Towards a multidimensional learning progression of the school substance model

Main Article Content

Ainoa Marzábal
Franklin Manrique
Virginia Delgado
Patricia Moreira

Abstract

Given the social and environmental implications of materials in today’s life, the substance model is present in all school chemistry curricula. Although there is an extensive body of literature on the learning processes of this model, most learning progressions have focused on a single dimension, providing partial views of how students appropriate key ideas and learn to apply them in new and challenging situations. In this paper we propose a multidimensional learning progression for the substance model, characterizing how key ideas, forms of reasoning, and representations of material systems are expected to progress. The learning progression, empirically refined from the productions of 343 students aged 13-18, is composed of six stages that constitute the expected trajectory of students from the objectivist to the interactionist stage. This learning progression can be used by both researchers and teachers to move towards more sophisticated visions of substances, which allow students to address the challenges that the exercise of citizenship demands in today’s society.

Article Details

References

Adúriz-Bravo, A., e Izquierdo-Aymerich, M. (2009). Un modelo de modelo científico para la enseñanza de las ciencias naturales. Revista electrónica de investigación en educación en ciencias, (ESP), 40-49.

Ariza, Y. (2022). La noción de “modelo teórico” en la enseñanza de la química: representación y función del sistema periódico. Educación química, 33(4), 97-110.

Atkins, P. W., y de Paula, J. (2014). Atkins’ physical chemistry. Oxford University press.

Belenguer-Sapiña, C.; Briz-Redón, Á.; Domínguez-Sales, M. C. (2021). Do Social Chemophobic Attitudes Influence the Opinions of Secondary School Students? J. Chem. Educ., 98, 2176. https://doi.org/10.1021/acs.jchemed.0c01352.

Brown, T. L., LeMay, H. E., Bursten, B. E., y Burdge, J. R. (2002). Chemistry: the central science. Pearson Educación.

Chiu, M. H., y Lin, J. W. (2019). Modeling competence in science education. Disciplinary and Interdisciplinary Science Education Research, 1(1), 1-11.

Cooper, M. M., y Stowe, R. L. (2018). Chemistry education research—From personal empiricism to evidence, theory, and informed practice. Chemical reviews, 118(12), 6053-6087.

Furió-Mas, C., y Domínguez-Sales, C. (2007). Problemas históricos y dificultades de los estudiantes en la conceptualización de sustancia compuesto químico. Enseñanza de las ciencias: revista de investigación y experiencias didácticas, 25(2), 241-258.

Hadenfeldt, J. C., Bernholt, S., Liu, X., Neumann, K., y Parchmann, I. (2013). Using ordered multiple-choice items to assess students’ understanding of the structure and composition of matter. Journal of Chemical Education, 90(12), 1602–1608.

Izquierdo i Aymerich, M., y Adúriz-Bravo, A. (2005). Los modelos teóricos para la ciencia escolar: Un ejemplo de química. Enseñanza de las Ciencias, (Extra).

Krajcik, J., y Shin, N. (2023). Student Conceptions, Conceptual Change, and Learning Progressions. Handbook of Research on Science Education: Volume III.

Liu, X., y Lesniak, K. (2006). Progression in children’s understanding of the matter concept from elementary to high school. Journal of Research in Science Teaching: The Official Journal of the National Association for Research in Science Teaching, 43(3), 320-347.

Mahaffy, P. G., Matlin, S. A., Holme, T. A., y MacKellar, J. (2019). Systems thinking for education about the molecular basis of sustainability. Nature Sustainability, 2(5), 362-370.

Marzábal, A., Delgado, V., Moreira, P., Merino, C., Cabello, V. M., Manrique, F., Soto, M., Cuellar, L. y Izquierdo, D. (2021). Los modelos materia, reacción química y termodinámica como núcleos estructurantes de una química escolar orientada a la formación ciudadana. Educación química, 32(4), 109-126.

Merritt, J., y Krajcik, J. (2013). Learning progression developed to support students in building a particle model of matter. Concepts of matter in science education, 11-45.

Moltó, M. Á., Hernández, M. I., y Pintó, R. (2021). Una herramienta para el análisis del nivel de comprensión del modelo de materia de los alumnos de 4º de ESO. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 18(1).

Moreira, P., Marzabal, A., y Talanquer, V. (2019). Using a mechanistic framework to characterise chemistry students’ reasoning in written explanations. Chemistry Education Research and Practice, 20(1), 120-131.

Ngai, C., y Sevian, H. (2017). Capturing chemical identity thinking. Journal of Chemical Education, 94(2), 137-148.

Ngai, C., Sevian, H., y Talanquer, V. (2014). What is this substance? What makes it different? Mapping progression in students’ assumptions about chemical identity. International Journal of Science Education, 36(14), 2438-2461.

Oh, P. S., y Oh, S. J. (2011). What teachers of science need to know about models: An overview. International Journal of Science Education, 33(8), 1109-1130.

Pierson, A. E., Clark, D. B., y Sherard, M. K. (2017). Learning progressions in context: Tensions and insights from a semester‐long middle school modeling curriculum. Science Education, 101(6), 1061-1088.

Raviolo, A., Garritz, A., y Sosa, P. (2011). Sustancia y reacción química como conceptos centrales en química. Una discusión conceptual, histórica y didáctica.

Russ, R. S., Coffey, J. E., Hammer, D., y Hutchison, P. (2009). Making classroom assessment more accountable to scientific reasoning: A case for attending to mechanistic thinking. Science Education, 93(5), 875-891.

Salinas, I., Covitt, B. A., y Gunckel, K. L. (2013). Sustancias en el agua: progresiones de aprendizaje para diseñar intervenciones curriculares. Educación química, 24(4), 391-398.

Sandín M. P., (2003), Investigación cualitativa en educación: fundamentos y tradiciones, Madrid, España: Mc Graw Hill.

Sensevy, G., Tiberghien, A., Santini, J., Laubé, S., y Griggs, P. (2008). An epistemological approach to modeling: Cases studies and implications for science teaching. Science education, 92(3), 424-446.

Sevian, H., Ngai, C., Szteinberg, G., Brenes, P., y Arce, H. (2015). Concepción de la identidad química en estudiantes y profesores de química: Parte I-La identidad química como base del concepto macroscópico de sustancia. Educación química, 26(1), 13-20.

Soto, M., y Couso, D. (2023). Construcción de un modelo sofisticado de energía en futuros docentes de física. Enseñanza de las Ciencias. Revista de investigación y experiencias didácticas, 41(2), 25-45.

Stains, M., y Talanquer, V. (2007). Classification of chemical substances using particulate representations of matter: An analysis of student thinking. International Journal of Science Education, 29(5), 643-661.

Stern, L., y Ahlgren, A. (2002). Analysis of students’ assessments in middle school curriculum materials: Aiming precisely at benchmarks and standards. Journal of Research in Science Teaching, 39(9), 889-910.

Stevens, S., Delgado, C. and Krajcik, J. S., (2010) Developing a hypothetical multi-dimensional learning progression for the nature of matter, Journal of Research in Science Teaching, 47, 687–715.

Taber, K. S. (2018). The use of Cronbach’s alpha when developing and reporting research instruments in science education. Res. Sci. Educ. 48(6), 1273–1296. doi:10.1007/s11165-016-9602-2

Talanquer, V. (2009). On cognitive constraints and learning progressions: The case of “structure of matter”. International Journal of Science Education, 31(15), 2123-2136.

Talanquer, V. (2016). Central ideas in chemistry: An alternative perspective. Journal of Chemical Education, 93(1), 3-8.

Talanquer, V. (2018). Progressions in reasoning about structure–property relationships. Chemistry Education Research and Practice, 19(4), 998-1009.

Talanquer, V. (2020). La progresión de los aprendizajes sobre la composición, estructura y transformación química de la materia. Educació química, 4-11.

De Vos, W., y Verdonk, A. H. (1996). The particulate nature of matter in science education and in science. Journal of Research in Science Teaching: The Official Journal of the National Association for Research in Science Teaching, 33(6), 657-664.

Wei, B. (2019). Reconstructing a school chemistry curriculum in the era of core competencies: A case from China. Journal of Chemical Education, 96(7), 1359-1366.

Wiser, M., Smith, C. L., y Doubler, S. (2012). Learning progressions as tools for curriculum development: Lessons from the Inquiry Project. In Learning progressions in science (pp. 357–403). Brill Sense.