R. J., & Popelier, P. L. A. (2001). Chemical bonding and molecular geometry: From Lewis to electron densities. Oxford University Press.
Greenwood, N. N., & Earnshaw, A. (1998). Chemistry of the elements (p. 767). Butterworth-Heinemann.
Hanwell, M. D., Curtis, D. E., Lonie, D. C., Vandermeersch, T., Zurek, E., & Hutchison, G. R. (2012). Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. Journal of Cheminformatics, 4, 17. https://doi.org/10.1186/1758-2946-4-17 DOI: https://doi.org/10.1186/1758-2946-4-17
Hinze, S. R., Williamson, V. M., Deslongchamps, G., Shultz, M. J., Williamson, K. C., & Rapp, D. N. (2013). Textbook treatments of electrostatic potential maps in general and organic chemistry. Journal of Chemical Education, 90(10), 1275–1281. https://doi.org/10.1021/ed300395e DOI: https://doi.org/10.1021/ed300395e
House, J. E., & House, K. A. (2010). Descriptive inorganic chemistry (p. 348). Elsevier.
Huai, L., Qingwei, W., & Lixin, L. (1992). An improvement on the formula for group electronegativity. Journal of Chemical Education, 69(10), 783–784. https://doi.org/10.1021/ed069p783 DOI: https://doi.org/10.1021/ed069p783
Huheey, J. E. (1965). The electronegativity of groups. Journal of Physical Chemistry, 69(10), 3284–3291. https://doi.org/10.1021/j100894a011 DOI: https://doi.org/10.1021/j100894a011
Jensen, W. B. (1996). Electronegativity from Avogadro to Pauling. Part I: Origins of the electronegativity concept. Journal of Chemical Education, 73(1), 11–20. https://doi.org/10.1021/ed073p11 DOI: https://doi.org/10.1021/ed073p11
Jensen, W. B. (2003). Electronegativity from Avogadro to Pauling. Part II: Late nineteenth- and early twentieth-century developments. Journal of Chemical Education, 80(3), 279–287. https://doi.org/10.1021/ed080p279 DOI: https://doi.org/10.1021/ed080p279
Jerzembeck, W., Bürger, H., Constantin, L., Margulès, L., Demaison, J., Breidung, J., & Thiel, W. (2002). Bismuthine BiH₃: Fact or fiction? High-resolution infrared, millimeter-wave, and ab initio studies. Angewandte Chemie International Edition, 41(14), 2250–2252. https://doi.org/10.1002/1521-3773(20020715)41:14<2550::AID-ANIE2550>3.0.CO;2-B DOI: https://doi.org/10.1002/1521-3773(20020715)41:14<2550::AID-ANIE2550>3.0.CO;2-B
Levine, I. N. (2001). Química cuántica (5.ª ed.). Prentice Hall.
Lide, R. D. (2016–2017a). Structure of free molecules in the gas phase. En R. D. Lide, W. M. Haynes & J. T. Bruno (Eds.), CRC Handbook of Chemistry and Physics (97.ª ed., pp. 9-19–9-55). CRC Press.
Lide, R. D. (2016–2017b). Dipole moments. En R. D. Lide, W. M. Haynes & J. T. Bruno (Eds.), CRC Handbook of Chemistry and Physics (97.ª ed., pp. 9-59–9-67). CRC Press.
Lide, R. D. (2016–2017c). Dissociation constants of organic acids and bases. En R. D. Lide, W. M. Haynes & J. T. Bruno (Eds.), CRC Handbook of Chemistry and Physics (97.ª ed., pp. 5-88–5-97). CRC Press.
Lide, R. D. (2016–2017d). Structure of free molecules in gas phase. En R. D. Lide, W. M. Haynes & J. T. Bruno (Eds.), CRC Handbook of Chemistry and Physics (97.ª ed., pp. 9-19–9-67). CRC Press.
McMurry, J. (2008). Química orgánica. Cengage Learning.
Moog, R. S., & Farrell, J. J. (1996). Chemistry: A guided inquiry (p. 126). Wiley.
Mortier, W. J. (1987). Electronegativity equalization and its applications. En K. D. Sen & C. K. Jørgensen (Eds.), Electronegativity (pp. 125–143). Springer-Verlag. DOI: https://doi.org/10.1007/BFb0029839
Mulliken, R. S. (1934). A new electroaffinity scale; together with data on valence states and on valence ionization potentials and electron affinities. Journal of Chemical Physics, 2, 782–793. https://doi.org/10.1063/1.1749394 DOI: https://doi.org/10.1063/1.1749394
Pauling, L. (1932). The nature of the chemical bond. IV. The energy of single bonds and the relative electronegativity of atoms. Journal of the American Chemical Society, 54, 3570–3582. https://doi.org/10.1021/ja01348a011 DOI: https://doi.org/10.1021/ja01348a011
Pauling, L. (1965). Uniones químicas y la estructura de las moléculas y cristales. Una introducción a la química estructural moderna. Editorial Kapelusz.
Renard, J. J., & Bolker, H. I. (1976). The chemistry of chlorine monoxide (dichlorine monoxide). Chemical Reviews, 76(4), 487–508. https://doi.org/10.1021/cr60302a004 DOI: https://doi.org/10.1021/cr60302a004
Salas-Banuet, G., Ramírez-Vieyra, J., & Noguez-Amaya, M. E. (2011). La incomprendida electronegatividad (trilogía). Parte I. El pensamiento en la electronegatividad cualitativa. Educación Química, 22(1), 38–44. https://doi.org/10.1016/S0187-893X(18)30112-5 DOI: https://doi.org/10.1016/S0187-893X(18)30112-5
Parte II. Evolución en la cuantificación de la electronegatividad. Educación Química, 22(2), 155–161. https://doi.org/10.1016/S0187-893X(18)30127-7 DOI: https://doi.org/10.1016/S0187-893X(18)30127-7
Parte III. Comprendiendo la electronegatividad. Educación Química, 22(3), 224–231. https://doi.org/10.1016/S0187-893X(18)30138-1 DOI: https://doi.org/10.1016/S0187-893X(18)30138-1
Sanderson, R. T. (1976). Chemical bonds and bond energy. Academic Press.
Shusterman, A. J., & Hoistad, L. M. (2001). Teaching chemistry with electron density models. 2. Can atomic charges adequately explain electrostatic potential maps? The Chemical Educator, 6(1), 36–40. https://doi.org/10.1007/s00897000442a DOI: https://doi.org/10.1007/s00897000442a
Shusterman, G. P., & Shusterman, A. J. (1997). Teaching chemistry with electron density models. Journal of Chemical Education, 74(7), 771–776. https://doi.org/10.1021/ed074p771 DOI: https://doi.org/10.1021/ed074p771
Smyth, C. P. (1955). Dielectric behavior and structure: Dielectric constant and loss, dipole moment, and molecular structure (pp. 243–244). McGraw-Hill.
Spencer, N., Moog, R. S., & Gillespie, R. J. (1996). Desmytifying introductory chemistry. Part 3. Ionization energies, electronegativity, polar bonds and partial charges. Journal of Chemical Education, 77(7), 627–629. https://doi.org/10.1021/ed073p627 DOI: https://doi.org/10.1021/ed073p627
Sykes, P. (1973). Mecanismos de reacción en química orgánica. Martínez Roca.
Yurkanis Bruice, P. (2007). Fundamentos de química orgánica. Pearson Education.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Educación Química por Universidad Nacional Autónoma de México se distribuye bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivar 4.0 Internacional.
Basada en una obra en http://www.revistas.unam.mx/index.php/req.